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Introduction

Computed Tomography (CT) is a widely used 3D imaging technology
* Medical diagnosis
* Non-invasive inspection
* Reverse engineering

Possibility of obtaining a high-resolution image
* Rapid development in CT manufacturing
* CMOS-based Flat Panel Detector (FPD, X-ray imaging sensor) become larger
+ 2048 x 2048, 4096 X 4096, etc.
Micro focus x-ray become better and cheaper

Complex computation for 3D image reconstruction
* Filtering computation (or convolution)
* Back-projection

The commonly used resolution : 2563, 5123, 10243



Problem Statement

* Problems in High-resolution CT image reconstruction
1. Intensive computation
2. Critical timing demanding for image reconstruction

3. Huge memory capacity
- 10243 :4GB
- 20483 :32GB
-« 40963 : 256GB

 Challenges of using GPU-accelerated supercomputers to solve this problem
1. GPU is powerful in computation, but memory capacity is limited

How to optimize algorithms on GPU?

How to use the heterogeneous architecture (CPUs, GPUs) ?

How to optimally perform inter-process communication by MPI ?

How to achieve high performance and scaling?
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Novelty of Our Work

The parallel-beam (Fig. 1a) based algorithms decompose input
problems in 2D/3D dimensions

This is the first work to decompose the input problem in 2D
dimension using cone-beam (Fig. 1c)

Our system can perform out-of-core image reconstruction

¢

~

!Z) Parallel beam
Fig. 1: Different geometries for X-ray sources

(b) Fan beam

and detectors. Cone-beam is the geometry
used in the latest (7t generation) of CT.

Implementation Algorithm Beam | Decomposition | Lower-bound | Out-of-Core Multiple Communication
Shape | Input | Output | Input Size Capability GPUs | Nodes (MPI)
Trace [5] IR aralle 1D O(Np) v X v O(log(N))
NU-PSV [63] IR 0 Parallel 1D O(Np) v X v O(log(N))
MemXCT [27] IR Parallel 2D O(Np) X v v O(N)
Peta-scale XCT [28] IR Parallel 3D O(Np) X v v O(N)
Consensus Equilibrium [64] IR arall 1D O(Np) v X v O(Nlog(N))
DMLEM [12] IR Cone 1D X O(NuxNy) X v v O(Nlog(N))
Palenstijn et al. [44] IR Cone 1D 1D O(NyxNp) X v v O(Nlog(N))
TIGRE [6] IR Cone 1D 1D O(NyXNy) X v X X
Lu et al. [38] FBP Cone 1D 1D O(NyXNy) v X X X
iFDK [9] FBP Cone 1D 1D O(NyXNy) v v O(Nlog(N))
_[ This work FBP Cone 2D ] 1D O(Ny) v v O(log(N))

Table 1: State-of-the-art image reconstruction solutions by FBP and Iterative Reconstruction (IR) algorithms.

(c) Cone beam




* FBP method is indispensable in most of the practical CT systems

* Intensive computation for 3D image reconstruction

Introduction of Compute Tomography

* Cone Beam Compute Tomography (CBCT): Geometry & Parameter
* FBP algorithm for CBCT was Presented by Feldkamp, Davis, and Kress (FDK) in 1984 (37 years ago)

* Filtering computation:
- Back-projection computation: O(N*)
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the number of 2D projections
the width and height of a 2D projection, respectively
the number of voxels in X, Y, Z dimension, respectively

Fig. 1: Cone-beam CT (CBCT) with a Flat Panel Detector (FPD).
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Reconstruction Problem Definition :

Ny X Ny X Ny = Ny X N, X N,

Performance metrics :

GUPS = Ny * Ny, « N, x N, /T
where T is execution time in a unit of second.




