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(Fukushima 1980) 

ConvNet (Krizhevsky, Sutskever, Hinton, 2012)

GoogleBrain(2012)

¯íƳǳ
(O’Keefe 1976) 

ƮƳǳ (Bruce, Desimone, Gross 1981)

(Sugaseet al. 1999)
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the stimulus groups monkey, human and shape. The four fine
categories were classifications within the facial stimuli: F1, monkey
identity; F2, monkey expression; F3, human identity; and F4,
human expression. For each category, we calculated the time
course of the transmitted information (Ic) from the number of
spike discharges using a moving time window of 50 ms, and
evaluated significance of information with the x2 test13 (see
Methods).

Figure 2a shows the results of the information analysis for the
responses of the neuron in Fig. 1. The neuron coded ‘significant’
information about all five categories tested. The earliest information
was global (G). Its transmission rate increased rapidly, correspond-
ing to the initial part of the averaged response (beige histogram),
and then decreased. Information regarding F2 (monkey expression)

and F3 (human identity) peaked after the global peak. Once F2
peaked, it declined slowly and lasted during the sustained dis-
charges, whereas global and F3 information fell rapidly from their
peaks before levelling off. F1 (monkey identity) and F4 (human
expression) were encoded at a much lower level than the others. The
response latency of this neuron was 53 ms, and the latencies for the
information about each category were as follows: G, 45; F1, 157; F2,
93; F3, 125; and F4, 125 ms. Thus, the earliest transient discharge
conveyed global information, and the later sustained discharge
encoded one category of the fine information best14.

Of the 86 face-responsive neurons, 11 neurons (13%) did not
encode significant information in any category, 43 (50%) coded
either global or fine category information, and 32 (37%) coded both
categories. To clarify how single neurons encoded both global and
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Figure 1 Responses of a face-responsive neuron. a, Areas of brain examined.

AP0 represents the position of the external auditory meatus; A14, A19, A22 and

A24 represent anterior 14,19, 22 and 24mm, respectively. AMTS, anterior middle

temporal sulcus; STS, superior temporal sulcus. b–d, Response diagrams of a

single neuron for monkey, human and shape stimuli, respectively. Each diagram

consists of a stimulus image, a raster plot of the response and a spike-density

plot, in the first, second and third rows, respectively. The expressionsof 4monkey

models were neutral (A), pout-lips (B), full open-mouthed (C) and mid open-

mouthed (D). Those of 3 human models were neutral (A), happy (B), surprised (C)

and angry (D). The colours of circles and rectangles were red (A), blue (B), green

(C) and pink (D). For the spike-density plot, spikes per ms over all trials were

summed and smoothed with a gaussian filter (s:d: ¼ 10ms). The vertical line in

eachplot indicates the timeof stimulus onset, and the dashed part in the abscissa

indicates the duration of stimulus presentation.
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FIG. 2. Place fields for all place units except 21342 and those from animal 217. 

distributed around the maze. The concentration of fields from the other 
animals in arm B may have reflected the fact that many of the rats spent 
their “free time” in this arm. The fact that the initial search for units 
was conducted there might also have introduced a bias towards units 
active in that area. In any case, it was clear that the majority of fields 
were not located in those places which contained the rewards or other 

FIG. 3. Place fields for place units from animal 217. 

ÙŮǌƎÚƱ
(Blakemore & Cooper 1970)

RECEPTIVE FIELDS IN CAT STRIATE CORTEX 579
found by changing the size, shape and orientation of the stimulus until a clear
response was evoked. Often when a region with excitatory or inhibitory
responses was established the neighbouring opposing areas in the receptive
field could only be demonstrated indirectly. Such an indirect method is
illustrated in Fig. 3B, where two flanking areas are indicated by using a short
slit in various positions like the hand of a clock, always including the very

A B

+7 -!
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- m_

aS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~T T T

Fig. 3. Same unit as in Fig. 2. A, responses to shinling a rectangular light spot, 1° x 8° ; centre of
slit superimposed on centre of receptive field; successive stimuli rotated clockwise, as shown
to left of figure. B, responses to a 1° x 5° slit oriented in various directions, with one end
always covering the centre ofthe receptive field: note that this central region evoked responses
when stimulated alone (Fig. 2a). Stimulus and background intensities as in Fig. 1; stimulus
duration 1 sec.

centre of the field. The findings thus agree qualitatively with those obtained
with a small spot (Fig. 2a).

Receptive fields having a central area and opposing flanks represented a
common pattern, but several variations were seen. Some fields had long narrow
central regions with extensive flanking areas (Figs. 1-3): others had a large
central area and concentrated slit-shaped flanks (Figs. 6, 9, 10). In many
fields the two flanking regions were asymmetrical, differing in size and shape;
in these a given spot gave unequal responses in symmetrically corresponding

37 PHYSIO. CXL,VIIT) by guest on October 20, 2012jp.physoc.orgDownloaded from J Physiol (
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şǤºĿĎĲA (Pavlov 1903)

h���”ĿĎĲA
(Thorndike 1898)

Deep Q network (Mnihet al. 2015)difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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W. SCHULTZ4

fails to occur, even in the absence of an immediately preced-
ing stimulus (Fig. 2, bottom) . This is observed when animals
fail to obtain reward because of erroneous behavior, when
liquid flow is stopped by the experimenter despite correct
behavior, or when a valve opens audibly without delivering
liquid (Hollerman and Schultz 1996; Ljungberg et al. 1991;
Schultz et al. 1993). When reward delivery is delayed for
0.5 or 1.0 s, a depression of neuronal activity occurs at the
regular time of the reward, and an activation follows the
reward at the new time (Hollerman and Schultz 1996). Both
responses occur only during a few repetitions until the new
time of reward delivery becomes predicted again. By con-
trast, delivering reward earlier than habitual results in an
activation at the new time of reward but fails to induce a
depression at the habitual time. This suggests that unusually
early reward delivery cancels the reward prediction for the
habitual time. Thus dopamine neurons monitor both the oc-
currence and the time of reward. In the absence of stimuli
immediately preceding the omitted reward, the depressions
do not constitute a simple neuronal response but reflect an
expectation process based on an internal clock tracking the
precise time of predicted reward.

