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Background

 Computed Tomography (CT) is widely used
 Medical diagnosis 
 Non-invasive inspection
 Reverse engineering

 Possibility of obtaining high-resolution image
 Rapid development in CT manufacturing
 CMOS-based Flat Panel Detector (FPD, X-ray imaging sensor) become larger

 2048 × 2048, 4096 × 4096, etc

 Micro focus x-ray become better and cheaper

 Complex computation for 3D image reconstruction
 Filtering computation (or convolution),  Back-projection

 The commonly used resolution : 2563, 5123, 10243
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Problem statement

 High-resolution CT image is important but not attainable
1. Intensive computation

2. Critical timing demanding for image reconstruction

3. Huge memory capacity

 20483 : 32GB, 40963 : 256GB, 81923 : 2TB

 We use ABCI supercomputer (GPU-accelerated supercomputer) to solve this problem

 Challenges
1. GPU is powerful in computation but memory capacity is limited

2. How to optimize algorithms on GPU?

3. How to use the heterogeneous architecture (CPUs, GPUs) ?

4. How to optimally perform inter-process communication by MPI ?

5. How to achieve high performance and scaling?
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Contributions 
1. We proposed a novel back-projection algorithm

2. We implemented an efficient CUDA kernel for back-projection

3. We take advantage of the heterogeneity of ABCI supercomputer
 Use CPU for filtering computation

 Use GPU for back-projection

4. We proposed a framework to generate high-resolution images
 High performance

 High scalability

5. Using up to 2,048 V100 GPUs on ABCI, the 4K and 8K problems can be 
solved within 30 seconds and 2 minutes, respectively (including I/O)
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2K problem : 2048 × 2048 × 4096 → 20483

4K problem : 2048 × 2048 × 4096 → 40963

8K problem : 2048 × 2048 × 4096 → 81923



Introduction of Compute Tomography

 CT system can generate 3D image from a set of 2D projections (or images)

 Cone Beam Compute Tomography (CBCT)

 CBCT Geometry & Parameter
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Micro-focus 
X-ray source

FPD

(a) CBCT geometry and trajectory (b) 3D volume geometry

• Reconstruction Problem Definition :
𝑁𝑢 × 𝑁𝑣 × 𝑁𝑝 → 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧

• Performance metrics : 
Τ𝐺𝑈𝑃𝑆 = 𝑁𝑥 ∗ 𝑁𝑦 ∗ 𝑁𝑧 ∗ 𝑁𝑝 𝑇

where T is execution time in a unit of second.
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FDK algorithm

 Presented by Feldkamp, Davis, and Kress in 1984 (36 years ago)

 FDK is also known as the Filtered Back-projection (FBP) algorithm

 FBP method is indispensable in most of the practical CT systems 

 Intensive computation for 3D image reconstruction
 Filtering computation, 

 Back-projection computation, 

 FFT primitive is required in Filtering computation
 Intel IPP, MKL, cuFFT, etc.
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Overview of  the Proposed iFDK Framework 
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Proposed back-projection kernel on GPU

 We re-organize the loops 

 We do not rely on texture cache 
 Use L1/L2 cache directly due to the better data locality
 The locality is improved by using the transposed projections and volume

 We do not use texture interpolator
 Achieve high precision of float32

 We compute a batch of 32 projections

 Benefit to in-register accumulation

 Reduce the global memory access

 We perform thread communication by shuffle intrinsic
 Simple and efficient
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An example of Problem Decomposition Scheme
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Orchestration and Overlapping in iFDK
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(a) Processing pipeline by three threads

(b) Reduce and Store operations by Main Thread

 Each MPI rank launches two extra-threads by pthread library

 Filtering thread launches multiple OpenMP threads for filtering computation



An example of achieved overlapping
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Exchange data
Load & Filtering
MPI-AllGather
H2D copy

Back-projection 
D2H copy 
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Main thread
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Time
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 An example of pipeline to solve 2048 × 2048 × 4096 → 40963problem

 Use 128 V100 GPUs

 Filtering thread processes 32 projections

 Main thread gathers 1024 projections

 Back-projection thread processes 1024 projections



An example of MPI_Reduce operation
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 Use 16 GPUs to solve 2048 × 2048 × 4096 → 20483 problem

 Each GPU process a sub-volume of size 8GB



Performance model

 Micro-benchmarking  

 To better understand the characteristics of our system

 Measure the constant parameters of our system, e.g.

 Bandwidth of Parallel File System (PFS)

 Bandwidth of PCIe connector

 Throughput of MPI primitives

 Building a performance model

 We can predict the potential peak performance

 We can justify the scalability of iFDK

 iFDK scales with the number of GPUs (𝑁𝑔𝑝𝑢𝑠) linearly

 Detailed equations can be found in our paper
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Evaluation environment

 ABCI supercomputer
 Constructed and operated by AIST
 1,088 computing nodes, 4,352 Tesla V100 GPUs

 Software 
 CentOS 7.4
 CUDA 9.0
 Intel library 2018.2.199 (MPI, IPP)
 RTK (Reconstruction Toolkit) 1.4.0

 Evaluation dataset
 Computation complexity is independent of the content of projections
 Use Shepp-Logan phantom
 Generate projections by RTK library
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Evaluation on back-projection kernels

 A single Tesla V100 GPUs

 Single precision

 Up to 1.6 times faster than baseline

 Performance summary

 Better data locality

 Advantaged use of L1 cache

 Efficient data communication
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Weak scalability evaluation
 Using up to 2048 GPUs to evaluate a 4K problem

 Peak performance is predicted by our performance model

 We achieve outstanding weak scaling
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Weak scalability evaluation
 Using up to 2048 GPUs to evaluate a 8K problem

 Peak performance is predicted by our performance model

 We achieve outstanding weak scaling



Strong scalability evaluation
 Using up to 2048 GPUs to solve a 4K problem

 Peak performance is predicted by our performance model

 We can achieve about 76% of the peak performance
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Strong scalability evaluation
 Using up to 2048 GPUs to solve a 8K problem

 Peak performance is predicted by our performance model

 We can achieve about 76% of the peak performance
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Performance 

 Extremely high performance 

 Higher computational intensity, 
better scalability

 Bottleneck becomes the data movement

 Over two order of magnitude faster 
than a single Tesla V100 GPU

 Solve any FDK problems 
instantaneously
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The achieved performance of solving 2K, 4K, and 
8K problems



Conclusion
1. We proposed a general FDK algorithm

2. We implemented an efficient CUDA kernel for back-projection
3. We proposed a framework (iFDK) to generate high-resolution image

 Two characteristics: 
 Pipeline processing
 Parallel computation

 Take advantage of the heterogeneity of ABCI supercomputer
 Use CPU for filtering computation
 Use GPU for back-projection

 Almost ideal Strong and weak scaling

4. On ABCI, using up to 2,048 V100 GPUs to solve a 4K and 8K problems within 30 
seconds and 2 minutes, respectively (including I/O).
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ABCI is not only specified for AI, but also general for other HPC applications! 



Future work

 Research on rendering High-resolution image on ABCI

 Research on compressing the High-resolution images

 Provide an image reconstruction service via cloud

 Challenge our system using full-nodes (namely 4K GPUs) again
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