Projection and Volume Decomposition Methodology

* Volume data is decomposed in 1D, each sub-volume has slices of N}, (as Fig. c)

* Projection is decomposed in 2D (as Fig. a)
* N, dimension is spited averagely
* N, dimension is spited with overlapped area

 Benefits of the proposed algorithm
« Streaming/pipeline processing available
* Qut-of-core image reconstruction available

Input (projections): N, X N, X Ny, Output (volume): N, X Ny, X Ny

} Nb

Vi < l/0

VN, —1

(a) 2D projectiolr\{g decomposition. (b) Reduced sub-volumes. (c) Aggregate Volugne.

Overlapped area: | |




Overview of the Proposed FBP Framework

End-to-end Framework on Multi-nodes with Multi-GPUs
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A General Projection Matrix

 Correcting the geometric offset is required to reconstruct tomographic images

* Good spatial resolution
* Low artifact content

* The proposed matrix (My) is general and can be reused for most CBCT systems
+ Offset of FPD at U- and V-axis (Fig. 1)
* Microscope CT system with rotation center offset (Fig. 2 ).

Desc1.‘iption Parameter Unit . ]_V M . A R~~___ i "Rotafion center.
Rotation angle o) degree ; A N S, Dt it !
Distance from source to object (Z-axis) Dso mm i O, — ! N, i e N 5
Distance from source to detector (FPD) Dgg mm <~ 0] : f-s ' .‘g Tt
The number of 2D projections Np - L b ._(5_12___ iNv e ——=---@ L e e e e e — T3
The width and height of a 2D projection Nu, Ny pixel "O i e -
Pixel pitch at U- and V-axis Ay, Ay mm/pixel i ! 1
The number of voxels in X-, Y-, Z-axis Nx, Ny, N, voxel ! : i ________
Voxel pitch at X-, Y-, and Z-axis Ay, Ay, &z | mm/voxel | : v Vhe---""
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Projection Operation for a Voxel

* A projection matrix (Mgy) is of size 3 X 4
* Three inner product operations are required for each projection operation
* (i, j, k) is the index of a voxel, wherei € [0, N, — 1],k € [0, N, — 1],k €[O,N, — 1]

/ ; - Tvolime T . T
(2 (My2], [i, j.k, 1]) L e
< x —(My[0], [i, j, k,1])/z i S v>® i
Ly — (Mg[1], [i, j k. 10) /2 i | SR
o l
i !

Fig. 1: three examples of projection operations.



* The projections are decomposed in 2D (N, and N,, dimensions)

Projections Decomposition in NV, Dimension

The volume data is decomposed in 1D

* N, dimension is spited averagely
* N, dimension is spited (as in Fig. 1)

* Four projection operations for computing a;b; (as in Eqn 1)
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Fig. 1: Schematic YZ-view of overlapped projections.

Function ComputeAB(begin_idx, end_idx)

[-, yo] = Projection(M;3se, [0, 0, begin_idx])

[-, y1] = Projection(Ms1se, [0, 0, begin_idx])

[-, y2] = Projection(Misse, [0, 0, end_idx — 1])

[-, v3] = Projection(Ms1se, [0, 0, end_idx — 1]) i

a = (int)floor(mind(yg, y1, y3, y4)) > floor operation
b = (int)ceil(max4(yo, y1, y3, y4)) > ceil operation

return ab

> integer values

ajbj = ComputeAB(i-Ny, (i +1)-Np) (1)
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2l __global void kernelBackProjection( float «

A Novel Out-of-core Back-projection Kernel

texture<float ,cudaTextureType3D> tex;//3D texture memory

offset volume z , int3 vol dim, const float

int3 proj_dim, int offset_proj_y) {

dot( ldg(&prOJ .mat [2]),

dot(__ldg(&proj_mat[0]),
7 dot(__ldg(&proj_ mat[l]), ijk
Y = y- oftset proj v

y
sum += 1.f/(z+«2)« devSubPlxel(x Y, s,

//update a voxel of the volume data
volume [vol_dim .x+vol_dim.y+k+vol_dim.x«j+

volume ,

int

4+« proj_mat,

l_dim.z)

int i = blockIdx .x«blockDim.x+threadIdx .x;

int j = blockldx.y«blockDim.y+threadldx.y:

int k = blockIdx.z«blockDim.z+threadldx.z;

if (i»=vol_dim.x || j==vol_dim.y || k==vo
return ;

float sum = 0;

int K = k+offset volume z // offset k

f10’1t4 ijk make float4(1 j, K, 1.0f)

proj_dim);

i] -

sum ;

