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Background

Computed Tomography (CT) is widely used

* Medical diagnosis
* Non-invasive inspection
* Reverse engineering

Possibility of obtaining high-resolution image
* Rapid development in CT manufacturing

* CMOS-based Flat Panel Detector (FPD, X-ray imaging sensor) become larger
« 2048 X 2048, 4096 X 4096, etc
Micro focus x-ray become better and cheaper

Complex computation for 3D image reconstruction
* Filtering computation (or convolution), Back-projection

The commonly used resolution : 2563, 5123, 10243



Problem statement

What happens if we start manipulating (6k)> and (8k)3volumes?
Harry E. Martz, Clint M. Logan, Daniel J. Schneberk, and Peter J. Shull

* High-resolution CT image is important but not attainable
1. Intensive computation
2. Critical timing demanding for image reconstruction

3. Huge memory capacity
- 20483 :32GB, 40963 : 256GB, 81923 : 2TB

* We use ABCI supercomputer (GPU-accelerated supercomputer) to solve this problem

* Challenges
1. GPU is powerful in computation but memory capacity is limited
2. How to optimize algorithms on GPU?
3. How to use the heterogeneous architecture (CPUs, GPUs) ?
4. How to optimally perform inter-process communication by MPI ?
5. How to achieve high performance and scaling?

[1] Harry E. Martz, Clint M. Logan, Daniel J. Schneberk, and Peter J. Shull. 2017. X-ray imaging: fundamentals, industrial
techniques, and applications. Boca Raton:CRC Press, Taylor & Francis Group.




Contributions

1. We proposed a novel back-projection algorithm

. We implemented an efficient CUDA kernel for back-projection

3. We take advantage of the heterogeneity of ABCI supercomputer

 Use CPU for filtering computation
* Use GPU for back-projection

. We proposed a framework to generate high-resolution images
* High performance
* High scalability

. Using up to 2,048 V100 GPUs on ABCI, the 4K and 8K problems can be
solved within 30 seconds and 2 minutes, respectively (including 1/0)

4K problem : 2048 x 2048 x 4096 — 40963

{zk problem : 2048 X 2048 x 4096 — 20483}
8K problem : 2048 x 2048 x 4096 — 81923




Introduction of Compute Tomography

* CT system can generate 3D image from a set of 2D projections (or images)
* Cone Beam Compute Tomography (CBCT)
* CBCT Geometry & Parameter

Micro-focus FPD
X-ray source Param Description
A Np the number of 2D projections
G Nu, Ny the width and height of a 2D projection, respectively
Ny, Ny, N2 the number of voxels in X, Y, Z dimension, respectivel
Y P y
e Reconstruction Problem Definition :
S 0 Ny, X Ny, X Ny = Ny X Ny, X N,
1 _ =7 .
s * Performance metrics :
:“"/,,-""’ ),

-

GUPS = Ny * N, * N, x N,, /T
where T is execution time in a unit of second.
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(a) CBCT geometry and trajectory (b) 3D volume geometry




FDK algorithm

* Filtering computation,
* Back-projection computation,

* Intel IPP, MKL, cuFFT, etc.

[ Load projections
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Filtering
computation

Intensive computation for 3D image reconstruction

O(Log(N)N?)

O(NH)

FFT primitive is required in Filtering computation

-
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Back-projection )

computation

Presented by Feldkamp, Davis, and Kress in 1984 (36 years ago)
FDK is also known as the Filtered Back-projection (FBP) algorithm

FBP method is indispensable in most of the practical CT systems

:>[ Store volume J
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Filtered Back-projection (FBP)




Overview of the Proposed iFDK Framework

Proposed Framework on Multi-nodes with Multi-GPUs
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Proposed back-projection kernel on GPU

We re-organize the loops

- We do not rely on texture cache
* Use L1/L2 cache directly due to the better data locality
* The locality is improved by using the transposed projections and volume

* We do not use texture interpolator
* Achieve high precision of float32

- We compute a batch of 32 projections
* Benefit to in-register accumulation
* Reduce the global memory access

* We perform thread communication by shuffle intrinsic
- Simple and efficient

Detailed CUDA kernel can be found in our paper
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Orchestration and Overlapping in iFDK

* Each MPI rank launches two extra-threads by pthread library

* Filtering thread launches multiple OpenMP threads for filtering computation

Filtering Thread Main Thread Back-projection Thread

- > MPI-AllGather
Projections A\N\N> /\/\/\/‘/ ;é
Circular buffer Circular buffer |

PFS
(a) Processing pipeline by three threads

/ h Main Thread Main Thread
== ARy //\;te;v-

| Vol 'k

(b) Reduce and Store operations by Main Thread



An example of achieved overlapping

- An example of pipeline to solve 2048 x 2048 x 4096 — 40963 problem
* Use 128 V100 GPUs

* Filtering thread processes 32 projections

BlExchange data  [Back-projection
* Main thread gathers 1024 projections Load & Filtering ~ D2H copy
. . C MPI-AllGather  JIMPI-Reduce
Back-projection thread processes 1024 projections H2D copy WiStore to PFS

Filtering thread s * “pg :
Main thread| || alGather | <+ coe eev eet AllGather l
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An example of MPl Reduce operation