Activation by conditioned, reward-predicting stimuli
About 55–70% of dopamine neurons are activated by

conditioned visual and auditory stimuli in the various classi-
cally or instrumentally conditioned tasks described earlier
(Fig. 2, middle and bottom) (Hollerman and Schultz 1996;
Ljungberg et al. 1991, 1992; Mirenowicz and Schultz 1994;
Schultz 1986; Schultz and Romo 1990; P. Waelti, J. Mire-
nowicz, and W. Schultz, unpublished data) . The first dopa-
mine responses to conditioned light were reported by Miller
et al. (1981) in rats treated with haloperidol, which increased
the incidence and spontaneous activity of dopamine neurons
but resulted in more sustained responses than in undrugged
animals. Although responses occur close to behavioral reac-
tions (Nishino et al. 1987), they are unrelated to arm and
eye movements themselves, as they occur also ipsilateral toFIG. 2. Dopamine neurons report rewards according to an error in re-

ward prediction. Top : drop of liquid occurs although no reward is predicted the moving arm and in trials without arm or eye movements
at this time. Occurrence of reward thus constitutes a positive error in the (Schultz and Romo 1990). Conditioned stimuli are some-prediction of reward. Dopamine neuron is activated by the unpredicted what less effective than primary rewards in terms of responseoccurrence of the liquid. Middle : conditioned stimulus predicts a reward,

magnitude and fractions of neurons activated. Dopamineand the reward occurs according to the prediction, hence no error in the
prediction of reward. Dopamine neuron fails to be activated by the predicted neurons respond only to the onset of conditioned stimuli and
reward (right) . It also shows an activation after the reward-predicting stim- not to their offset, even if stimulus offset predicts the reward
ulus, which occurs irrespective of an error in the prediction of the later (Schultz and Romo 1990). Dopamine neurons do not distin-reward ( left ) . Bottom : conditioned stimulus predicts a reward, but the re- guish between visual and auditory modalities of conditionedward fails to occur because of lack of reaction by the animal. Activity of

appetitive stimuli. However, they discriminate between ap-the dopamine neuron is depressed exactly at the time when the reward
would have occurred. Note the depression occurring ú1 s after the condi- petitive and neutral or aversive stimuli as long as they are
tioned stimulus without any intervening stimuli, revealing an internal pro- physically sufficiently dissimilar (Ljungberg et al. 1992;cess of reward expectation. Neuronal activity in the 3 graphs follows the P. Waelti, J. Mirenowicz, and W. Schultz, unpublishedequation: dopamine response (Reward) Å reward occurred 0 reward pre-

data) . Only 11% of dopamine neurons, most of them withdicted. CS, conditioned stimulus; R, primary reward. Reprinted from
Schultz et al. (1997) with permission by American Association for the appetitive responses, show the typical phasic activations also
Advancement of Science. in response to conditioned aversive visual or auditory stimuli

in active avoidance tasks in which animals release a key to
avoid an air puff or a drop of hypertonic saline (Mirenowicztogether, the occurrence of reward, including its time, must
and Schultz 1996), although such avoidance may be viewedbe unpredicted to activate dopamine neurons.
as ‘‘rewarding.’’ These few activations are not sufficiently
strong to induce an average population response. Thus theDepression by omission of predicted reward
phasic responses of dopamine neurons preferentially report
environmental stimuli with appetitive motivational value butDopamine neurons are depressed exactly at the time of

the usual occurrence of reward when a fully predicted reward without discriminating between different sensory modalities.

J857-7/ 9k2a$$jy19 06-22-98 13:43:40 neupa LP-Neurophys

ŐĿÌn¦ÛĖƀÜð (Samejimaet al. 2005) 

�ƭĊǀƉTDÚƱǙŝ
(Bartoet al. 1995, 

Montague et al. 1996)

!

V(s) Q(s,a)

�� ��

�êéù



4 8 4  |  N A T U R E  |  V O L  5 2 9  |  2 8  J A N U A R Y  2 0 1 6

ARTICLE
doi:10.1038/nature16961

Mastering the game of Go with deep 
neural networks and tree search
David Silver1*, Aja Huang1*, Chris J. Maddison1, Arthur Guez1, Laurent Sifre1, George van den Driessche1,  
Julian Schrittwieser1, Ioannis Antonoglou1, Veda Panneershelvam1, Marc Lanctot1, Sander Dieleman1, Dominik Grewe1, 
John Nham2, Nal Kalchbrenner1, Ilya Sutskever2, Timothy Lillicrap1, Madeleine Leach1, Koray Kavukcuoglu1,  
Thore Graepel1 & Demis Hassabis1

All games of perfect information have an optimal value function, v*(s), 
which determines the outcome of the game, from every board position 
or state s, under perfect play by all players. These games may be solved 
by recursively computing the optimal value function in a search tree 
containing approximately bd possible sequences of moves, where b is 
the game’s breadth (number of legal moves per position) and d is its 
depth (game length). In large games, such as chess (b ≈ 35, d ≈ 80)1 and 
especially Go (b ≈ 250, d ≈ 150)1, exhaustive search is infeasible2,3, but 
the effective search space can be reduced by two general principles. 
First, the depth of the search may be reduced by position evaluation: 
truncating the search tree at state s and replacing the subtree below s 
by an approximate value function v(s) ≈ v*(s) that predicts the outcome 
from state s. This approach has led to superhuman performance in 
chess4, checkers5 and othello6, but it was believed to be intractable in Go 
due to the complexity of the game7. Second, the breadth of the search 
may be reduced by sampling actions from a policy p(a|s) that is a prob-
ability distribution over possible moves a in position s. For example, 
Monte Carlo rollouts8 search to maximum depth without branching 
at all, by sampling long sequences of actions for both players from a 
policy p. Averaging over such rollouts can provide an effective position 
evaluation, achieving superhuman performance in backgammon8 and 
Scrabble9, and weak amateur level play in Go10.

