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Motivation

• Explosion of Deep Learning (DL)

• Effectiveness in a variety of applications

• Long training time limits the development of new applications
• Training GPT-3 model (355 years on a V100 GPU, cost $4.6M)

• Parallel training on HPC systems, e.g., ABCI
• Input samples are accessed in a random fashion

• Enormous pressure on the I/O subsystem

➔ Our target: large-scale training, e.g., 100s-1000s of GPUs
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IO for Large-scale Distributed Deep Learning

• Global shuffling

• Using Global File System:
• I/O time is sensitive to the network status

• Using Local Storage, e.g., SSD 
• 70% runtime reduction 

• Replication of input to local SSDs

• Only if the entire data set fits

• Local shuffling if dataset is too large
• Split data set among workers 

• Sample the data locally

• Effect on convergence is not well understood/studied

1. What is the impact of local sampling on accuracy in a spit dataset scenario?

2. Can the access pattern be localized without impacting training accuracy?

3. How to exploit such access strategy to reduce the training time?
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Data Shuffling in Distributed SGD

• N is the number of samples,  M is the number of workers (e.g., GPUs, MPI ranks, etc.)

• Three shuffling policies:

• Global shuffling: each worker can access all samples

• Local shuffling: each worker accesses only its local portion of the data set (N/M samples)

• Proposal: Partial Local Shuffling (PLS): a Q (0 < Q < 1) portion of the local samples is 
exchanged with random other nodes

• Q = 0 is local, Q = 1 is global

• We are interested in characterizing how small Q we can get away with without impacting convergence rate

• Tradeoff among local storage capacity, performance (i.e., runtime), impact on training accuracy
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PLS: Design and Implementation

• Easy implementation in Pytorch

• Samples exchange (IO & Computation overlapping)
• Use non-blocking MPI calls (i.e., MPI_Isend/recv())
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Evaluation

• Evaluation Platform: ABCI
• 1,088 compute nodes (CN) 

• 2 Intel Xeon Gold + 4 NVIDIA V100 per node

• Infiniband EDR

• 1.6 TB SSD local per CN

• Models and Data Sets

• Shuffling policies:

• Global shuffling

• Local shuffling

• Partial local shuffling (e.g. partial-0.1: exchange 10% of samples)
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Local Shuffling Sufficient (when scale is small)



8

Partial Local Shuffling Improves Accuracy

• Local shuffling accuracy decreases as the number of workers scales

• For 2048 workers, each worker only trains on approximately 600 samples

• Partial-0.1 local shuffling slightly increases the accuracy and partial-0.3 local 

shuffling achieves close to the same accuracy as global shuffling

• Each of the 2048 workers store only ~0.06% of the data set locally

• Feasible even without local storage?

Resnet50 with Imagenet-1K, 2048 GPUs
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ImageNet-21K and DeepCAM on ABCI

• Upstream training:

• Significant gap between local vs. global

• Partial-0.3 provides same accuracy as global

• Downstream:

• Almost no difference among different 

configurations

• On 1K GPUs: ~2% improvement 
on accuracy with 0.9 partial

• On 2K GPUs: Almost no effect

• Relatively small number of 
samples?

Resnet50 with Imagenet-21K validation accuracy DeepCAM validation accuracy
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Performance and Scalability of Partial Shuffling

• Resnet50 on ImageNet1K:

• Good scalability for up to 1K GPUs

• Performance drop on 2K

• Still significant improvement compared to global out of PFS

Resnet50 with Imagenet-1K DeepCAM

Global (from PFS)

• DeepCAM:

• Visible cost of partial scheme compared to 
local only due to large sample size (~60MB)

• Global shuffling infeasible, estimated from 
PFS performance
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THANK YOU
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Backup Slides
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Parallel filesystem

I/O cost of global shuffling on Parallel File 

System vs. SSDs (ABCI)

• ResNet-50 on ImageNet-1k running on 64 nodes (256 GPUs)

• Darshan profile of two training epochs

• SSDs’ sustained aggregate BW much higher than PFS leading to 70% runtime reduction

SSD


