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1. Imtroduection

T. Ida

This report constitutes a summary of discussions of the meetings of WG 5 of Fifth

Generation Compuler System Project, which were held in May 19 and 23, 1833,

The importance of clarifying the notion of "higher-order” used in various fields of
mathemalics and computer science is pointed out by K. Hirose. chief investigator of
WG 5. in pursuing the goals of the FGUS project. These goals, when broken down and
presented as a  task of WG 5 take the form of investigating (i) the usage of the
notion of "higher-order® in mathemalical systems. and (ii) the ways that the notion

is applied in the design of programming languages and computer systems,

Although the notion of “higher order” is intuitively clcar Lo many mathematicians
and computer scientists, therc seems to be differences in perceptions, if not wide.
Thercefore we start by defining the meaning of "higher-order” . In section 2, the
general usage of term "higher-order” in mathematics 1s explained and the notion
scoms Lo be fairly well understood among the members of WG 5, al least the usage of
the torm in Lhis report. Then interprelation of the notion of "higher-order” is

given in various theories such as A calculus and the constructive zel. theory.

The notion of ‘higher-order”™ in programming languages is rather cxtensive. Our
attempl here 1s to collect examples from various programming paradigms which are of
prime  importance to FOOS project, Section 3 is the accumulation of such examples
both in logic. functional programming and software specifications. Although the
examples arc not exhaustive, they serve as the illustration in malking the efforts
of understanding, as a whole, the objects of computing systems in general, such as

what we call rather loosely programs. data, objects ete. .

From the beginning of the discussions, some members of WG 5 expressed the hope that
the understanding of logic and functional programming melhodologies will be gained

on the common basis, or altogether, to say the least, and sought to bridge the gap,



1l exist, between Lhe two streams of researches

The article in section 4 1s the first step towards sich a goal. In this section an
attempt 15 mads (o classify the notions pow prevailing among FGCS rescarchers such
as reduction, reselution. unificalion and so on. The explanation is brief as the
fuller exploration of this subjert is under way. It is hoped that the clazsifiea
tion will guide Lhe direclions towards which researches 1n the related fields will

progress .

The notion of “higher-order” in mathematics leads us to proof systems. since the
proof’ systems treat mathomatical (sub- | systems as an chiect of study, Section &
COVers the prosent state of the art in the development of systems whose implementa-
tions are being attompted or are consummated. A discussion on Martin Lof's con
structive set thcory is ineluded in section 6, as it is an attempt to viev notions
of mathematics and computer science such as set . proof, program and  problem in a

unificd way.

In section 7 we descrile  the Incorporation of the notion of “highcr -order” in
combinatory systems. lHow the notion of “higher-order” in programming  languages is
transformed to ‘higher-order in  these computational systems js described. In
section B an approach is described to extend term rewriting systems to the typed

ByslLems .

Finally, unification js briefly discussed from the view point “higher-order”

Topics on unification in general will be treated in a separate reporl.



2. Netion of higher order

Susumu HAYASHI

Introduction

The notion of “higher order" is very popular in modern
mathematics, although its explicit introduction inte mathematics
is not  very new. Various higher-crder formal systems are
precisely defined in the area of logic, but it seems that there
is no general delinition of the notion. Hence, it may be
worthwhile and necessary to clarify the notion from the point of
view of programming languages, because higher-order notions will
play importants rale both theoretically and practically, not only
in mathematics but programming languages in the future. As the
actual aspects of higher-order notions in  certain programming
languages will be discussed extensively in the following
sections, we will restrict ourselves here a general discussion on

the subiject,

Higher-order notions in mathematics

At the base level, predicates describe properties of objects
in the unliverse of discourse, and functions describe mappings of
cbhjects to objects. Higher-vrder predicates, then describe
properties of such procdicates and functions, and higher-order
functions describes mappings of such predicates and functions to
cbjects or functions, or other higher-order objects. The effect
of the intreduction of higher-order concept is to elevate our
position in the universe of discourse in the upward direction,

and we may continue this process of clevation indefinetely. To



clarify our point of view, let us explain the terminoclogy of a

one-step elevation of order. The forming of power set of a set ic

a typical example of a cne-step elevation of order., By iteration

of this onc-step elevation we arrive at such types as
LA

Pn{AJ=P.*.P{A]. Simiiarly, we arrive at such types as e By
iteration of the cne-step elevation forming Bh. In tie usual
formulaticn of higher-order theory using arbitrary functions and
arbitrary sets, the type of resulting higher order objects must
be distinguished from the type of obijects of the lower orders,
becavuse the higher lovels have many more elements, However, it is
sometimes possible to "identify" higher typcs with lower Lypes,
provided the meaning of the notion of "function" is not the samc
A% that of current mathematics., For cxample, in A-calculus all
objects may be thought as functions at the samc level. In this
case, the one step clevation of order does net result in a new
type, Dbecause the notion of funcLion in A=caleulus is  different
from the notien of functien in currcnt mathematics. Scott's
mathematical models of A=calculus exist in  the category of
continuous lattices and continuous functions, so functions in the
models  are restricted to  be continuous and they can be
reflexivc. Dana Seott stresses "type-free" systems are special
kinds at typed systems and sigrificance of types {cf,
Scott[5,6]). A model of A-caleculus is a typed system with
morphisms i and 3 between types D and D => D such that

