ADVANCED INDUSTRIAL SCIENCE
AND TECHNOLOGY (AIST) RIKEN

@ A I s T \m’:—; “; 7
NATIONAL INSTITUTE OF . AIGDA{

RWBC OlL

A Scalable Framework for Instant High-
resolution Image Reconstruction

Peng Chen'3, Mohamed Wahib 3, Shinichiro Takizawa 3, Ryousei Takano ?, Satoshi Matsuokal#

1. Tokyo Institute of Technology, Dept. of Mathematical and Computing Science, Tokyo, Japan
2. National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

3. AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, National
Institute of Advanced Industrial Science and Technology

4. RIKEN Center for Computational Science, Hyogo, Japan

Background

Computed Tomography (CT) is widely used

* Medical diagnosis
* Non-invasive inspection
* Reverse engineering

Possibility of obtaining high-resolution image
* Rapid development in CT manufacturing

* CMOS-based Flat Panel Detector (FPD, X-ray imaging sensor) become larger
« 2048 X 2048, 4096 X 4096, etc
Micro focus x-ray become better and cheaper

Complex computation for 3D image reconstruction
* Filtering computation (or convolution), Back-projection

The commonly used resolution : 2563, 5123, 10243

Problem statement

What happens if we start manipulating (6k)> and (8k)3volumes?
Harry E. Martz, Clint M. Logan, Daniel J. Schneberk, and Peter J. Shull

* High-resolution CT image is important but not attainable
1. Intensive computation
2. Critical timing demanding for image reconstruction

3. Huge memory capacity
- 20483 :32GB, 40963 : 256GB, 81923 : 2TB

* We use ABCI supercomputer (GPU-accelerated supercomputer) to solve this problem

* Challenges
1. GPU is powerful in computation but memory capacity is limited
2. How to optimize algorithms on GPU?
3. How to use the heterogeneous architecture (CPUs, GPUs) ?
4. How to optimally perform inter-process communication by MPI ?
5. How to achieve high performance and scaling?

[1] Harry E. Martz, Clint M. Logan, Daniel J. Schneberk, and Peter J. Shull. 2017. X-ray imaging: fundamentals, industrial
techniques, and applications. Boca Raton:CRC Press, Taylor & Francis Group.

Contributions

1. We proposed a novel back-projection algorithm

. We implemented an efficient CUDA kernel for back-projection

3. We take advantage of the heterogeneity of ABCI supercomputer

 Use CPU for filtering computation
* Use GPU for back-projection

. We proposed a framework to generate high-resolution images
* High performance
* High scalability

. Using up to 2,048 V100 GPUs on ABCI, the 4K and 8K problems can be
solved within 30 seconds and 2 minutes, respectively (including 1/0)

4K problem : 2048 x 2048 x 4096 — 40963

{zk problem : 2048 X 2048 x 4096 — 20483}
8K problem : 2048 x 2048 x 4096 — 81923

Introduction of Compute Tomography

* CT system can generate 3D image from a set of 2D projections (or images)
* Cone Beam Compute Tomography (CBCT)
* CBCT Geometry & Parameter

Micro-focus FPD
X-ray source Param Description
A Np the number of 2D projections
G Nu, Ny the width and height of a 2D projection, respectively
Ny, Ny, N2 the number of voxels in X, Y, Z dimension, respectivel
Y P y
e Reconstruction Problem Definition :
S 0 Ny, X Ny, X Ny = Ny X Ny, X N,
1 _ =7 .
s * Performance metrics :
:“"/,,-""’),

-

GUPS = Ny * N, * N, x N,, /T
where T is execution time in a unit of second.

I
%~

(a) CBCT geometry and trajectory (b) 3D volume geometry

FDK algorithm

* Filtering computation,
* Back-projection computation,

* Intel IPP, MKL, cuFFT, etc.

[Load projections

~

J

=)

Filtering
computation

Intensive computation for 3D image reconstruction

O(Log(N)N?)

O(NH)

FFT primitive is required in Filtering computation

-

J

Back-projection)

computation

Presented by Feldkamp, Davis, and Kress in 1984 (36 years ago)
FDK is also known as the Filtered Back-projection (FBP) algorithm

FBP method is indispensable in most of the practical CT systems

:>[Store volume J

J

Filtered Back-projection (FBP)

Overview of the Proposed iFDK Framework

Proposed Framework on Multi-nodes with Multi-GPUs

[:] | 1] [:] [Output]

Load | Filtering) fVBack-proiectio'n -| | Store fwﬁ
Load | Filtering) ("Back-projection (_Store (03
Load) Filtering (Back-projection) [Store ECE 7
Load | Filtering (. Back-projection) (_Store E§ 7

_Load } Filtering) Back-projection P

[Load] Filtering) ("Back-projection)

_Load } Filtering (Back-projection)

| Load | Filtering) Back-projection ;)