Monte Carlo tree search (MCTS)11,12 uses Monte Carlo rollouts 
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant 
values become more accurate. The policy used to select actions during 
search is also improved over time, by selecting children with higher 
values. Asymptotically, this policy converges to optimal play, and the 
evaluations converge to the optimal value function12. The strongest 
current Go programs are based on MCTS, enhanced by policies that 
are trained to predict human expert moves13. These policies are used 
to narrow the search to a beam of high-probability actions, and to 
sample actions during rollouts. This approach has achieved strong 
amateur play13–15. However, prior work has been limited to shallow 

policies13–15 or value functions16 based on a linear combination of 
input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion17, face recognition18, and playing Atari games19. They use many 
layers of neurons, each arranged in overlapping tiles, to construct 
increasingly abstract, localized representations of an image20. We 
employ a similar architecture for the game of Go. We pass in the board 
position as a 19 × 19 image and use convolutional layers to construct a 
representation of the position. We use these neural networks to reduce 
the effective depth and breadth of the search tree: evaluating positions 
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several 
stages of machine learning (Fig. 1). We begin by training a supervised 
learning (SL) policy network pσ directly from expert human moves. 
This provides fast, efficient learning updates with immediate feedback 
and high-quality gradients. Similar to prior work13,15, we also train a 
fast policy pπ that can rapidly sample actions during rollouts. Next, we 
train a reinforcement learning (RL) policy network pρ that improves 
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games, 
rather than maximizing predictive accuracy. Finally, we train a value 
network vθ that predicts the winner of games played by the RL policy 
network against itself. Our program AlphaGo efficiently combines the 
policy and value networks with MCTS.

Supervised learning of policy networks
For the first stage of the training pipeline, we build on prior work 
on predicting expert moves in the game of Go using supervised  
learning13,21–24. The SL policy network pσ(a |  s) alternates between con-
volutional layers with weights σ, and rectifier nonlinearities. A final soft-
max layer outputs a probability distribution over all legal moves a. The 
input s to the policy network is a simple representation of the board state 
(see Extended Data Table 2). The policy network is trained on randomly  

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its 
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach 
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep 
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement 
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state- 
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a 
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, 
our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go 
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the 
full-sized game of Go, a feat previously thought to be at least a decade away.

1Google DeepMind, 5 New Street Square, London EC4A 3TW, UK. 2Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.
*These authors contributed equally to this work.

© 2016 Macmillan Publishers Limited. All rights reserved

AlphaGo
(Silver et al., 2016, Nature)
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ ( | )
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ ( | )

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game  
play, sampling each move ∼ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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Figure 2. The Correlation between the average mating learning performance and the
average fitness in the final 20 generations in all experiments. The learning performance was
estimated as the number of time steps the mating behavior was selected divided with number of mating
events. The seven types of markers indicate the number of energy sources in the environment for each
simulation.

(a) (b)

Figure 3. Example trajectories of the learned behaviors for the roamer strategy and the
stayer strategy. (a) The roamer ignores the tail-lamp of the mating partner and executes the learned
foraging behavior to capture the energy source. (b) The stayer executes the learned waiting behavior
and adjusts its position according to the trajectory of the mating partner.
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Figure 4. Difference in genotype, phenotype, and behavior between the roamer (green)
and stayer (red) subpopulations for all individuals (1600) in the final 20 generations. (a)
The distribution of values of the bias weights (x1) and the face distance weights (x5). (b) The
histogram of average waiting threshold values, Ē

m

. (c) The mean percentages of the lifetimes, with
standard deviation, the individuals spent executing the three basic behaviors.
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Figure 5. Average number of number of mating events, average proportion of mating
events with stayer mating partners, average energy level at the mating events, and average
fitness, as functions of the stayer proportion in the population, for the roamer (green solid
lines with circles) and stayer (red solid lines with circles) subpopulations. (a) The dotted
lines show the best linear fit for the two subpopulations and the black line shows average values for the
population as a whole. (b) The dotted lines show the best linear fit for the two subpopulations and the
black line shows average ratio of the number of roamer mating events to the number of stayer mating
events. (c) The dotted lines show the constant approximations as the average values over all phenotype
proportions. (d) The dotted lines show the estimated fitness values using Equations 6 and 8.
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Model-based action planning 
involves cortico-cerebellar and 
basal ganglia networks
Alan S. R. Fermin1,2,3, Takehiko Yoshida1,2, Junichiro Yoshimoto1,2, Makoto Ito2, 
Saori C. Tanaka4 & Kenji Doya1,2,3,4

Humans can select actions by learning, planning, or retrieving motor memories. Reinforcement 
Learning (RL) associates these processes with three major classes of strategies for action selection: 
exploratory RL learns state-action values by exploration, model-based RL uses internal models to 
simulate future states reached by hypothetical actions, and motor-memory RL selects past successful 
state-action mapping. In order to investigate the neural substrates that implement these strategies, 
we conducted a functional magnetic resonance imaging (fMRI) experiment while humans performed a 
sequential action selection task under conditions that promoted the use of a specific RL strategy. The 
ventromedial prefrontal cortex and ventral striatum increased activity in the exploratory condition; 
the dorsolateral prefrontal cortex, dorsomedial striatum, and lateral cerebellum in the model-based 
condition; and the supplementary motor area, putamen, and anterior cerebellum in the motor-memory 
condition. These findings suggest that a distinct prefrontal-basal ganglia and cerebellar network 
implements the model-based RL action selection strategy.

Using exploration and reward feedback, humans and other animals have a remarkable capacity to learn new 
motor behaviors without explicit teaching1. Throughout most of our lives, however, we depend on explicit or 
implicit knowledge, based upon past experiences, such as a map of the area or properties of the musculoskeletal 
system, to enable focused exploration and efficient learning2,3. After repeated practice, a motor behavior becomes 
stereotyped and can be executed with little mental load4. What brain mechanisms enable animals to employ 
different learning strategies and to select or integrate them in a given situation? In this paper, we take a new 
behavioral paradigm that captures different stages of motor learning during a single experimental session5, and 
using fMRI we explore brain structures that are specifically involved in implementing different learning strategies.

