

Artificial Intelligence & Digital Reality Do we need a "CERN for AI"

Prof. Dr.-Ing. Philipp Slusallek

German Research Center for Artificial Intelligence (DFKI)
Research Area: Agents and Simulated Reality
Excellence Cluster Multimodal Computing and Interaction (MMCI)
Intel Visual Computing Institute (IVCI)
Saarland University

Overview

- Background on DFKI
- Digital Reality
- Digital Reality for Autonomous Driving
- Al Research Environment in Germany and EU
- Conclusions

German Research Center for Artificial Intelligence (DFKI)

- Motto
 - "Computer with Eyes, Ears, and Common Sense"
- Overview
 - Largest AI research center worldwide (founded in 1988)
 - Germany's leading research center for innovative SW technologies
 - 5 sites in Germany
 - Saarbrücken, Bremen, Kaiserslautern; Berlin, Osnabrück
 - 18 research areas, 10 competence centers, 7 living labs
 - More than 510 employees (>900 with research assistants)
 - Budget of more than 44 M€ (2017)
 - More than 80 spin-offs

AnyDSL Unified Program Representation

AnyDSL Compiler Framework (Thorin)

Various Backends (via LLVM)

Intelligent Human Simulation, e.g. in Production Environments

Collaborative Robotics and Simulated Reality

Autonomous Driving: Training using Synthetic Sensor Data

IIIIII

Digital Reality: Using Synthetic Data to Train Autonomous Systems

Playing Go – From Scratch

- Paper from Google DeepMind (Nov 2017, in Nature)
 - Given: Rules + Deep-Learning + Simulation
 - Training via Reinforcement-Learning

• But in reality we do not know the (complex) rules!!

Autonomous Driving: The Problem

- Our World is extremely complex
 - Geometry, Appearance, Motion, Weather, Environment, ...
- Systems must make accurate and reliable decisions
 - Especially in *Critical Situations*
 - Increasingly making use of (deep) machine learning
- Learning of critical situations is essentially impossible
 - Too little data even for "normal" situations
 - Critical situations rarely happen in reality per definition!
 - Extremely high-dimensional models

→ Goal: Scalable Learning from *synthetic* input data

Continuous benchmarking & validation ("Virtual Crash-Test")

Autonomous Driving: The Problem

Learning for Long-Tail Distributions

Reality

• Training and Validation in Reality (e.g. Driving)

Difficult, costly, and non-scalable

Digital Reality

• Training and Validation in the Digital Reality

- Arbitrarily scalable (given the right platform)
- But: Where to get the models and the training data from?

Al für Autonomous Driving

- Requirements and Challenges
 - **Learning** of *critical situations*
 - Creating proper models of the real world (via learning)
 - *Generating* the required input data (via models)
 - Covering the required variability of the input data
 - Requirements on the *size, accuracy and robustness* of the data?
 - Benchmarking the development processes
 - *Reproducible and standardized* test scenarios
 - Scalable and fast simulation, rendering, and learning
 - *Open architecture* for integrating different models & simulations
 - Validating the learned behavior for autonomous driving
 - *Calibrating* synthetic data against real data
 - Identifying and adapting insufficient and missing models
 - Setting up a "Virtual TÜV" for autonomous vehicles (systems?)

REACT Project

- BMBF-funded Project at DFKI
 - Autonomous Driving: Modeling, Learning & Simulation
 Environment for Pedestrian Behavior in Critical Situations
- Exploring Key Challenges
 - Motion Models and Motion Synthesis for Pedestrians
 - Modeling and Simulating High-Level Behavior
 - Hybrid Deep Learning for Agent-Based Simulations
 - Automated Creation & Evaluation of Critical Situations
 - High-Performance Deep Learning (w/ AnyDSL)

Digital Reality for Autonomous Driving (DFKI)

Digital Reality for Autonomous Systems

Using PreScan Data (TASS) for Semantic Segmentation

Initial Scenario: Autonomous Breaking System (Euro NCAP)

- Autonomous breaking test conducted by ADAC
 - Significant efforts invested in tests in 2016

Images from: https://www.adac.de/infotestrat/tests/crash-test/notbremsassistent_2016/default.aspx?ComponentId=250194&SourcePageId=31956

Initial Scenario: Autonomous Breaking System (Euro NCAP)

- Insufficient Results in Recent Test by ADAC (2016)
 - Problems: Night, speed, moving legs, only forward looking, ...
 - But even difficult cases were handled by at least some cars
- Important for Pedestrian Protection (30% of deaths)
 - Potentially strong impact with relatively simple setup
 - Easier tests, wider coverage, less false positives, ...

[Nils Tiemann, Ein Beitrag zur Situationsanalyse im vorausschauenden Fußgängerschutz, Diss, Uni Duisburg-Essen, 2012]

Challenges: e.g. Recognition of Subtle Motions

- Long history in motion research (>40 years)
 - E.g. Gunnar Johansson's Point Light Walkers (1974)
 - Significant interdisciplinary research (e.g. psychology)
- Humans can easily discriminate different styles
 - E.g. gender, age, weight, mood, ...
 - Based on minimal information
- Can we teach machines the same?
 - Detect if pedestrian will cross the street
 - Parameterized motion model & style transfer
 - Predictive models & physical limits

Digital Reality: Research Environment

Projects in AI and Application Areas (only ASR)