. AllGather | | Reduce |

Proposed back-projection kernel on GPU

We re-organize the loops

- We do not rely on texture cache
* Use L1/L2 cache directly due to the better data locality
* The locality is improved by using the transposed projections and volume

* We do not use texture interpolator
* Achieve high precision of float32

- We compute a batch of 32 projections
* Benefit to in-register accumulation
* Reduce the global memory access

* We perform thread communication by shuffle intrinsic
- Simple and efficient

Detailed CUDA kernel can be found in our paper

An example o

" Prob

Use 128 GPUs (32 Noo

es)to s

em Decomposition Scheme

ove a 2K problem

Input: 4k count of 2k”*2 image, Output: 4k”3

Input: 2D Projections>

@ 16 MB/img x4096

Output : 3D volume

———————————————————————————

/4:- ______________________ - e s *:
A volO .. ____ /t'___
|1
L .a____.voll . / o
/
/
| el e / T
____________________ /
Lo oo o o & & I{z——
L wol62 T -
vol 63 8 GB/vol x64

Pp—

I 1 I Q

CO i Cl J: Cz (:3 S

| | O

R, 0 |32 64 9% 2

N Seosupupsutt SN Sepussoupupspall SINININ Hopuseoupueeeell SISO Mbepuespupuesnt AU s

| a

——————————————————————— :————————.———————————————————————1——\:2
R1 1 |9 17 25 |
__________4_______4___:L __________________________________

¢ :bo e oo
________________________ i'“'“'""'*“““'““*'“““J“‘
R31 31 63 95 127

\
7’

MPI_Allgather

Orchestration and Overlapping in iFDK

* Each MPI rank launches two extra-threads by pthread library

* Filtering thread launches multiple OpenMP threads for filtering computation

Filtering Thread Main Thread Back-projection Thread

- > MPI-AllGather
Projections A\N\N> /\/\/\/‘/ ;é
Circular buffer Circular buffer |

PFS
(a) Processing pipeline by three threads

/ h Main Thread Main Thread
== ARy //\;te;v-

| Vol 'k

(b) Reduce and Store operations by Main Thread

An example of achieved overlapping

- An example of pipeline to solve 2048 x 2048 x 4096 — 40963 problem
* Use 128 V100 GPUs

* Filtering thread processes 32 projections

BlExchange data [Back-projection
* Main thread gathers 1024 projections Load & Filtering ~ D2H copy
. . C MPI-AllGather JIMPI-Reduce
Back-projection thread processes 1024 projections H2D copy WiStore to PFS

Filtering thread s * “pg :
Main thread| || alGather | <+ coe eev eet AllGather l

sehread | N |—|— - _

11

An example of MPl Reduce operation

» Use 16 GPUs to solve 2048 x 2048 x 4096 — 20483 problem

* Each GPU process a sub-volume of size 8GB

MPI_Red uce>

12

Performance model

* Micro-benchmarking
* To better understand the characteristics of our system
* Measure the constant parameters of our system, e.g.
- Bandwidth of Parallel File System (PFS)
- Bandwidth of PCle connector
* Throughput of MPI primitives

* Building a performance model
* We can predict the potential peak performance
* We can justify the scalability of iFDK
* iFDK scales with the number of GPUs (N,,,¢) linearly

* Detailed equations can be found in our paper

Evaluation environment

* ABCl supercomputer
* Constructed and operated by AIST
1,088 computing nodes, 4,352 Tesla V100 GPUs

 Software
* Cent0S 7.4
- CUDA 9.0
* Intel library 2018.2.199 (MPI, IPP)
* RTK (Reconstruction Toolkit) 1.4.0

* Evaluation dataset
- Computation complexity is independent of the content of projections
* Use Shepp-Logan phantom
* Generate projections by RTK library

= ABCI Compute Node

FUJITSU PRIMERGY Server (2 servers in 2U)
Xeon Gold 6148 (27.5M Cache, 2.40 GHz, 20 Core) x2

CPU
T iDIA Tesla V100 (5xM2) x4
384GiB DDR4 2666MHz RDIMM

Local Storage 1.6TB NVMe SSD (Intel SSD DC P4600 u.2) x1

Skylake

Skylake

DDR4-2666| 128CGB/s Fivel] 128GB/S|5pR4-2666
6148 32GB x 6

32GB x 6
1
IB HCA (100Gb N >
(Ps) PCle gen3 x16 PCle gen3 x16 IB HCA (100Gbps)

PCle gen3 xlE"

o1 10.4GT/s x3 Xeon Gold

a

Xx64 switch

\ 4

x48 switch

NVLink2 x2
Tesla V100 SXM2 > < Tesla V100 SXM2

< TeslaVv1l00 SXM2

Tesla V100 SXM2 »

