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Recommendation

» Task: Sequential/session-based, Social-based, Image-based,
Explainable, Click-rate prediction, Collaborative filtering

 Methods: user/item-based, model-based, neural network-
based, attention mechanism-based, transformer based,
graph-based (graph neural network, GNN)



Task Definition

Goal: to predict unobserved interactions based on the interaction
matrix R € {0, 1}/Y*91 0 unobserved, 1 observed.
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Learning Paradigm
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I First—hopl Second-hop Third-hop

How to offer accurate recommendation when users have
few interaction data?



Graph Definition

Considering R € {0, 1}/4*l 35 a bipartite graph, where
users/items are nodes, interactions are edges. The adjacency
matrix is defined as:

A =

_RT 0 -

With other side info such as social relation, user-
user, item-item can be connected.



A GNN Learning Paradigm for CF

1. Each user/item is characterized as an embedding vector e,, e;.
2. hﬂkﬂ) = Aggregator(hi(k)l i is directly connected to u) (repeat)

3. Final embedding o, poollng(h( k) k = {1,2,..}

4. Predict rating: o} o;

Aggregator is a function to aggregate message from neighborhood



A GNN Learning Paradigm for CF
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A GNN Learning Paradigm for CF

Most works for CF use Graph Convolutional Networks (GCN), the
difference mostly lies in the Aggregator:

(Method): (What algorithm for Aggregator)
Pinsage: Random Walk
KGAT (Knowledge Graph): Attention Mechanism

NGCF, SpectralCF, LightGCN: Adjacency Matrix (GCN)



Graph Convolutional Network (GCN)

GCN uses normalized adjacency matrix to aggregate neighborhood:

H (k+1) — O'(AH (k)w(k+1))

A= s R = D;?RD}?

0 R|
RT o

The spectral radius can be explosive if we do not normalize adjacency matrix
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Graph Convolutional Network (GCN)
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d,d; normalized weight, d,, d; are the node degree
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LightGCN

https://dl.acm.org/doi/abs/10.1145/3397271.3401063

Activation function and feature transformation are removed:

H(k+1) — KH(k)z Ak+1H(O)
(aggregate k+1 hop neighbors)
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LightGCN

Final embeddings are generated as:

H (k) K Ak
0 = 2 > E
=0 K+ 1 ( k:oK-l-l)

(E 1s the Initial embedding)
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Unsolved Questions

* Why and how GCN works for recommendation, and why it
surpasses traditional and other advanced algorithms?

« Compared with traditional methods, GCN-based methods
suffer from high computational cost and poor scalability.
Can we design a more efficient GCN learning paradigm?



Feature Redundancy



Graph from Spectral Perspective

A =Y. Avvi  (spectral decomposition)

Spatial Spectral
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Graph from Spectral Perspective

A =Y.Avv  (spectral decomposition)
v; eigenvector, A; eigenvalue

Definition: The variation of a graph signal (v; here) measures the
difference between the signal at each node and its neighborhood:

lvi — Avj||=1- A; € [0,2) 4; € (—1,1]

» Larger eigenvalue 4= Smaller Variation
« Small variation implies nodes are similar to their neighbors (Smoothed, Low freq)

« Large variation emphasizes the node dissimilarity (Rough, High freq) 19



Graph from Spectral Perspective

A =Y.Avvi'  (spectral decomposition)

We are interested in how different spectral features
contribute to recommendation

A= MA)vivy  M@A)={0, &; }
For the tested feature M(A;)= A; , otherwise M(A;)=0
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Graph from Spectral Perspective
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3. Smoothed features contribute more to the accuracy than rough ones.



Graph from Spectral Perspective

What does this mean?

« User’s interactions reflect their preference.

« Sometimes user might be interested in the items
opposite to user’s past interest.

 Users are no interested In the items that are not
irrelevant (positively or negatively) to their past
Interest.



Analysis on LightGCN
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By stacking layers, GCN tends to emphasizes smoothed
features and filter out other features.



Spectral Features

* The iImportance of different spectral features varies on tasks
(recommender system, node classification, anomaly detection,
etc.)

 The rough features (High frequency) are important when the
connected nodes are more different than alike.

+ “Revisiting graph neural networks: Graph filtering perspective”
(Co-authored by Prof. Murata)



Structure Redundancy



What Makes Representations Different ?
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What Makes Representations Different ?