The theory of reinforcement learning (RL)6 prescribes three major classes of algorithms for action selection 
and learning: motor-memory, exploratory, and model-based strategies. The motor-memory strategy reinforces 
the sequence of states and actions that led to successful results in past experiences, which is simple, but requires 
many trials before finding an optimal sequence, unless there are clues to minimize exploration. The exploratory 
strategy recursively updates values of states and actions to efficiently utilize experiences resulting from explora-
tory actions, acquired rewards, and state transitions. The model-based strategy employs an internal model that 
enables simulation of the future state reached by a hypothetical action, or multiple actions. Since these strategies 
require different degrees of pre-acquired knowledge and computational loads for real-time execution, it is reason-
able to speculate that humans may utilize them depending on their experience level with a certain context or task.

Computational models of RL and fMRI studies with humans have explored the neural substrates of 
model-based and motor-memory strategies, given their strong resemblance to classical, psychological, dichot-
omous behavior control employing deliberative and automatic processes, respectively. Activity in the dorsolat-
eral prefrontal cortex (DLPFC) has been associated with the use of model-based strategies when an internal 
model of environmental dynamics is available and can be used for forward planning and prediction of an action’s 
future outcomes7,8,9,10. Conversely, activation of the posterior dorsal striatum is observed when actions become 
automatic after extensive practice, and a motor-memory strategy is more likely to control behavior10,11. 
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Animals have to act despite limited sensory information because of 
factors such as interfering background noise or occluded vision. Thus, 
the ability to estimate the current state of the outside world from a 
sequence of sensory observations and their own actions is essential. 
This process is optimally realized by dynamic Bayesian inference, 
such as a Kalman filter1, which predicts the state with an internal state 
transition model and updates the prediction with new sensory inputs. 
For example, when a mouse navigates in darkness, it must keep track 
of the location of its destination based on both its movement (predic-
tion) and sensory signals such as calls from its nest mate (updating). 
We hypothesized that dynamic Bayesian inference is implemented in 
cerebral neocortex and investigated the plausibility of this idea using 
two-photon microscopy2.

Most areas of the cerebral neocortex receive ascending sensory 
inputs (feedforward streams) and descending inputs (feedback 
streams) from the thalamus and other cortical areas3. Previous stud-
ies have shown that feedback streams are essential for self-motion  
perception, consciousness and attention4,5, suggesting that the neo-
cortex integrates internal state prediction on the basis of its own 
actions and ascending sensory signals. In addition, there have been 
proposals of cortical implementation of Bayesian inference using 
probabilistic population code6. A recent proposal further advocated 
implementation of dynamic Bayesian inference by spiking population 
codes7. In the ‘canonical microcircuit’ of the neocortex3,8, feedforward 
signals project mainly to layer 4 and are then forwarded to layers 
2/3 and 5. Pyramidal neurons in layers 2/3 and 5 receive feedback  
signals from their apical dendrites in layer 1 and feedforward and 
feedback signals merge in these neurons. Feedback signals (for exam-
ple, motor activity) are stronger in deeper layers of sensory corti-
ces9,10. These anatomical connections and their activity lead to the  

hypothesis that dynamic Bayesian inference is implemented in pyram-
idal neurons of layers 2, 3 and 5, with increasing action dependence 
in deeper layers.

To test this hypothesis, we trained mice to perform an auditory 
virtual navigation task and imaged neuronal activity in layers 2, 3 
and 5 of the PPC and the PM located posterior to PPC11–13. The task 
required mice to approach a water reward site (goal) by estimating 
the distance on the basis of sound cues and their own locomotion. 
PPC is involved in spatial navigation by representing route maps, 
head directions, turning locations and locomotory accelerations with 
egocentric and allocentric representations14–17. PPC lesions disrupt 
navigation on the basis of self-motion information (path integra-
tion)18,19. PM also represents egocentric and allocentric reference 
frames20. Both PPC and PM receive inputs from auditory cortex 
and secondary motor cortex (M2)21,22, but PM receives fewer feed-
back projections from M2 than PPC13,23,24. If feedback signals are 
important for internal state prediction based on an animal’s own 
actions, association cortex (PPC) should show a more reliable neu-
ral implementation of dynamic Bayesian inference than the sensory 
cortex (PM).

We found that mice increased anticipatory licking as they 
approached the goal, even when sound cues were omitted, indicating 
that they were performing action-dependent state estimation, and that 
silencing of PPC by muscimol disturbed this behavior. Using proba-
bilistic population decoding, we observed that neurons in all layers 
in PPC, and slightly less in PM, implemented the two fundamental 
features of dynamic Bayesian inference: prediction and updating. 
Population activity predicted the goal distance even without sounds 
(prediction). The uncertainty of prediction decreased with sound 
inputs (updating).

1Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Kunigami, Okinawa, Japan. 2Optical  
Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Kunigami, Okinawa, Japan. Correspondence should be 
addressed to K.D. (doya@oist.jp).
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Neural substrate of dynamic Bayesian inference in the 
cerebral cortex
Akihiro Funamizu1,2, Bernd Kuhn2 & Kenji Doya1

Dynamic Bayesian inference allows a system to infer the environmental state under conditions of limited sensory observation. 
Using a goal-reaching task, we found that posterior parietal cortex (PPC) and adjacent posteromedial cortex (PM) implemented 
the two fundamental features of dynamic Bayesian inference: prediction of hidden states using an internal state transition model 
and updating the prediction with new sensory evidence. We optically imaged the activity of neurons in mouse PPC and PM layers 
2, 3 and 5 in an acoustic virtual-reality system. As mice approached a reward site, anticipatory licking increased even when 
sound cues were intermittently presented; this was disturbed by PPC silencing. Probabilistic population decoding revealed that 
neurons in PPC and PM represented goal distances during sound omission (prediction), particularly in PPC layers 3 and 5, and 
prediction improved with the observation of cue sounds (updating). Our results illustrate how cerebral cortex realizes mental 
simulation using an action-dependent dynamic model. 
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Akihiro Funamizu, Bernd Kuhn, Kenji Doya 

Investigation of action-dependent state prediction in 
the mouse parietal cortex with two-photon microscopy 