Evaluation on back-projection kernels

A single Tesla V100 GPUs

Single precision

Up to 1.6 times faster than baseline

Performance summary
- Better data locality
* Advantaged use of L1 cache
* Efficient data communication

RTK
FDK poblems | Baseline Ours
(pixel—voxel) (GUPS) (GUPS)
5124x1k—128> 65.3 118.0
5122x1k—256> 107.4 188.6
512%x1k—5123 115.1 206.0
5122x1k—(1k)3 1181 2114 |
5122x1k—(1k)*x2k N/A 212.7
(1k)?>—1283 41.9 27.2
(1k)3—2563 77 4 83.7
(1k)3>—5123 115.7 190.3
(1k)>—(1k)3 117.9 205.7
(1k)> —=(1k)*x2k N/A 207.9
(2k)?x1k—128° 16.1 7.7
(2k)*x1k—256> 38.6 24.1
(2k)*x1k—5123 80.2 81.6
(2k)2x1k—(1k)3 116.9 186.9
(2k)*x1k—(1k)*x2k N/A 198.7

S

l——‘

The higher,
the better

am s s e e e - -

\
!
!
!
!
|

Weak scalability evaluation

* Using up to 2048 GPUs to evaluate a 4K problem
* Peak performance is predicted by our performance model

- We achieve outstanding weak scaling

50
Measured TCompute W Thoy B siore Treduce
40 Peak 8 TCompute OTp2u O Tseore O Treduce
o
g 30 48 4.8 4.8 4.9 4.8
§ 20 77 W [0 O KX 4.2
o 9.0 9.0 9.0 9.0 9.0
10 WS J T J T J T WAL

10.1 10.8 10.9 11.0 11.0
0
32 32 64 64 128 128 256 256 512 512 1024 1024 2048 2048
NumberofGPUs(ngus)

Weak scaling for 2048 XNp —4096°. Np=16"Ngpu 17

Weak scalability evaluation
* Using up to 2048 GPUs to evaluate a 8K problem

* Peak performance is predicted by our performance model

- We achieve outstanding weak scaling

200

Measured T(,‘ompute | TDZH N Tstore Treduce
150 Peak = TCompute O7Tp2y O Tstore O Treduce
o
Q
£100
I
-3
x
50
30.0
0
256 256 512 512 1024 1024 2048 2048
Number of GPUs (ngus)

Weak scaling for 2048°x N, —8192°. Ny=4"Ngpus

Strong scalability evaluation

* Using up to 2048 GPUs to solve a 4K problem
* Peak performance is predicted by our performance model

* We can achieve about 76% of the peak performance
100

Measured Tcompute] TDZH

20 H Tstore T‘reduce
Peak O Tcompute O TDZH

O Tstore O T‘reduce

o))
o

Runtime (s)
S

5.0

N
o

18.9

32 32 64 64 128 128 256 256 512 512 10241024 20482048
Number of GPUs (Ngpys)

Strong scaling for 20482x4096—4096°.

19

Strong scalability evaluation

* Using up to 2048 GPUs to solve a 8K problem

* Peak performance is predicted by our performance model

* We can achieve about 76% of the peak performance
250

T BT
Measured compute D2H
] Tstore Treduce
200 O N
Yzonunwe TbZH
Peak T
O Tstore O reduce
150

Runtime (s)
[y
o
o

50

29.7

256 256 512 512 1024 1024 2048 2048

Number of GPUs (N;,y5)

Strong scaling for 2048%x4096—8192°.

Performance

80000

. A 70000 3
Extremely high performance o = 28323
60000 —>¢<
Higher computational intensity, 9«50000 & 819723
ope Q
better scalability O
(G 40000
Bottleneck becomes the data movement £
. O
Over two order of magnitude faster L 0000
than a single Tesla V100 GPU o ,
8 0000 | 11aa 3495 5351/@,952 3,151 3,274 3,244
Solve any FDK problems . A L B8O 2229 4 ST A A A
instantaneously 4 8 16 32 64 128 256 512 1024 2048

Number of GPUs (Ngpys)
The achieved performance of solving 2K, 4K, and
8K problems

Conclusion

1. We proposed a general FDK algorithm
2. We implemented an efficient CUDA kernel for back-projection

3. We proposed a framework (iFDK) to generate high-resolution image
- Two characteristics:
* Pipeline processing
* Parallel computation
- Take advantage of the heterogeneity of ABCl supercomputer
* Use CPU for filtering computation
* Use GPU for back-projection
* Almost ideal Strong and weak scaling

4. On ABCI, using up to 2,048 V100 GPUs to solve a 4K and 8K problems within 30
seconds and 2 minutes, respectively (including 1/0).

ABCl is not only specified for Al, but also general for other HPC applications!

Future work

- Research on rendering High-resolution image on ABCI

* Research on compressing the High-resolution images

* Provide an image reconstruction service via cloud

* Challenge our system using full-nodes (namely 4K GPUs) again