=

A .
DD => D), dJei= id (ctf. Koymans([4]).
1
Each object of N, say a, represents a function j{a), on the other

hand, each function of D -> D, say f, can be represented by an



object 1(f}. 1In this way, the elements of D can be regarded as
botn "ebjects" and "functions", and D looks like “type-free".
iflowaver, "type-free" systems should be distinguished from the
other typed systems as a special kxind of typed systems. In this
respect, a system of functicons in which a “"function" is

applicable to itsclf will be said self-applicative. In a self-

applicable system of functions, wc may identify higher-order
objects with some lower-order objects. So there is no rigid
distinction between "functions" and "objects" in such a system.
On  the other hand, systems of functions in which higher-order

objects must be distinguished from lowar-crder objects will oo

said wcl]-tgged.

Intensional versus extensional

lhe  introduction of higher-order leads to the problem of
"intensional wvs. extensional”. In this subsection, we will
discuss this problem. Lot o be a type of "concreote® objects such
as integers, finite strings of characters etc.. Then it is clear
what means “"two objects a and b of type o are equal”. Assume that
f and g be functicns from o to o , we say f and g are

cxbtensionally egual, notation f= iff flx)=g{x) holds feor

extq'
every object x of typc o. We call a function F of type (a->a)->g

extensional iff F([)=F(g} for every f, g such that f= {This

ext¥"
is a definition of extensionality for a special type (g->a)->0 ,
and cxtensionality of functions for other types can be defined
similarly.) 1In current mathematics based on set theory, all

functions are assumed to be extensional, in another word, a

“funetion” is identified with its "extension" {graph of the



funectien). But, in the programming languages, a "function® is
often identified with ‘"intension" lalgorithm or content of
pragram or program itself). E.g., we might say "a function f is
extensionally egqual to a function g, but f is guicker than g".
Let us expiain extensicnality in programming languages by some
examples. MAPCAR of LTSP is extensional with respect to  its
functional argument, becausc it uses only somc pairs of input and
output  of the functional argument in computation. On the other
hand, 1if the function EQUAL of LISE takes 1into account an
eguality between funetions, then it js intensional, because
equality implied by BJUAL can only be checked by examining . he
definition {intension) of functions. Similarly, Church's
combinator & {cf., Barentregt |1]) is intensional. In LISP, a
functions is an algorithm represcnted by a code {an S-expression)
and such a codc is available to users at any level, so LISP is a
typical intensional language. ©On the other nand, ML of Edinburgh
LCT  is an extensional language., (0OF Course, Yyou can imagine a
version of MM in which intensional cguailty on higher types is
availabe, then ML turns to he non-extensional. 1t seems that
there is no clear attitude +to the problem in Gorden et. al [2].)
Intensional functionals seem to be scldom used in actual
programs. Extensiaonal systems will be much hetter than
intensional systems in some mathematical aspects. (E.g., it will
provide for an algcbra of funcrions (programs}. Bohm [2] gives
an interesting foundation of FP by using a systom of extensional
combinatory algebra., In his work, extensionality (including n-
rule} plays an important role to simplify the axioms of the

system  and proofs of egquivalences of programs. ) However, it may



not be the right way to neglect intensicnal aspects of functions
completely  in gencral purpose programming languages. A solution
might be an intensional language with a subsct which is purely

extensicnal.

Higher-order notions in programming languages

Contrary to current mathematics, “"functions" 1in the usual
programmong languages are restricted to be “computable" or
"definable", so that they may be coded by appropriate data of
lower types. Hence distinction of higher types from lower types
may not be desirable. A Lypical example is LISP. In LISP,
“functions" arc partial recursive functions on S-expressions,
hence they can be coded by S-expressions as  is well known.
Generally speaking, self-application is neot unnatural in
programming languages. This is contrary to current mathematics.
However, thils does not mean that distinetions of higher types and
lower types are mcaningless in  programming languages. Typing

enables wus to vclassify objects in the universe of discourse.