OIST Graduate University 

Investigate the neural correlates of model-based decision 
making in posterior parietal cortex (PPC) in mouse 

Two-photon microscopy: 

- Calcium imaging was conducted with a 
behaving mouse during the task 

- Adeno-associated virus (AAV) delivering the 
gene of GCamp6f was injected into PPC 

Objective 

Virtual sound navigation task: 
- Mouse estimates the distance between him 
and a sound source based on an internal model 
of locomotion 

- Mouse was head restrained under the two-photon microscope 

Speaker 

Spout 

- Locomotion of mouse was captured by an USB mouse 

Two-photon microscopy 
- Sampling rate:  
   30.9 Hz 
- 400 x 400 Pm  
   field of view 
- 512 x 512 pixels 

AAV injection: 
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Virtual Real 

- The virtual position of mouse was updated 
by the mouse’s own locomotion 

- When a mouse passed a sound source and licked a spout, he got a reward 

- In a virtual sound navigation task, mice increased the lickings even when the sound was omitted, suggesting 
that they updated the prediction of sound source position without auditory inputs 

The cortico-cortical circuit from V2 to parietal cortex not only reduces the 
overall uncertainty of state prediction, but also improves the action-dependent  
model-based prediction 
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activities in the intermittent conditions, 
while V2 neurons had the opposite tendency - Neurons in the parietal and secondary visual (V2) cortices mainly represented the time from trial start 

and the distance to sound source 
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intermittent conditions. Also, they represented the locomotion speed which was important for the action-dependent 
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- At the zero to sound source, V2 cortex had the 
significantly worse prediction of sound-source 
distance in the intermittent1 and 2 conditions 

MAP: Task conditions 
p-value: ANOVA 
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- Even at the no-sound periods in the intermittent 
conditions, the neurons successfully decoded the 
distance to sound source 

- The prediction in intermittent1 condition 
improved in the parietal cortex 

: No-sounded distance in intermittent2 

MAP: Parietal vs. V2 

Uncertainty: Parietal vs. V2 

p-value: ANOVA 

- The prediction accuracy was improved in 
the parietal cortex compared to V2 

The standard deviations in decoding were compared 
between the parietal and V2 cortices  (*: p < 0.01) 

- x was discretized for every 4.19 cm  

- Training data: Continuous condition 

- n was normalized and discretized 
to 3 bins: [-inf, -1.96, 1.96, inf] 

Recorded from 8 mice: 

Parietal cortex 
layer 2: 8 sites (n = 4155) 
  519±16 per site 
layer 3: 9 sites (n = 4530) 
  500±19 per site 
layer 5: 8 sites (n = 2895) 
  361±23 per site  

V2 cortex 
layer 2: 9 sites (n = 4577) 
  509±19 per site 
layer 3: 8 sites (n = 3832) 
  479±21 per site 
layer 5: 8 sites (n = 2693) 
  336±23 per site  
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- The neurons mainly encoded the start of trial and 
reward presentation 
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with Bayesian inference 
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tryptophan hydroxylase-2 (Tph2) promoter-tTA

TetO-ChR2(C128S)-EYFP (Tanaka et al., 2012, Cell Reports)
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Training samples Generated samples

Figure 11
Random samples from the training set (left), and samples generated from a three-hidden-layer deep
Boltzmann machine by running the Gibbs sampler for 10,000 steps (right).

Let us construct a multimodal DBM using an image–text bimodal DBM as our running example.
Let vm ∈ RD denote a real-valued image input and vt ∈ {1, . . . , K } denote an associated text input
containing M words, where vt

k denotes the count for the kth word. We model each data modality
using a separate two-layer DBM. We use a Gaussian–Bernoulli RBM as a first-layer model for
the image-specific DBM (see Figure 12a). Hence, the image-specific DBM uses a Gaussian
distribution to model the distribution over real-valued image features. Similarly, a text-specific
DBM uses a replicated softmax model to model the distribution over word count vectors.

To form a multimodal DBM, we combine the two models by adding an additional layer on
top of them. The resulting graphical model is shown in Figure 12c. Let h(1m) ∈ {0, 1}Fm

1 and
h(2m) ∈ {0, 1}Fm

2 denote the two layers of hidden variables of the image-specific DBM, and let h(1t) ∈
{0, 1}Ft

1 , h(2t) ∈ {0, 1}Ft
2 represent the two layers of hidden variables of the text-specific DBM. Then

the joint distribution over the multimodal input, where h = {h(1m), h(2m), h(1t), h(2t), h(3)} denotes

h(2m)

h(1m)

vm

W(2m)

W(1m)

h(2t)

h(1t)

vt

W(2t)

W(1t)

h(3)

h(2m)

h(1m)

vm

W(3m)

W(2m)

W(1m)

h(2t)

h(1t)

vt

W(3t)

W(2t)

W(1t)

Image-specific DBM Text-specific DBM

Multimodal DBMc

ba
Joint representation

Figure 12
(a) Image-specific two-layer deep Boltzmann machine (DBM) that uses a Gaussian model to model the distribution over real-valued
image features. (b) Text-specific two-layer DBM that uses a replicated softmax model to model its distribution over the word count
vectors. (c) A multimodal DBM that models the joint distribution over image and text inputs. All but the first (bottom) layer use
standard binary variables.
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Mo,va,ng	Example	
• 	Can	we	generate	images	from	natural	language	descrip,ons?	