* Partial projections are cached by 3D texture memory

* Volume data are stored via global memory

* Back-projection is conducted for each voxel

« The projection matrices are accessed via cache-optimized

intrinsic

__ldg

* We compute a sub-volume by launching the CUDA kernel

The projections are moved from host to device only once

Back-projection operation

aobg

boby

o

L Z-axIs

FPD

Fig. 1: Schematic YZ-view of overlapped projections.
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Orchestration and Pipelining in our Framework

* Each MPI rank launches four extra-threads by std::thread library

* Filtering thread launches multiple OpenMP threads for filtering computation

=,

< Storage > Queue, Queue; t Queue, t Queues —_Storage >
/vvv AN AN AN w

Load Filter Back-projection MPI Store
Thread Thread Thread Thread Thread

Fig. 1: A end-to-end view of the pipeline in a single MPI rank. Queues correspond to the stages of the pipeline.
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Evaluation Environment

* ABCl supercomputer
* Constructed and operated by AIST
« 1,088 computing nodes, 4,352 Tesla V100 GPUs

- Software
 CentOS 7.4
- CUDA 10.2
* Intel library 2020.4.304 (MPI, IPP)
* RTK (Reconstruction Toolkit) 1.4.0
(https://www.openrtk.org/)

* Evaluation dataset
* Coffee bean
* Bumblebee

Four TomoBank datasets
(https://tomobank.readthedocs.io/en/latest/#)

tomo ID
Coffee bean | Bumblebee |00 ——r0000 00029 T 00030
Size | 117.8GB 46.8GB | 17.9GB | 17.9GB | 17.9GB | 816MB
N,, 3728 2000 2004 | 2004 | 2004 | 668
N, 2000 2000 1335 | 1335 | 1335 | 445
N, 6401 3142 1800 | 1800 | 1800 | 720
o 0 0 25 26 27 10
O 0 0 0.25 0.25 0.2 0.2
Geor -0.0021 1.03 0 0 0 0

Table 1: Datasets with geometric offset.
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= ABCI Compute Node

FUJITSU PRIMERGY Server (2 servers in 2U)
Xeon Gold 6148 (27.5M Cache, 2.40 GHz, 20 Core) x2

CPU
T iDIA Tesla V100 (5xM2) x4
384GiB DDR4 2666MHz RDIMM

Local Storage 1.6TB NVMe SSD (Intel SSD DC P4600 u.2) x1

Skylake

Skylake

128GB/s |5 pRr4-2666
32GB x 6

PCle gen3 x16 PCle gen3 x16 oo sl

PCle gen3 xlE"

o1 10.4GT/s x3 Xeon Gold

128GB/s el Gl
6148

DDR4-2666
32GB x 6

IB HCA (100Gbps) y

a

x64 switch

\ 4

x48 switch

NVLink2 x2
< Tesla V100 SXM2

Tesla V100 SXM2 ;.‘
i S i
e S
< TeslaVv1l00 SXM2

Tesla V100 SXM2 »



Out-of-core Image Reconstruction on a GPU

omo 1D

* A single Tesla V100/A100 GPUs
* Use tomo 00029 and tomo_00030 datasets

» We can generate volume of 20483 and 40963
beyond the memory capacity of a single GPU