- Deep Learning
 - High-Performance Deep-Learning on heterogeneous HW, new ExCluster project
 - Large-Scale Deep-Learning Framework (HP-DLF), with FhG-ITWM, TU Dresden
 - Deep-Learning Training Center, at UdS and DFKI
 - Deep-Learning Competence Center, at UdS and DFKI (submitted)
- Computational Sciences
 - TransRegio SFB, TR244 (preliminary approval), jointly with UdS, TU Ilmenau, TU Karlsruhe (KIT)
 - SFB "3D Microstructure Evolution" (first review), jointly with MS, CS, and Math at UdS
 - Learning Sensor Systems (BMBF), jointly with FhG, U. Würzburg, U. Bamberg
 - Understanding peta-byte data sets from SKA using model-based simulation (BMBF proposal)
 - **Computational Sciences**: Need for AI in engineering and natural sciences (e.g. DPG and DGM)
- Autonomous Driving
 - Motion Synthesis for Learning Pedestrian Behavior (BMW/VW, Intel)
 - **Dreams4Cars**, EU project, together with IUI and RIC
 - VDA Lead Initiative "Autonomous Driving" (in all 3 planned projects: AI, V+V, SetLevel4to5)
- Strategic Research Agenda
 - **Excellence Cluster proposal "Digital Reality"**, SL Informatics Campus (final proposal submitted)
 - EU "AI-on-Demand Platform" (to be submitted)
 - EU Flagship proposal "Humane AI" (to be submitted)

OpenDS

- Example for highly visible automotive DFKI platform
 - Open Source driving simulation platform
 - Validated tasks for psychological driver distraction research
 - Internationally widely used in research and industry
 - More than 10k registered users
 - Including: Google, Bosch, Continental, Honda, TomTom, Nuance, ...
 - Including: CMU, Stanford, Berkeley, MIT, TUM, TU-Berlin, ...
 - Also used for driver education (e.g. developing countries)
 - USP: Highly flexible infrastructure for research

DFKI Competence Center Autonomous Driving (CCAD)

- Thematic Research Center at DFKI
 - Cutting across research of several research areas at DFKI
 - Exploiting DFKI-internal synergies
 - Increased visibility in research and industry
 - One-Stop-Shop for external contacts & collaborations
 - Common platform and infrastructure projects
- Addressing Strategic Interest in Autonomous Driving

Next Steps

- Setting up network between industry & academia
 - DFKI established as coordinator with large industry network
- Academia:
 - Short-term validation of the general approach and incr. results
 - Long-term research work on key challenges
 - Partner with focus on one of the partial models
 - Integration and networking between partners
- Industry:
 - Creation of initial models, acquisition of real data, validation
 - Integration into their development processes
- Collaboration Framework
 - Direct and publically funded activities (EU, national, etc.)
 - Open architecture for learning from simulated, synthetic data

National AI Activities

- New German Platform for AI: "Learning Systems"
 - Exchange between research, industry, and society
- New German AI research initiative
 - New government: More money for research (3,5% GDP)
 - "National Masterplan for Al", no details yet
- German-French AI Collaboration
 - Planned at the highest level (Macron/Merkel)
 - Details still being defined
 - Budget of may be as large as 2x 250 M€

Future of Al

- Al as a *fundamental game changer* in many areas
 - Cars, robots, virt. assistants, urban planning, energy mgmt., ...
 - Nat. sciences, data analytics, social, finance, ...
 - Needs scientists and experts from many different fields
- Common approach and challenges
 - Simultaneously learn models & good actions (given models)
 - Requires large-scale learning, simulation, collaboration
- Need for a joint research platform & community
 - We have done this before: Human Genome project & CERN
 - Can we learn from these approaches?

"CERN for Al"

- Mission:
 - Collaborative, scientific effort to accelerate and consolidate the development and uptake of AI for the benefit all humans and our environment
 - Continuously improve our understanding of the world around us and use this information to explore and evaluate better ways to act and interact in this world
 - Provide a transparent, open, and flexible platform supporting a wide range of research capabilities while facilitating transfer and exchange with industry
 - Broadly discuss the policies and consequences of using AI
- Our Vision: "Human^e Al"

Current AI Activities in EU

- EU Flagship on "Human^e AI" (aka. "CERN for AI")
 - "Towards AI Systems that Augment Human Intelligence by Understanding Us and the World Around Us"
 - Enhancing human capabilities instead of replacing them
 - Empowering humans instead of telling them what to do
 - Explainable, transparent, validated, trustworthy systems
 - Include at the core values, ethics, social, and other aspects
 - Organizing the AI community in the EU
 - Focus on fundamental research *with strong impact on economy/society*
 - 10 years, 100 M€/a, starting 2019/2020
- EU Call "Al-on-Demand Platform" (first step)
 - Organizing the AI community in the EU
 - Focus on SW platform for non-experts
 - 3 years, one consortium, 20 M€, starting 2018
 - 2 follow-up projects planned for 2020

Conclusions

- Goal: Ability to Create a "Digital Reality"
 - Machine Learning is the best known method
 - Still insufficient for many (critical) situations
- Learning from Synthetic (and Real) Data
 - Requires learning, modeling, simulation, and validation
- Big Challenges Ahead
 - Many promising partial results but largely islands
 - Requires closer collaboration of industry & academia
 - Need for strategic agenda and investments ("CERN for AI")
- Al a Central Component of Future Systems
 - Fundamental changes coming across domains
 - Need to address issues early on (values, ethics, social, ...)