A	stop	sign	is	flying	in	
blue	skies		

A	pale	yellow	school	bus	
is	flying	in	blue	skies		

A	herd	of	elephants	is	
flying	in	blue	skies		

A	large	commercial	airplane	
is	flying	in	blue	skies		

(Mansimov,	ParisoMo,	Ba,	Salakhutdinov,	2015)		
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Learning Deep Generative
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Abstract
Building intelligent systems that are capable of extracting high-level rep-
resentations from high-dimensional sensory data lies at the core of solv-
ing many artificial intelligence–related tasks, including object recognition,
speech perception, and language understanding. Theoretical and biological
arguments strongly suggest that building such systems requires models with
deep architectures that involve many layers of nonlinear processing. In this
article, we review several popular deep learning models, including deep belief
networks and deep Boltzmann machines. We show that (a) these deep gen-
erative models, which contain many layers of latent variables and millions of
parameters, can be learned efficiently, and (b) the learned high-level feature
representations can be successfully applied in many application domains, in-
cluding visual object recognition, information retrieval, classification, and
regression tasks.
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Human-level concept learning
through probabilistic
program induction
Brenden M. Lake,1* Ruslan Salakhutdinov,2 Joshua B. Tenenbaum3

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of

RESEARCH

1332 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

1Center for Data Science, New York University, 726
Broadway, New York, NY 10003, USA. 2Department of
Computer Science and Department of Statistics, University
of Toronto, 6 King’s College Road, Toronto, ON M5S 3G4,
Canada. 3Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, MA 02139, USA.
*Corresponding author. E-mail: brenden@nyu.edu

Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]
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Human-level concept learning
through probabilistic
program induction
Brenden M. Lake,1* Ruslan Salakhutdinov,2 Joshua B. Tenenbaum3

People learning new concepts can often generalize successfully from just a single example,
yet machine learning algorithms typically require tens or hundreds of examples to
perform with similar accuracy. People can also use learned concepts in richer ways than
conventional algorithms—for action, imagination, and explanation. We present a
computational model that captures these human learning abilities for a large class of
simple visual concepts: handwritten characters from the world’s alphabets. The model
represents concepts as simple programs that best explain observed examples under a
Bayesian criterion. On a challenging one-shot classification task, the model achieves
human-level performance while outperforming recent deep learning approaches. We also
present several “visual Turing tests” probing the model’s creative generalization abilities,
which in many cases are indistinguishable from human behavior.

D
espite remarkable advances in artificial
intelligence and machine learning, two
aspects of human conceptual knowledge
have eluded machine systems. First, for
most interesting kinds of natural andman-

made categories, people can learn a new concept

from just one or a handful of examples, whereas
standard algorithms in machine learning require
tens or hundreds of examples to perform simi-
larly. For instance, people may only need to see
one example of a novel two-wheeled vehicle
(Fig. 1A) in order to grasp the boundaries of the

new concept, and even children canmake mean-
ingful generalizations via “one-shot learning”
(1–3). In contrast, many of the leading approaches
inmachine learning are also themost data-hungry,
especially “deep learning” models that have
achieved new levels of performance on object
and speech recognition benchmarks (4–9). Sec-
ond, people learn richer representations than
machines do, even for simple concepts (Fig. 1B),
using them for a wider range of functions, in-
cluding (Fig. 1, ii) creating new exemplars (10),
(Fig. 1, iii) parsing objects into parts and rela-
tions (11), and (Fig. 1, iv) creating new abstract
categories of objects based on existing categories
(12, 13). In contrast, the best machine classifiers
do not perform these additional functions, which
are rarely studied and usually require special-
ized algorithms. A central challenge is to ex-
plain these two aspects of human-level concept
learning: How do people learn new concepts
from just one or a few examples? And how do
people learn such abstract, rich, and flexible rep-
resentations? An even greater challenge arises
when putting them together: How can learning
succeed from such sparse data yet also produce
such rich representations? For any theory of
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Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the (i) classification of new examples, (ii) generation of new examples, (iii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv, bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]
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the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

 

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).
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for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate

SCIENCE sciencemag.org 11 DECEMBER 2015 • VOL 350 ISSUE 6266 1335
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Fig. 5. Generating new exemplars. Humans and machines were given an image of a novel character
(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
a machine are (by row) 1, 2; 2, 1; 1, 1.
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Foundations of human reasoning in
the prefrontal cortex
Maël Donoso,1,2,3 Anne G. E. Collins,2,4 Etienne Koechlin1,2,3*

The prefrontal cortex (PFC) subserves reasoning in the service of adaptive behavior. Little
is known, however, about the architecture of reasoning processes in the PFC. Using
computational modeling and neuroimaging, we show here that the human PFC has two
concurrent inferential tracks: (i) one from ventromedial to dorsomedial PFC regions that
makes probabilistic inferences about the reliability of the ongoing behavioral strategy and
arbitrates between adjusting this strategy versus exploring new ones from long-term
memory, and (ii) another from polar to lateral PFC regions that makes probabilistic
inferences about the reliability of two or three alternative strategies and arbitrates
between exploring new strategies versus exploiting these alternative ones. The two tracks
interact and, along with the striatum, realize hypothesis testing for accepting versus
rejecting newly created strategies.

H
uman reasoning subserves adaptive behav-
ior and has evolved facing the uncertainty
of everyday environments. In such situa-
tions, probabilistic inferential processes (i.e.,
Bayesian inferences) make optimal use of

available information for making decisions. Hu-
man reasoning involves Bayesian inferences ac-
counting for human responses that often deviate
from formal logic (1). Bayesian inferences also
operate in the prefrontal cortex (PFC) and guide
behavioral choices (2, 3). Everyday environments,
however, are changing and open-ended, so that
the range of uncertain situations and associated
behavioral strategies (i.e., internal maps linking
stimuli, actions, and expected outcomes) becomes
potentially infinite. In such environments, proba-
bilistic inferences involve Dirichlet processmixtures
(4–7) and rapidly yield intractable computations.
This computational complexity problem consti-
tutes a fundamental constraint on the evolution
of higher cognitive functions and raises the issue
of the actual nature of inferential processes im-
plemented in the PFC.