. 5123(5 12MB)
5 | 00030 | 1024%(4GB) 7.9
2 | (816MB) | 20483(32GB) 60.2
= 40963 (256GB) 475.0
o 5123(512MB) 19.7
= 00029 | 1024%(4GB) 25.4
T | (17.9GB) | 2048°(32GB) 137.7
40963 (256GB) 1028.8
. 512°(512MB) 1.1
5 | 00030 | 1024°(4GB) 6.853
S | (816MB) | 2048°(32GB) 52.4
- 4096°(256GB) 347.1
T 512%(512MB) 10.1
= 00029 10243 (4GB) 19.7
2 | (17.9GB) | 2048°(32GB) 114.9
40963 (256GB) 807.2

17



Image Reconstruction Performance on a GPU

s

J L

Input Perf (GUPS)
| tomo_ID voxel’
. 5123(512MB) | 111.6 1108
= | 00030 | 1024%(4GB) | 115.7 | 11
2 | (816MB) | 20483(32GB) | 117.2
= 40963(256GB) | 120.1
T 5123(512MB) | 29.5
S | 00029 10243 (4GB) 107.0
= | (17.9GB) 20483(32GB) | 125.1
40963 (256GB) | 129.2
R 512°(512MB) | 111.6 1254
5| 00030 | 1024°(4GB) 152.0 | 12
S | (816MB) | 2048°(32GB) | 155.3
- 4096°(256GB) | 159.7
T 5123(512MB) | 87.8
S | 00029 | 1024°(4GB) 137.5 12
% | (17.9GB) 20483(32GB) | 158.2 @
4096°(256GB) | 166.4

* A single Tesla V100/A100 GPUs
* Use tomo_ 00029 and tomo_00030 datasets

* We achieve competitive performance

comparing to the state-of-the-art RTK library
(baseline)

* RTK is uncapable of out-of-core computations

Reconstruction Toolkit (RTK): https://www.openrtk.org

18



Back-projection Roofline Analysis on a V100 GPU

* The roofline result is generated by NVIDIA Nsight Compute profiler
* We use tomo_00030 dataset

- We achieve out-of-core computing capability without sacrificing the back-projection performance

Performance [FLOP/s]

N
Single-precision Operations Roofline A 10243
Ours A 20483
A 40963
- 10243
10 ‘ Peak performance: 13.4e+12 RTK @ 20483
| ® N/A
§ o A A A
1012 //‘ \ \ \
4.0TFLOP/s | 4.4TFLOP/s || 4.5TFLOP/s|| 4.5TFLOP/s
Al: 40.9 i’ Al:157.7 || Al:900.4 Al: 2954.7
10% 14.9
10 100 1000 10000 g

Arithmetic Intensity (Al) [FLOP/byte]
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Fig. 1: Strong scaling. Coffee bean 2x is a rebinning of the original
dataset (i.e., double the pixel size to reduce the input size to 1/4)

Evaluation on Coffee bean datasets

The Projected performance is predicted by
our performance model

The Measure performance is our runtime

We achieve outstanding strong scalability,
scales up to 1024 GPUs

Our performance is bounded by the storage
10

We achieved 78% of the peak performance
in average
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Strong Scaling Evaluation (2/2)

450

450 130.0 Bumbleebee

Runtime (s)
=

400 | 3846 Tomo_00029

350 4

300
= 250
£ 200
£

g 150

100

Y
M
=k

50 32.3

?1

Number of GPUs

» (c) 2000%x3142=4096

B2oC16.813.2 119

=T

hmgﬁg\u

0T

NMumber of GPUs
»(d) 2004x1335% 18ﬂﬂ=>4ﬂ963

Fig. 2: Strong scaling.

