Ethical Decision Making in Artificial Intelligence

Pradeep Ravikumar

Machine Learning Department

School of Computer Science

Carnegie Mellon University

Al making societally important decisions

 Artificial Intelligence systems are being used to make societally important decisions

- Healthcare
- Autonomous cars

Should Self-Driving Cars Have Ethics?

Al and ethics

- Can Al systems behave ethically?
- Typical ML pipeline:

• How do we incorporate "ethical" thinking?

Ethics / Moral Philosophy

- What is right and what is wrong?
- How to make decisions that are right?
- Questions studied by philosophers for 1000s of years with no consensus formal framework

Three Main Ethical Frameworks

- Deontological: take action according to a specified set of rules
- Virtue Ethics: multiple "values" or "virtues"; take action that follows these values or virtues
- Consequentialism: take an action that has the most desirable future consequences
 - Utilitarianism: assign a utility to world states, and take action that leads to highest utility

Deontological Ethics

- Rules based (e.g. Ten Commandments)
 - Requires a priori specification of ethical rules
- Given a set of rules, or constraints, we can ensure that Al actions follow these rules
- Caveat: rules not always available, and when available, too broad to be applicable to specific situation
 - e.g. just the ten commandments not helpful for selfdriving car ethics

Virtue Ethics

- Take actions based on values/virtues ... Aristotle (and others)
- Similar caveats to deontological ethics
 - values not always available, and when available (e.g. be honest) not always applicable to specific situation
 - differing values could conflict (e.g. equality, and freedom)
 - Ongoing work: virtue ethics driven decision making

Utilitarian Ethics

 Decision theoretic foundations of machine learning based largely on utilitarianism

"Fit" data well: involves a loss/utility function

 $\ell_{\text{model}}(\theta, D)$: loss i.e. negative utility associated with model parameter θ , and data D

Utilitarian Ethics

 Decision theoretic foundations of machine learning based largely on utilitarianism

 $\ell_{\rm action}(\theta, a)$: loss i.e. negative utility associated

with model parameter θ , and action a

 $\ell_{\text{model}}(\theta, D)$: loss i.e. negative utility associated with model parameter θ , and data D

Example: Finance

Data: past stock prices, **Model:** for predicting future stock price movements

Loss function: error in predicting future stock price movements

Actions: buy/sell x amount of y stock

Loss function: risk-adjusted return of action given stock market movements

Loss functions

- But where do we get these loss functions?
- Typically specified apriori, via domain knowledge
- But what would ethical loss functions look like?
 - 1000s years of moral philosophy provide a qualitative rather than quantitative picture of ethical loss functions
 - e.g. if airline has to decide who to not board due to overbooking, how do they decide if pregnant woman with two kids is not to be bumped over say a college student?
- We address this in two ways:
 - we learn ethical loss functions from data
 - we allow for the fact that there need not be a consensus single ethical loss function, and hence learn multiple ethical loss functions and aggregate them in a social-choice theoretically optimal way

Trolley problems, ethical dilemmas, self-driving cars

- Brakes of self-driving car have failed
- Should it swerve and hit a doctor and a cat?
- Or should it crash into a concrete barrier that will kill all five passengers?

Trolley problems

- Variant of the classical trolley problem (Thomson 1985)
- Different people, especially from different cultures and backgrounds, differ with respect to the optimal ethical action
- Moral Machine: dataset collected by collaborators at MIT
 - website where individuals could provide their optimal ethical action for varying self-driving car trolley dilemmas
 - each dilemma has two alternatives, characterized by 22 features (passengers or pedestrians, legality, differing character types (man/woman/child/cat/...), with varying characteristics (age/gender/...)
 - dataset of responses from 1,303,778 individuals, from multiple countries, each with around 14 responses

Utilitarian Ethics

"Fit" data well

"optimal action" involves a loss function

Data

Machine Learning Model

Decisions

 $\ell_{\rm action}(\theta, a)$: loss i.e. negative utility associated with model parameter θ , and action a

Individual Utility Model

"optimal action" involves a loss function

Varied Individual Utility Models

"optimal action" involves a loss function

Aggregation of Utility Models

•

•

Ethical Al via aggregation of learned utility models

- Task I: Learn individual utility (or loss) models
- Task II: Aggregate individual utility models to create a "consensus" utility model