According to spectral decomposition with V as the eigenmatrix:

Zi=o Ak Zizo X
Olkz= L+1Z= Vk*@ V;[:k

Vi. IS k-th row of V, (© stands for the element-wise multiplication
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What Makes Representations Different ?

Common for all
nodes

Weighted Spectral
Features



What Makes Representations Different ?
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What Makes Representations Different ?

Yico M

L + 1 Without W, unparameterized

o, = (Vu* ®©
> model, optimization not
ZIL=O }\.l required
0; = Vi* @ [ \"\"

1

The Simplified model does not requires neighborhood
aggregation, it is equivalent to a linear model
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Summary

Summarizing the findings from Feature and Structure redundancy, we can
simplify GCN as:

Oy = PXdiag(A(oy) )W
0, = Q®diag(A(oy) )W

It has the following three components:

» Stacked top-K smoothest left and right singular vectors of R; P g RIUIXK
and QK g RITIXK,

 GCNs use a polynomial to weight the spectral features. Here, we abstract
it as a nonparametric function A(:)

. A feature transformation W € RK*4, K « min(|U|, |7]) (optional)



Distribution Redundancy



Spectral Distribution Matters
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We observe that a the graph with a flatter (sharper) spectral
distribution (the spectral value drops more slowly (quickly)) requires
more (fewer) features.
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How to Reduce the Spectral Features?

Ayi = _ . A, = w(dyw(d;)

1

In the original setting

The higher weights over the high-degree-nodes tend to
sharpen the distribution

34



Sharpen the Distribution
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Adversarial Training

Oy = M(PWdiag(A(oy)), n)W

0; = M(QW¥diag(A(oy)), W)W



Training ODbjectives
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Experiments



Accuracy

Datasets Methods nDCG@10 nDCG@20 Recall@10 Recall@20
LightGCN 0.0751 0.0710 0.0725 0.0698
SGDE-S 0.0919 0.0895 0.0894 0.0903
CiteULike SGDE 0.0900 0.0877 0.0870 0.0880
RSGDE 0.0947 0.0919 0.0917 0.0924
CSGDE 0.0966 0.0938 0.0933 0.0939
LightGCN 0.5917 0.5261 0.5941 0.5031
SGDE-S 0.6458 0.5702 0.6466 0.5421
ML-1M SGDE 0.6491 0.5730 0.6496 0.5445
RSGDE 0.6559 0.5771 0.6554 0.5468
CSGDE 0.6581 0.5798 0.6583 0.5502
LightGCN 0.1900 0.1677 0.1690 0.1484
SGDE-S 0.1820 0.1607 0.1628 0.1428
Gowalla SGDE 0.1820 0.1607 0.1628 0.1428
RSGDE 0.1917 0.1690 0.1691 0.1485
CSGDE 0.1950 0.1714 0.1712 0.1496

CSGDE: with all designs

RSGDE: with only L_main loss

SGDE: RSGDE without
adversarial training

SGDE-S: without W, no
training required
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Efficiency

Dataset Model Time/Epoch Epochs Running Time Parameters

LightGCN 3.66s 180 658.8s 3.3m

UltraGCN 1.40s 60 84.00s 3.3m

BPR 0.77s 330 254.10s 3.3m

Yelp GDE 0.97s 150 213.5s 3.3m
SGDE 0.74s 8 7.660s 4.1k

RSGDE 0.78s 8 7.980s 4.1k

CSGDE 1.83s 8 16.38s 4.1k

LightGCN 4.76s 270 1285.2s 0.64m

UltraGCN 1.50s 25 37.50s 0.64m

BPR 0.80s 120 96.00s 0.64m

ML-1M GDE 1.00s 40 40.30s 0.64m
SGDE 0.60s 10 6.820s 4.1k

RSGDE 0.87s 10 9.520s 4.1k

CSGDE 1.80s 10 18.82s 4.1k

LightGCN 6.43s 600 3,858s 4.5m

UltraGCN 2.55s 90 229.5s 4.5m

BPR 1.48s 250 370.0s 4.5m

Gowalla GDE 1.95s 120 281.0s 4.5m
SGDE 1.28s 8 13.31s 5.7k

RSGDE 1.32s 8 13.63s 5.7k

CSGDE 3.05s 8 27.47s 5.7k
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Remove Distribution Redundancy
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