Evaluation on Bumbleebee and
Tomo_00029 datasets

The Projected performance is predicted by
our performance model

The Measure performance is our runtime

We achieve outstanding strong scalability,
scales up to 1024 GPUs

Our performance is bounded by the storage
10

We achieved 78% of the peak performance
in average
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The Projected performance is predicted by
our performance model

The Measure performance is
We achieve outstanding weak scalability

Our performance is bounded by the storage
10

We achieved 78% of the peak performance
in average
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Computational Performance

Higher - Better

Real-world datasets

e

40000
35000 -2-Coffee bean /
m -
S 30000 -0 Coffee bean 2x
G)
2 25000 Bumblebee
S ~-Tomo 00029
& 20000 —
£ 15000
Q
o
10000
5000
0
4 8 16 32 64 128 256 512
Number of GPUs

Fig. 1: Performance (GUPS) when generating 40963 volumes

Extremely high performance (GUPS)

Over two order of magnitude faster than a
single Tesla V100 GPU (Perf. < 100 GUPS)

Higher computational intensity, better
scalability

Bottleneck becomes the 10 on storage

Using large scale system, we can solve
any FBP problems immediately (~10s)



Examples of Achieved Overlapping

- We show two evaluated examples
- Tomo_00029: 2004 X 1335% 1800 (17.9GB)
- Bumblebee: 2000X2000% 3142 (46.8GB)

* H2D means moving data from host to device
* D2H means moving data from device to host
LLoad Thread 0.5s

Filter Thread 1.0s

Back-projection Thread|H2D
MPI Thread

D2H 15.3s D2H
23.35

27.7s

. 1_ Time (s)=

Store Thread
Fig. 1: Reconstructing 20483 volume of Tomo_00029. Ngpus=1.

Load Thread|'''''0.5s
Filter Thread 1.0s
Back-projection Thread H2D D2H L, 16.3 s D2H
23.35S

MPI Thread
Store Thread [ [ [ bis | [

. 35.58

| iTime (32

Fig. 2: Reconstructing 4096> volume of Bumblebee. Ngpus=128.



An Example of MPl Reduce Operation

* MPI_Reduce is a highly-optimized primitive for inter-processes communication

* MPI_Reduce can take advantage of the high-bandwidth connectors to perform
reduce operations in supercomputers

MPI Reduce

Fig. 1: MPI_Reduce on a slice (512 X 512) of tomo_00030 dataset.
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An example of High-resolution Volume data
(coffee bean)

(a) Volume rendering of coffee bean. (b) Aslice of size 4096 x 4096.

Fig 1: A generated volume data of Coffee Bean on ABCI. The size of volume data is 40963.
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An example of High-resolution Volume data (Bumblebee)

=R

= | EE 15 968.8400mm

® Visualized by 3D slicer
viewer

B: Volume_1

A —-1124.2000mm

B: Volume 1

R -1124.2000mm

B: Volume 1




An example of High-resolution Volume data (Bumblebee)

® Visualized by 3D slicer
viewer

3 A -1124.2000mm

] B: Volume_1

0 R -1124.2000mm

B: Volume_1




An example of High-resolution Volume data (Bumblebee

® Visualized by 3D slicer
viewer

-~
= B: Volume_1
et

3 A ~1124.2000mm

B: Volume_1

0 R -1124.2000mm

B: Volume_1




An example of High-resolution Volume data (Bumblebee)

—~ ® Visualized by 3D slicer

N “/
' viewer

5 A -1124.2000mm

R: -1124.2000mm




Conclusion

We proposed a novel problem decomposition algorithm for FBP computation
We implemented an efficient CUDA kernel enabling out-of-core back-projection

We proposed a framework to generate high-resolution image

* Two characteristics:
* Pipeline processing
* Parallel computation
- Take advantage of the heterogeneity of GPU-accelerated supercomputer
* Use CPU for filtering computation
* Use GPU for back-projection
* Ideal strong and weak scaling

Using up to 1,024 GPUs, we can generate 20483and 40963volume data in 3 seconds and
16 seconds (including I/0), respectively.



Future work

* Optimize the iterative reconstruction algorithms for CBCT on supercomputer
* Research on rendering High-resolution image in HPC

* Research on compressing the High-resolution images

* Provide an image reconstruction service via cloud

Thank You Very Much!
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