Learning individual utility models

 Random Utility Models (RUM): Given a set A of actions/ alternatives, a random utility model U is a stochastic process where U(a), for any alternative a in A, denotes the random utility (negative loss) associated with alternative a

• Thurstone-Mosteller (TM) RUM:

 $U(a) \sim \mathcal{N}(\mu_a, \sigma^2)$, where μ_a is mean utility for alternative a

Plackket-Luce (PL) RUM:

 $U(a) \sim \text{Gumbel}(\mu_a, \gamma)$, where μ_a is mean utility for alternative a

• Parameterized by mean utility parameters $\{\mu_a\}_{a\in A}$

Learning a TM RUM

- Data: pairwise comparisons $\{a_i \succ b_i\}_{i=1}^n$
 - e.g. {5 passengers > cat + doctor}
- Linear parameterization:
 - $U(a) \sim \mathcal{N}(\langle \beta, a \rangle, 1/2)$
- $\mathbb{P}_{\beta}(a_i \succ b_i) = \mathbb{P}(U_{\beta}(a_i) > U_{\beta}(b_i))$
- Estimator: $\widehat{\beta} \in \arg\sup_{\beta} \left\{ \prod_{i=1}^{n} \mathbb{P}_{\beta}(a_i \succ b_i) \right\}$

Learning a TM RUM

• Estimator:
$$\widehat{\beta} \in \arg\sup_{\beta} \left\{ \prod_{i=1}^{n} \mathbb{P}_{\beta}(a_i \succ b_i) \right\}$$

need very few comparisons per voter to learn their preferences

Aggregating TM RUMs

- Suppose N individuals give their ethical opinions, and for each of them, we learn a separate TM RUM
- How do we aggregate these RUMs $\{U_{\beta_i}(\cdot)\}_{i=1}^N$
- A reasonable estimator:

•
$$\widehat{\beta}_{AGG} \in \arg\inf_{\beta} KL \left(\frac{1}{N} \sum_{i=1}^{N} U_{\beta_i} || U_{\beta} \right)$$

 Finds a TM RUM that is closest to average utility (giving one vote to each person)

• Theorem:
$$\widehat{\beta}_{AGG} = \frac{1}{N} \sum_{i=1}^{n} \beta_i$$

Ethical Decisions via Aggregate TM RUM

Given alternatives $\{a_1, \ldots, a_m\}$, pick the alternative:

$$a \in \arg \max_{\{a_1, \dots, a_m\}} \mathbb{E} U_{\beta_{AGG}}(a)$$

$$\equiv a \in \arg \max_{\{a_1, \dots, a_m\}} \beta_{AGG}^T a$$

Validating Aggregate TM RUM

- Suppose we could conduct a real-time election: faced with a **fresh** set of alternatives, we ask each one of the millions of the voters, get their preferences, and then aggregate to get a consensus winning action
 - impractical, computationally expensive
 - decision made by aggregate TM RUM mimicked social-choice theoretically optimal aggregation of (large sample of) all the voter preferences

Validating Aggregate TM RUM

• Theorem (Stability): If our system picks action **a** as the most ethical action when presented with a set **A** of alternatives, then it will again pick **a** as the most ethical action when presented with a set **B** of alternatives that is a subset of **A**, if it includes **a**.

 if the system prefers to save a dog over a cat or a mouse, then it should prefer to save a dog over a cat.

Validating Aggregate TM RUM

• Theorem (Swap Efficient): If our system picks action **a** as the most ethical action when presented with a set **A** of alternatives, then if there are two preferences which are identical except for swapped preferences between items **a** and **b**, then more people would have voted for the preference order where **a** is preferred to **b**.

Summary: Ethical Al

- Machine Learning has a utilitarian foundation
 - loss functions (or utilities) for (a) fitting model, (b) making decisions
- We learn per person utilities (loss functions), and aggregate them to form a consensus utility
- When doing so in the context of ethical decisions (for trolley dilemmas for self-driving cars), this results in an automated system that can make ethical decisions that represents the "ethical consensus" of millions of individuals
 - computationally practical, satisfies strong social choice theoretic properties
- In ongoing work, we are developing ethical AI systems built on virtue ethics, and deontological ethics
 - and learning more complex human utility models e.g. for suicidal behaviors