» Use 16 GPUs to solve 2048 x 2048 x 4096 — 20483 problem

* Each GPU process a sub-volume of size 8GB

MPI_Red uce>
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Performance model

* Micro-benchmarking
* To better understand the characteristics of our system
* Measure the constant parameters of our system, e.g.
- Bandwidth of Parallel File System (PFS)
- Bandwidth of PCle connector
* Throughput of MPI primitives

* Building a performance model
* We can predict the potential peak performance
* We can justify the scalability of iFDK
* iFDK scales with the number of GPUs (N,,,¢) linearly

* Detailed equations can be found in our paper



Evaluation environment

* ABCl supercomputer
* Constructed and operated by AIST
1,088 computing nodes, 4,352 Tesla V100 GPUs

 Software
* Cent0S 7.4
- CUDA 9.0
* Intel library 2018.2.199 (MPI, IPP)
* RTK (Reconstruction Toolkit) 1.4.0

* Evaluation dataset
- Computation complexity is independent of the content of projections
* Use Shepp-Logan phantom
* Generate projections by RTK library



= ABCI Compute Node

FUJITSU PRIMERGY Server (2 servers in 2U)
Xeon Gold 6148 (27.5M Cache, 2.40 GHz, 20 Core) x2

CPU
T iDIA Tesla V100 (5xM2) x4
384GiB DDR4 2666MHz RDIMM

Local Storage 1.6TB NVMe SSD (Intel SSD DC P4600 u.2) x1

Skylake

Skylake

DDR4-2666| 128CGB/s Fivel] 128GB/S|5pR4-2666
6148 32GB x 6

32GB x 6
1
IB HCA (100Gb N >
( Ps) PCle gen3 x16 PCle gen3 x16 IB HCA (100Gbps)

PCle gen3 xlE"

o1 10.4GT/s x3 Xeon Gold

a

Xx64 switch

\ 4

x48 switch

NVLink2 x2
Tesla V100 SXM2 > < Tesla V100 SXM2

< TeslaVv1l00 SXM2

Tesla V100 SXM2 »



Evaluation on back-projection kernels

A single Tesla V100 GPUs

Single precision

Up to 1.6 times faster than baseline

Performance summary
- Better data locality
* Advantaged use of L1 cache
* Efficient data communication

RTK
FDK poblems | Baseline Ours
(pixel—voxel) (GUPS)  (GUPS)
5124x1k—128> 65.3 118.0
5122x1k—256> 107.4 188.6
512%x1k—5123 115.1 206.0
5122x1k—(1k)3 1181 2114 |
5122x1k—(1k)*x2k N/A 212.7
(1k)?>—1283 41.9 27.2
(1k)3—2563 77 4 83.7
(1k)3>—5123 115.7 190.3
(1k)>—(1k)3 117.9 205.7
(1k)> —=(1k)*x2k N/A 207.9
(2k)?x1k—128° 16.1 7.7
(2k)*x1k—256> 38.6 24.1
(2k)*x1k—5123 80.2 81.6
(2k)2x1k—(1k)3 116.9 186.9
(2k)*x1k—(1k)*x2k N/A 198.7
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Weak scalability evaluation

* Using up to 2048 GPUs to evaluate a 4K problem
* Peak performance is predicted by our performance model

- We achieve outstanding weak scaling
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Weak scalability evaluation
* Using up to 2048 GPUs to evaluate a 8K problem

* Peak performance is predicted by our performance model

- We achieve outstanding weak scaling
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Strong scalability evaluation

* Using up to 2048 GPUs to solve a 4K problem
* Peak performance is predicted by our performance model

* We can achieve about 76% of the peak performance
100

Measured Tcompute ] TDZH

20 H Tstore T‘reduce
Peak O Tcompute O TDZH

O Tstore O T‘reduce

o))
o

Runtime (s)
S

5.0

N
o

18.9

32 32 64 64 128 128 256 256 512 512 10241024 20482048
Number of GPUs (Ngpys)

Strong scaling for 20482x4096—4096°.

19



Strong scalability evaluation

* Using up to 2048 GPUs to solve a 8K problem

* Peak performance is predicted by our performance model

* We can achieve about 76% of the peak performance
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Performance

80000
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Extremely high performance o = 28323
60000 —>¢<
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The achieved performance of solving 2K, 4K, and
8K problems



Conclusion

1. We proposed a general FDK algorithm
2. We implemented an efficient CUDA kernel for back-projection

3. We proposed a framework (iFDK) to generate high-resolution image
- Two characteristics:
* Pipeline processing
* Parallel computation
- Take advantage of the heterogeneity of ABCl supercomputer
* Use CPU for filtering computation
* Use GPU for back-projection
* Almost ideal Strong and weak scaling

4. On ABCI, using up to 2,048 V100 GPUs to solve a 4K and 8K problems within 30
seconds and 2 minutes, respectively (including 1/0).

ABCl is not only specified for Al, but also general for other HPC applications!




Future work

- Research on rendering High-resolution image on ABCI

* Research on compressing the High-resolution images

* Provide an image reconstruction service via cloud

* Challenge our system using full-nodes (namely 4K GPUs) again