{S8ome designers  and users of typed languages stress that type
asslgnment is useful for debugging.) and, it is sometimes useful
to forget that a "function" Lls given as intension (definition).
By supposing a "function" as an "abstract" ohject, we can suppose
a "function" in pregramming languages as an actual function in
mathematics, that is, it may be thought as extension. And, by
such an abstraction, we can grasp "mathematical" contents of an
algorithm. Then abstract types of “"functiens" mast be
distinguished from types of "concrete" lower objects such as

integers, (finite) strings of concrete cbijects ete.. In this



respect too, "well-typed" pragramming languages are meaningful, a
typical cxample of well-typed programming language is ML of
Edinburgh LCF;

5o even in programming languages, there are f(at least) tweo
kinds of higher-order systems as in mathematics, although the
portions of these two kinds of higher-order structure in the
yeneral higher-order structure are very different betwaen
programming languages and mathematiecs. For including higher-erder
notions in  future programming languages, it will he useful +o
note the distinctions between "well-typed” systems and "self-

applicative" systems,
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3. Progrevming experiences vith higher-order pation

lere, ue want Lo eellect exarmples of hirher-order notiocn fres various
progrevning poredigms:  legio progremiing, furclional progrosmiing, and
softwere specification,

2.1 Legic presranning languases
Toshizskl “urokave

In theory, the univeraze of logic progreoning is the universe of terms, i.e,
Herbrand universe, However, this comes fron the loginel interpretztion of
logic progremming.,

In practice, i.e. from the procedurcl interpretation of logie progresning,
e handle varisblez, functions, and progrems (l.e. logienl formwlal, whien
are not included in the nerrew scnoo of the Yerbrend universe.

So, in pencrel, "hipher-order® rotioms i logie progrepains ©all inta the
following catezories: checling, the varisble if it is not instantieted,
herdling progrems ac dave, additonsdeletion of programs, using the sgst of
terms teo interfacc logiezal formule and funatien, end applying function to
dzta,.

In thc brozder sense of "hicher-order®, we can include the contrel of tre
logie rropruning, and the explanztion ef how the systen exeauber GLhe prosesi.
LOCGLISE includes this ldind of "hisher-order® fPacilitics.

Ve will deseribe the Ysape of "higher-order" robtion in thrsee legle pregremniins
lenzsuines: HC=12 PROLOEC, LECLISE, and pPaAPLOG,

DIC-10 PROLOY provides the Lypieal featurcs of the se-called PROLOG. LOCLIZD
and PANLOC cast zore insightz on other (and erperinental} features te
incorperate the "hifher-order" facilities, It iz not, hewever, our intenlion
te Jimit the "hifher-order" notions in the poirts listed beles.,

RPEC-10 PPOLOC [Howen 1)
DEC=10 PROLOC hos gainly twoe kinds of higher erder facililies: handling
Profracs a3 ¢ata and handling set of tepns.

a) checking the variable if it iz noL instantiated

0 DREC-10 PROLOG  ean chieck the variable if it is alrezdy instantiated or not.
The built-in prediczte iz 'vapt,

Exapple. var(d) =-=> succeas if ¥ is not instantiated, fail otherwise,
var{al --=3» [fail.
ver{13) ——=> fail.

b} hardling progrems as data
o DEC-10 PROLOC can convert the clause to the list, and alsc the list to the
clavge. The buill-in procedure (a&loo palled 24 evaluable predicate} iz t=,.'.
Dete that this is the bi-dircctional conversion.
Frample. produet(0,!,1-1) =.. [produet,0,I,N=1]
H=1 =,. [=,}1,1]
product =.. [product ]

o DEC-10 PROLOG can execute the body of the clause using the built-in procedure,



'oall'. The body nust be in the farm of the torno,
Trample. oczll(zppend([z,b], [e,d], ¥))

o DEC=10 PROLOG has the databese of proprems (i.e. clauses). There are
following procecures to sccess and to podily the datzbose:

clause -- et the clausc having the desiprzted head,
asserl -- add the clause.
aszserts -~ add the clawse &t top.

Aacsertz = zdd the clauze 2t botto-.
retract == delete the olausc.
sbolish -~ delete Lhe clausces having the principal functor with the arities.
o) hendling set of teros
DREC=10 PROLOGC has procedures to pake = set of terms.
o scbof (i, P,5) =- unify 3 with the set of all instancez of ¥ such theb P is
provable, where thzt set is non-cmpty. & will be the list
with the elenentz ordered,

o bapof(i,P,3) -- seme 23 aetol except that the instances are not erdered and
the zane instancey are not eliminsted,

LOCLIZP [Rebinson 80, B1a, Bb, 02z, &2b)

LLCLISP is a lanpusge inplemented on top of Lisp by J. Robinson and £, Sibert.

a! LOGLISP eran handle the set, which interfacce the logic part and the Lisp
pert of the srstern.

