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Background

 Computed Tomography (CT) is widely used
 Medical diagnosis 
 Non-invasive inspection
 Reverse engineering

 Possibility of obtaining high-resolution image
 Rapid development in CT manufacturing
 CMOS-based Flat Panel Detector (FPD, X-ray imaging sensor) become larger

 2048 × 2048, 4096 × 4096, etc

 Micro focus x-ray become better and cheaper

 Complex computation for 3D image reconstruction
 Filtering computation (or convolution),  Back-projection

 The commonly used resolution : 2563, 5123, 10243
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Problem statement

 High-resolution CT image is important but not attainable
1. Intensive computation

2. Critical timing demanding for image reconstruction

3. Huge memory capacity

 20483 : 32GB, 40963 : 256GB, 81923 : 2TB

 We use ABCI supercomputer (GPU-accelerated supercomputer) to solve this problem

 Challenges
1. GPU is powerful in computation but memory capacity is limited

2. How to optimize algorithms on GPU?

3. How to use the heterogeneous architecture (CPUs, GPUs) ?

4. How to optimally perform inter-process communication by MPI ?

5. How to achieve high performance and scaling?
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Contributions 
1. We proposed a novel back-projection algorithm

2. We implemented an efficient CUDA kernel for back-projection

3. We take advantage of the heterogeneity of ABCI supercomputer
 Use CPU for filtering computation

 Use GPU for back-projection

4. We proposed a framework to generate high-resolution images
 High performance

 High scalability

5. Using up to 2,048 V100 GPUs on ABCI, the 4K and 8K problems can be 
solved within 30 seconds and 2 minutes, respectively (including I/O)
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2K problem : 2048 × 2048 × 4096 → 20483

4K problem : 2048 × 2048 × 4096 → 40963

8K problem : 2048 × 2048 × 4096 → 81923



Introduction of Compute Tomography

 CT system can generate 3D image from a set of 2D projections (or images)

 Cone Beam Compute Tomography (CBCT)

 CBCT Geometry & Parameter
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(a) CBCT geometry and trajectory (b) 3D volume geometry

• Reconstruction Problem Definition :
𝑁𝑢 × 𝑁𝑣 × 𝑁𝑝 → 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧

• Performance metrics : 
Τ𝐺𝑈𝑃𝑆 = 𝑁𝑥 ∗ 𝑁𝑦 ∗ 𝑁𝑧 ∗ 𝑁𝑝 𝑇

where T is execution time in a unit of second.
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𝑁𝑣



FDK algorithm

 Presented by Feldkamp, Davis, and Kress in 1984 (36 years ago)

 FDK is also known as the Filtered Back-projection (FBP) algorithm

 FBP method is indispensable in most of the practical CT systems 

 Intensive computation for 3D image reconstruction
 Filtering computation, 

 Back-projection computation, 

 FFT primitive is required in Filtering computation
 Intel IPP, MKL, cuFFT, etc.
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Overview of  the Proposed iFDK Framework 
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Proposed back-projection kernel on GPU

 We re-organize the loops 

 We do not rely on texture cache 
 Use L1/L2 cache directly due to the better data locality
 The locality is improved by using the transposed projections and volume

 We do not use texture interpolator
 Achieve high precision of float32

 We compute a batch of 32 projections

 Benefit to in-register accumulation

 Reduce the global memory access

 We perform thread communication by shuffle intrinsic
 Simple and efficient
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An example of Problem Decomposition Scheme
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Orchestration and Overlapping in iFDK
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(a) Processing pipeline by three threads

(b) Reduce and Store operations by Main Thread

 Each MPI rank launches two extra-threads by pthread library

 Filtering thread launches multiple OpenMP threads for filtering computation



An example of achieved overlapping
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Exchange data
Load & Filtering
MPI-AllGather
H2D copy
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 An example of pipeline to solve 2048 × 2048 × 4096 → 40963problem

 Use 128 V100 GPUs

 Filtering thread processes 32 projections

 Main thread gathers 1024 projections

 Back-projection thread processes 1024 projections



An example of MPI_Reduce operation
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 Use 16 GPUs to solve 2048 × 2048 × 4096 → 20483 problem

 Each GPU process a sub-volume of size 8GB



Performance model

 Micro-benchmarking  

 To better understand the characteristics of our system

 Measure the constant parameters of our system, e.g.