A model of reasoning processes in the
human PFC

To address this issue, we proposed a model (8)
that describes human reasoning, as it guides
behavior, as a computationally tractable, online
algorithm approximating Dirichlet process mix-
tures (9). The algorithmcombines forwardBayesian
inferences operating over a few concurrent behav-
ioral strategies stored in long-term memory with

hypothesis testing for possibly updating this
inferential buffer with new strategies formed from
long-term memory. The algorithm notably serves
to arbitrate between (i) staying with the ongoing
behavioral strategy and possibly learning external
contingencies, (ii) switching to other learned strat-
egies, and (iii) forming new behavioral strategies.
For integrating online Bayesian inferences

and hypothesis testing, the algorithm’s key fea-
ture is inferring the absolute reliability of every

monitored strategy: namely, the posterior pro-
bability that the current situation matches the
situation the strategy has learned, given both
action outcomes (and possibly contextual cues),
and the possibility that no match occurs with any
monitored strategies. To estimate these probabil-
ities, the model assumes that, in the latter case,
action outcomes expected from the monitored
strategies are equiprobable (9). Thus, every mon-
itored strategy may appear as being either reli-
able (i.e., more likelymatching than notmatching
the current situation) or unreliable (the converse).
When a strategy is reliable, the others are neces-
sarily unreliable, so that the algorithm is an ex-
ploitation state (Fig. 1): The reliable strategy is the
actor, namely, the unique strategy for selecting
and learning the actions that maximize rewards
(typically through reinforcement learning), whereas
the othermonitored strategies are treated as coun-
terfactual. When all monitored strategies become
unreliable, the algorithm then switches into an ex-
ploration state corresponding to hypothesis test-
ing: Anew strategy is formed as aweightedmixture
of strategies stored in long-term memory, then
probed andmonitored as actor (9). If the strategy
is a priori unreliable, this probe actor learns, so
that the algorithm may subsequently return to
the exploitation state in two ways. Either one
counterfactual strategy becomes reliable, while
the probe actor remains unreliable: The former
is then retrieved as actor, and the latter is rejected
(disbanded). Or the probe actor becomes reliable,
while counterfactual strategies remain unreliable.
The probe actor is then confirmed: It remains
the actor, the new strategy is simply consoli-
dated into long-termmemory, and the repertoire
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Fig. 1. A model of human reasoning.
Solid squares, behavioral strategies
stored in long-term memory. li, lj, lk,
and lp denote absolute reliabilities of
monitored strategies inferred from
action outcomes (here, the inferential
capacity is three). Purple, actor strategy learning external con-
tingencies and selecting action maximizing rewards. In exploitation
periods, the actor is reliable (i.e., lactor > 1 – lactor or lactor > ½) and the others are necessarily unreliable
(because ∑l ≤ 1). Otherwise, the system switches into exploration (all l < ½) and creates a probe actor (p)
from mixing strategies stored in long-term memory (blue). Exploration periods terminate when either one
counterfactual strategy ( j) or probe actor (p) becomes reliable: The probe actor is then rejected (red) or
confirmed (orange). See text for details.
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capacity is three). Purple, actor strategy learning external con-
tingencies and selecting action maximizing rewards. In exploitation
periods, the actor is reliable (i.e., lactor > 1 – lactor or lactor > ½) and the others are necessarily unreliable
(because ∑l ≤ 1). Otherwise, the system switches into exploration (all l < ½) and creates a probe actor (p)
from mixing strategies stored in long-term memory (blue). Exploration periods terminate when either one
counterfactual strategy ( j) or probe actor (p) becomes reliable: The probe actor is then rejected (red) or
confirmed (orange). See text for details.

information, which is critical in optimal adaptive
processes operating in open-ended environments
for dealing with the intrinsic nonparametric na-
ture of strategy creation (4).
Hypothesis testing derives from inferences

about the absolute reliability of actor and two
or three counterfactual strategies, which involved
the vmPFC-pgACC and FPC, respectively. The dis-
sociation supports the distinction between the
notion of actor and a counterfactual strategy and
accords with the vmPFC-pgACC and FPC involve-
ment inmonitoring ongoing and unchosen courses
of action, respectively (3, 11, 12, 29, 30). Strategy
absolute reliability measures to which extent the
strategy is applicable to the current situation—i.e.,
current external contingencies and those learned

by the strategy result from the same latent cause.
The vmPFC-pgACC thus infers towhich extent the
latent cause determining current action outcomes
remains unchanged. The FPC infers to which
extent the latter result from two or three pre-
viously identified latent causes. Latent causes
are abstract constructs resulting from hypothesis
testing implemented through the interplay between
the dACC, mid-LPC, and ventral striatum. Latent
causes organize long-term memory as a reper-
toire of behavioral strategies treated as separable
entities. By detecting the reliability or unreli-
ability of monitored strategies, the dACC, mid-
LPC, and ventral striatum then appear to implement
true or false exclusive judgments about possible
causes of observed contingencies for selecting

appropriate behavioral strategies. The model
thus describes how the PFC forms a unified in-
ferential system subserving reasoning in the ser-
vice of adaptive behavior. Among the prefrontal
regions, the FPC is likely specific to humans
(31, 32), which suggests that the ability to jointly
infer multiple possible causes of observed con-
tingencies and, consequently, to test new causal
hypotheses emerging from long-term memory is
unique to humans.

REFERENCES AND NOTES

1. M. Oaksford, N. Chater, Behav. Brain Sci. 32, 69–84; discussion
85–120 (2009).

2. T. E. Behrens, M. W. Woolrich, M. E. Walton, M. F. Rushworth,
Nat. Neurosci. 10, 1214–1221 (2007).

3. E. D. Boorman, T. E. Behrens, M. W. Woolrich, M. F. Rushworth,
Neuron 62, 733–743 (2009).

4. Y. W. Teh, M. I. Jordan, M. J. Beal, D. M. Blei, J. Am. Stat.
Assoc. 101, 1566–1581 (2006).

5. F. Doshi-Velez, Adv. Neural Inf. Process. Syst. 21, 477–485
(2009).

6. N. D. Daw, A. Courville, Adv. Neural Inf. Process. Syst. 20,
369–376 (2007).

7. S. J. Gershman, D. M. Blei, Y. Niv, Psychol. Rev. 117, 197–209
(2010).

8. A. Collins, E. Koechlin, PLOS Biol. 10, e1001293 (2012).
9. Materials and methods are available online as supplementary

material on Science Online.
10. N. Cowan, in Human Learning and Memory, C. Izawa,

N. Ohta, Eds. (Erlbaum, Mahwah, NJ, 2005), pp. 155–175.
11. A. N. Hampton, P. Bossaerts, J. P. O’Doherty, J. Neurosci. 26,

