
A Scalable Framework for Instant High-
resolution Image Reconstruction

1. Tokyo Institute of Technology, Dept. of Mathematical and Computing Science, Tokyo, Japan

2. National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

3. AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, National
Institute of Advanced Industrial Science and Technology

4. RIKEN Center for Computational Science, Hyogo, Japan

𝑃𝑒𝑛𝑔 Che𝑛𝟏,𝟑 ,Mohamed Wahib 𝟑 , Shinichiro Takizawa 𝟑 , Ryousei Takano 𝟐 , Satoshi Matsuoka𝟏,𝟒

Background

 Computed Tomography (CT) is widely used
 Medical diagnosis
 Non-invasive inspection
 Reverse engineering

 Possibility of obtaining high-resolution image
 Rapid development in CT manufacturing
 CMOS-based Flat Panel Detector (FPD, X-ray imaging sensor) become larger

 2048 × 2048, 4096 × 4096, etc

 Micro focus x-ray become better and cheaper

 Complex computation for 3D image reconstruction
 Filtering computation (or convolution), Back-projection

 The commonly used resolution : 2563, 5123, 10243

2

Problem statement

 High-resolution CT image is important but not attainable
1. Intensive computation

2. Critical timing demanding for image reconstruction

3. Huge memory capacity

 20483 : 32GB, 40963 : 256GB, 81923 : 2TB

 We use ABCI supercomputer (GPU-accelerated supercomputer) to solve this problem

 Challenges
1. GPU is powerful in computation but memory capacity is limited

2. How to optimize algorithms on GPU?

3. How to use the heterogeneous architecture (CPUs, GPUs) ?

4. How to optimally perform inter-process communication by MPI ?

5. How to achieve high performance and scaling?

3
[1] Harry E. Martz, Clint M. Logan, Daniel J. Schneberk, and Peter J. Shull. 2017. X-ray imaging: fundamentals, industrial
techniques, and applications. Boca Raton:CRC Press, Taylor & Francis Group.

What happens if we start manipulating (6𝑘)3 and (8𝑘)3volumes?
Harry E. Martz, Clint M. Logan, Daniel J. Schneberk, and Peter J. Shull

[1]

Contributions
1. We proposed a novel back-projection algorithm

2. We implemented an efficient CUDA kernel for back-projection

3. We take advantage of the heterogeneity of ABCI supercomputer
 Use CPU for filtering computation

 Use GPU for back-projection

4. We proposed a framework to generate high-resolution images
 High performance

 High scalability

5. Using up to 2,048 V100 GPUs on ABCI, the 4K and 8K problems can be
solved within 30 seconds and 2 minutes, respectively (including I/O)

4

2K problem : 2048 × 2048 × 4096 → 20483

4K problem : 2048 × 2048 × 4096 → 40963

8K problem : 2048 × 2048 × 4096 → 81923

Introduction of Compute Tomography

 CT system can generate 3D image from a set of 2D projections (or images)

 Cone Beam Compute Tomography (CBCT)

 CBCT Geometry & Parameter

5

Micro-focus
X-ray source

FPD

(a) CBCT geometry and trajectory (b) 3D volume geometry

• Reconstruction Problem Definition :
𝑁𝑢 × 𝑁𝑣 × 𝑁𝑝 → 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧

• Performance metrics :
Τ𝐺𝑈𝑃𝑆 = 𝑁𝑥 ∗ 𝑁𝑦 ∗ 𝑁𝑧 ∗ 𝑁𝑝 𝑇

where T is execution time in a unit of second.

𝑁𝑢

𝑁𝑥

𝑁𝑦𝑁𝑧
𝑁𝑣

FDK algorithm

 Presented by Feldkamp, Davis, and Kress in 1984 (36 years ago)

 FDK is also known as the Filtered Back-projection (FBP) algorithm

 FBP method is indispensable in most of the practical CT systems

 Intensive computation for 3D image reconstruction
 Filtering computation,

 Back-projection computation,

 FFT primitive is required in Filtering computation
 Intel IPP, MKL, cuFFT, etc.

6

Load projections
Filtering

computation
Back-projection

computation
Store volume

Filtered Back-projection (FBP)

𝑂(𝐿𝑜𝑔(𝑁)𝑁2)

𝑂(𝑁4)

Overview of the Proposed iFDK Framework

7

Filtering

Filtering

Filtering

Filtering

Back-projection

Back-projection

Back-projection

Back-projection

Filtering

Filtering

Filtering

Filtering

Back-projection

Back-projection

Back-projection

Back-projection

Load

Load

Load

Load

Load

Load

Load

Load

Store

Store

Store

Store

On CPUs On GPUs

AllGather Reduce

On CPUs

2
D

P
ro

jectio
n

s

3
D

V
o

lu
m

e

Input Output

Proposed Framework on Multi-nodes with Multi-GPUs

Proposed back-projection kernel on GPU

 We re-organize the loops

 We do not rely on texture cache
 Use L1/L2 cache directly due to the better data locality
 The locality is improved by using the transposed projections and volume