 Bandwidth of Parallel File System (PFS)

 Bandwidth of PCIe connector

 Throughput of MPI primitives

 Building a performance model

 We can predict the potential peak performance

 We can justify the scalability of iFDK

 iFDK scales with the number of GPUs (𝑁𝑔𝑝𝑢𝑠) linearly

 Detailed equations can be found in our paper
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Evaluation environment

 ABCI supercomputer
 Constructed and operated by AIST
 1,088 computing nodes, 4,352 Tesla V100 GPUs

 Software 
 CentOS 7.4
 CUDA 9.0
 Intel library 2018.2.199 (MPI, IPP)
 RTK (Reconstruction Toolkit) 1.4.0

 Evaluation dataset
 Computation complexity is independent of the content of projections
 Use Shepp-Logan phantom
 Generate projections by RTK library

14



15

15

ABCI Compute Node

Xeon Gold 

6148

Xeon Gold 

6148

10.4GT/s x3DDR4-2666

32GB x 6

DDR4-2666

32GB x 6

128GB/s 128GB/s

IB HCA (100Gbps)IB HCA (100Gbps)

NVMe

UPI x3

x48 switch

Skylake Skylake

x64 switch

Tesla V100 SXM2 Tesla V100 SXM2

Tesla V100 SXM2 Tesla V100 SXM2

PCIe gen3 x16 PCIe gen3 x16

PCIe gen3 x16 PCIe gen3 x16

NVLink2 x2



Evaluation on back-projection kernels

 A single Tesla V100 GPUs

 Single precision

 Up to 1.6 times faster than baseline

 Performance summary

 Better data locality

 Advantaged use of L1 cache

 Efficient data communication
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Weak scalability evaluation
 Using up to 2048 GPUs to evaluate a 4K problem

 Peak performance is predicted by our performance model

 We achieve outstanding weak scaling
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Weak scalability evaluation
 Using up to 2048 GPUs to evaluate a 8K problem

 Peak performance is predicted by our performance model

 We achieve outstanding weak scaling



Strong scalability evaluation
 Using up to 2048 GPUs to solve a 4K problem

 Peak performance is predicted by our performance model

 We can achieve about 76% of the peak performance
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Strong scalability evaluation
 Using up to 2048 GPUs to solve a 8K problem

 Peak performance is predicted by our performance model

 We can achieve about 76% of the peak performance
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Performance 

 Extremely high performance 

 Higher computational intensity, 
better scalability

 Bottleneck becomes the data movement

 Over two order of magnitude faster 
than a single Tesla V100 GPU

 Solve any FDK problems 
instantaneously
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The achieved performance of solving 2K, 4K, and 
8K problems



Conclusion
1. We proposed a general FDK algorithm

2. We implemented an efficient CUDA kernel for back-projection
3. We proposed a framework (iFDK) to generate high-resolution image

 Two characteristics: 
 Pipeline processing
 Parallel computation

 Take advantage of the heterogeneity of ABCI supercomputer
 Use CPU for filtering computation
 Use GPU for back-projection

 Almost ideal Strong and weak scaling

4. On ABCI, using up to 2,048 V100 GPUs to solve a 4K and 8K problems within 30 
seconds and 2 minutes, respectively (including I/O).
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ABCI is not only specified for AI, but also general for other HPC applications! 



Future work

 Research on rendering High-resolution image on ABCI

 Research on compressing the High-resolution images

 Provide an image reconstruction service via cloud

 Challenge our system using full-nodes (namely 4K GPUs) again
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