8360–8367 (2006).
12. E. Koechlin, A. Hyafil, Science 318, 594–598 (2007).
13. E. D. Boorman, T. E. Behrens, M. F. Rushworth, PLOS Biol. 9,

e1001093 (2011).
14. E. Koechlin, C. Ody, F. Kouneiher, Science 302, 1181–1185

(2003).
15. K. Sakai, R. E. Passingham, Nat. Neurosci. 6, 75–81

(2003).
16. J. O’Doherty et al., Science 304, 452–454 (2004).
17. E. Koechlin, C. Summerfield, Trends Cogn. Sci. 11, 229–235

(2007).
18. D. Badre, A. S. Kayser, M. D’Esposito, Neuron 66, 315–326

(2010).
19. W. Schultz, P. Dayan, P. R. Montague, Science 275, 1593–1599

(1997).
20. K. Doya, HFSP J. 1, 30–40 (2007).
21. J. J. Ribas-Fernandes et al., Neuron 71, 370–379 (2011).
22. M. Esterman, B. J. Tamber-Rosenau, Y. C. Chiu, S. Yantis,

Neuroimage 50, 572–576 (2010).

SCIENCE sciencemag.org 27 JUNE 2014 • VOL 344 ISSUE 6191 1485

0 4 8 12 16 20-4

0.3

-0.1

0.1

0.3

-0.1

0.1

Ventral striatum

0 4 8 12 16 20-4

RY=+5

Reje
ct

io
n

Switch-in

Peri-feedback time (sec.)

0.3

-0.1

0.1

R
0.3

-0.1

0.1

0 4 8 12 16 20-4

0.3

-0.1

0.1

0 4 8 12 16 20-4

Switch-in Exploit
Explore

dACCX=-4 R

Z=+28

BA 45

Reje
ct

io
n

Confirmation
Reje

ct
io

n

Switch-in

0 4 8 12 16 20-40 4 8 12 16 20-4

-0.1

0.1

M
R

 s
ig

na
l c

ha
ng

es
 (a

.u
.)

Peri-feedback time (sec.)Peri-feedback time (sec.)

Confirmation Confirmation

Fig. 5. Prefrontal and basal responses to predicted algorithmic transitions.On the brain slices, activations in switch-in (blue), rejection (red), and confirmation
(orange) events superimposed on anatomical templates [thresholded at P < 0.005 (voxel-wise, uncorrected) and P < 0.05 (cluster-wise) for display purposes]. (A to
C) X, Y, and Z are slice MNI coordinates corresponding to activation peaks (table S2). Graphs show perifeedback magnetic resonance responses to switch-in,
rejection, and confirmation events averaged over activation clusters and factoring out all other effects. Black lines are perifeedback MR responses in exploitation
(square) and exploration (diamond) trials. Error bars are SEM across participants.

Fig. 6. Prefrontal and
striatal responses
around algorithmic
transitions.Magnetic
resonance responses
to feedbacks in dACC,
mid-LPC, and ventral
striatum on trials
preceding and following
switch-in, rejection,
and confirmation
events. Bars are
partial correlation
coefficients (betas)
from the regression
analysis (a.u., arbitrary
units) described in the
text and corresponding
to event-related
regressors modeling
switch-in, rejection,
and confirmation
events shifted 0, 1, or
2 trials preceding and following actual occurrences of these events. Error bars are SEM across subjects.
Maximal and significant responses (when corrected for multiple comparisons around algorithmic events)
were elicited only when the events occurred in the algorithm.
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the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters
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Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

 

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).
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Figure 11
Random samples from the training set (left), and samples generated from a three-hidden-layer deep
Boltzmann machine by running the Gibbs sampler for 10,000 steps (right).

Let us construct a multimodal DBM using an image–text bimodal DBM as our running example.
Let vm ∈ RD denote a real-valued image input and vt ∈ {1, . . . , K } denote an associated text input
containing M words, where vt

k denotes the count for the kth word. We model each data modality
using a separate two-layer DBM. We use a Gaussian–Bernoulli RBM as a first-layer model for
the image-specific DBM (see Figure 12a). Hence, the image-specific DBM uses a Gaussian
distribution to model the distribution over real-valued image features. Similarly, a text-specific
DBM uses a replicated softmax model to model the distribution over word count vectors.

To form a multimodal DBM, we combine the two models by adding an additional layer on
top of them. The resulting graphical model is shown in Figure 12c. Let h(1m) ∈ {0, 1}Fm

1 and
h(2m) ∈ {0, 1}Fm

2 denote the two layers of hidden variables of the image-specific DBM, and let h(1t) ∈
{0, 1}Ft

1 , h(2t) ∈ {0, 1}Ft
2 represent the two layers of hidden variables of the text-specific DBM. Then

the joint distribution over the multimodal input, where h = {h(1m), h(2m), h(1t), h(2t), h(3)} denotes

h(2m)

h(1m)

vm

W(2m)

W(1m)

h(2t)

h(1t)

vt

W(2t)

W(1t)

h(3)

h(2m)

h(1m)

vm

W(3m)

W(2m)

W(1m)

h(2t)

h(1t)

vt

W(3t)

W(2t)

W(1t)

Image-specific DBM Text-specific DBM

Multimodal DBMc

ba
Joint representation

Figure 12
(a) Image-specific two-layer deep Boltzmann machine (DBM) that uses a Gaussian model to model the distribution over real-valued
image features. (b) Text-specific two-layer DBM that uses a replicated softmax model to model its distribution over the word count
vectors. (c) A multimodal DBM that models the joint distribution over image and text inputs. All but the first (bottom) layer use
standard binary variables.
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difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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Figure 2. The Correlation between the average mating learning performance and the
average fitness in the final 20 generations in all experiments. The learning performance was
estimated as the number of time steps the mating behavior was selected divided with number of mating
events. The seven types of markers indicate the number of energy sources in the environment for each
simulation.

(a) (b)

Figure 3. Example trajectories of the learned behaviors for the roamer strategy and the
stayer strategy. (a) The roamer ignores the tail-lamp of the mating partner and executes the learned
foraging behavior to capture the energy source. (b) The stayer executes the learned waiting behavior
and adjusts its position according to the trajectory of the mating partner.
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