 We do not use texture interpolator
 Achieve high precision of float32

 We compute a batch of 32 projections

 Benefit to in-register accumulation

 Reduce the global memory access

 We perform thread communication by shuffle intrinsic
 Simple and efficient

8
Detailed CUDA kernel can be found in our paper

An example of Problem Decomposition Scheme

9

9

0 32 64 96

1 9 17 25

31 63 95 127

𝑅0

𝑅1

𝑅31

𝐶0 𝐶1 𝐶2 𝐶3

⋯⋯⋯⋯⋯⋯

Input : 2D Projections

Output : 3D volume

vol 0
vol 1

vol 62
vol 63

16 MB/img x4096

8 GB/vol x64
MPI_Allgather

M
P

I_
R

ed
u

ce

Use 128 GPUs (32 Nodes) to slove a 2K problem
Input: 4k count of 2k^2 image, Output: 4k^3

Orchestration and Overlapping in iFDK

10

Projections

Filtering Thread Main Thread

MPI-AllGather
Back-projection Thread

volCircular buffer Circular buffer
PFS

Main Thread

MPI-Reduce

vol
Vol k

vol 1
vol 0

⋯⋯⋯ 3D volume

Main Thread

Store

PFS

(a) Processing pipeline by three threads

(b) Reduce and Store operations by Main Thread

 Each MPI rank launches two extra-threads by pthread library

 Filtering thread launches multiple OpenMP threads for filtering computation

An example of achieved overlapping

11

Exchange data
Load & Filtering
MPI-AllGather
H2D copy

Back-projection
D2H copy

MPI-Reduce
Store to PFS

Filtering thread

Main thread
BP thread

Time

AllGather AllGather⋯⋯⋯⋯
⋯

D2H Reduce⋯⋯BP BP BP Store
19s

1s
4.7s 4.2s 11s

15s

 An example of pipeline to solve 2048 × 2048 × 4096 → 40963problem

 Use 128 V100 GPUs

 Filtering thread processes 32 projections

 Main thread gathers 1024 projections

 Back-projection thread processes 1024 projections

An example of MPI_Reduce operation

12

 Use 16 GPUs to solve 2048 × 2048 × 4096 → 20483 problem

 Each GPU process a sub-volume of size 8GB

Performance model

 Micro-benchmarking

 To better understand the characteristics of our system

 Measure the constant parameters of our system, e.g.

 Bandwidth of Parallel File System (PFS)

 Bandwidth of PCIe connector

 Throughput of MPI primitives

 Building a performance model

 We can predict the potential peak performance

 We can justify the scalability of iFDK

 iFDK scales with the number of GPUs (𝑁𝑔𝑝𝑢𝑠) linearly

 Detailed equations can be found in our paper

13

Evaluation environment

 ABCI supercomputer
 Constructed and operated by AIST
 1,088 computing nodes, 4,352 Tesla V100 GPUs

 Software
 CentOS 7.4
 CUDA 9.0
 Intel library 2018.2.199 (MPI, IPP)
 RTK (Reconstruction Toolkit) 1.4.0

 Evaluation dataset
 Computation complexity is independent of the content of projections
 Use Shepp-Logan phantom
 Generate projections by RTK library

14

15

15

ABCI Compute Node

Xeon Gold

6148

Xeon Gold

6148

10.4GT/s x3DDR4-2666

32GB x 6

DDR4-2666

32GB x 6

128GB/s 128GB/s

IB HCA (100Gbps)IB HCA (100Gbps)

NVMe

UPI x3

x48 switch

Skylake Skylake

x64 switch

Tesla V100 SXM2 Tesla V100 SXM2

Tesla V100 SXM2 Tesla V100 SXM2

PCIe gen3 x16 PCIe gen3 x16

PCIe gen3 x16 PCIe gen3 x16

NVLink2 x2

Evaluation on back-projection kernels

 A single Tesla V100 GPUs

 Single precision

 Up to 1.6 times faster than baseline

 Performance summary

 Better data locality

 Advantaged use of L1 cache

 Efficient data communication

16

OursBaseline

The higher,
the better

RTK

17

Weak scalability evaluation
 Using up to 2048 GPUs to evaluate a 4K problem

 Peak performance is predicted by our performance model

 We achieve outstanding weak scaling

18

Weak scalability evaluation
 Using up to 2048 GPUs to evaluate a 8K problem

 Peak performance is predicted by our performance model

 We achieve outstanding weak scaling

Strong scalability evaluation
 Using up to 2048 GPUs to solve a 4K problem

 Peak performance is predicted by our performance model

 We can achieve about 76% of the peak performance

19

Strong scalability evaluation
 Using up to 2048 GPUs to solve a 8K problem

 Peak performance is predicted by our performance model

 We can achieve about 76% of the peak performance

20

Performance

 Extremely high performance

 Higher computational intensity,
better scalability

 Bottleneck becomes the data movement

 Over two order of magnitude faster
than a single Tesla V100 GPU

 Solve any FDK problems
instantaneously

21

The achieved performance of solving 2K, 4K, and
8K problems

Conclusion
1. We proposed a general FDK algorithm

2. We implemented an efficient CUDA kernel for back-projection
3. We proposed a framework (iFDK) to generate high-resolution image

 Two characteristics:
 Pipeline processing
 Parallel computation

 Take advantage of the heterogeneity of ABCI supercomputer
 Use CPU for filtering computation
 Use GPU for back-projection

 Almost ideal Strong and weak scaling

4. On ABCI, using up to 2,048 V100 GPUs to solve a 4K and 8K problems within 30
seconds and 2 minutes, respectively (including I/O).

22

ABCI is not only specified for AI, but also general for other HPC applications!

Future work

 Research on rendering High-resolution image on ABCI

 Research on compressing the High-resolution images

 Provide an image reconstruction service via cloud

 Challenge our system using full-nodes (namely 4K GPUs) again

23