(ALL ¥ €1 ... Cn) == returns a list of X which satisfy C1 ... Cn.
(ALY K X 01 .., Ca) == poturns £ instances of X.
{THC ¥ C1 ... Cn} == returns thc sole instance of ¥.

b) LOCLISP hes a deduction comtrol nechanism.

o Controlling the deduction tree size through its depth and length,

¢ Selection between a Prolog-like LUSH resolution mocde gnd the heuristin search
mode

e) LOGLIEP hes & deduction explaining faeility.

(E¥PLAIV I'M ... PFk) -~ cxplaing the Ist, ..., Nkth ansveprs,

PARLOG [Clark 83]

PARLOG is an experinental languepge now underway at Inperial College, Univeraity
of London.

a) PARLOG has the follewing main features:

Including both the and-parallel and the or-parallel. (They eczll it don't
care non-deternminism and don't know non-determinism, respectively.)

The relation declared ss and-parallel (default czse) are evecuted
conourrantly. The information are hended using the input-cutput mode
declaration and the “-praducer annotation.



Frample. relation of%?, )
elw,z) = (plwyadagle,yld, (r{y™Yesly)).

The relation declared zz or-perzllel enables thke concurrent scerch whieh is
used s5 database guery.

PARLOC includes functions. The set of PASLOG interfaces between functional
and relationzl executian,

b} PARLOG has four types of the top level erecution:

¢ drelationsl expressinnb
This is almesi same as DEC-10 PROLOC. There will be no output, however,
unless the ouhput is evplieitly progrzamed in the <relational expression,

<term® : <relationsl expression’
Thiz is alwmost sampe as DEC-10 PROLOG. Finel out put is the walue of the
<tern> which satisfies the <relational expression>,

<term>»
Thiz is the furctional execution of the <term>.

{ <term> : <sequential expressicn> |
This will return the seb of <terwd which satisfies bre soquential exprezsion.

ample. f4x,y>: parent(x) & y={z : child-af(®x, z) }
where *x denctes the globzl varisble,

o} PARLOC has 2lso = speecisl enecution feature, if.c. the lozv evaluztion.

Example. :printlist(primesI{)]
where ! i3 the znnotation for the lazy evaluation,

[ T :L &S5E 11
where T is & teru, L is a literzll and SE in a seguential
exprossion. Tt means each tinc the set element is accessed,
a term is= selected which satisfies L and SE,

d) As for the higher order facilities, except fer the set facilities, PARLOD
haz the function application and the adding cnd deleting the clause,
o function applicatiocn -- using ¢
Fxample. function £ maplist{?, 7)
f_mapliat(i, [1) = [
Poaplist(f, [uix]) = [fe(u)!f_maplistif,x)]
0 zdding or deleting the clause to the module.
addel =~ add clause
delaol -- deleite olauvse
Using these progedures, the user nust explicitly denote the module
where the clauses belong,

Fxample. : addreln{Personnel, 'salary') &
addoi{/salary{Enith, 85600\ &
addcl{/salary(Jones,9800)0%) &
addel(/salary{Brown, 101500%) &
addel{/salary{Green, 12010)% ),

: delel{'employes', 20,
: delel{/employes(D],Jonesi\).



REFFREINCES

[Bowen 81] Bowen, D,L. "®DECsystem-10 PROLOG USER'S HAMTALY, Version 3.43,
Edinburgh Univ, (Dee. 1981)

[Robinsen 80] Robinson, J. and Sibert, F.E. ‘“Logie Progremnming in Lisp",
2yrecuze Univ., (Dee, 1980)

[Fobinzon 81a] Robinson, J. and Sibert, E.L. "LOCLISP Implenentation Motes™,
Syracuse Univ., 22, (Dec. 1881)

[Rebinson 81b] Rebinzon, J.A., E.F. fZibert, "THC LOGLISP USER'S HANUAL™,
Syrecuse University, (Dec, 1981)

[Robinson 2] Robinsen, J.A. and Sibert, C.E. "LOGLISP: HOTIVATION, DESIGH
AND THPLEMNEDTETION™ in Clark,E.L.and 3.4.Tarrplund eds, ,Logie
progranming, Academic press, 299-3131 (1982)

[Rebinson 62b] Robinson, J.4. =and Sibert, E.E. M"LOGLISP: an alternative
to PROLOG" in Hayes, J.F., lMichie, D, and Pas, Y-H, (eds.) ™iachine
Intelligence 10", 359-419, Ellis Horwood, (1682)

(Clark 23] Clark, ¥.L. and Cregory, 5. "PAPLOG: A PARALLEL LOCIC PROGRAITIING
LAIGUAGE™, HE DAC 39, (Har. 1902)



3.2 Functional prograuacing

T. Ida

We will describe the usage of the notion of higher-order in functional programming
languages FP and KN ‘and its predecessor SAZLY. The cholce of the two languages
reflects our rccognition that there exist two distinel views on  higher-order
functions embedded in  the design philosophy  of the twa functional programming

languages. In this section “higher-order” is exclusively applied to functions.

FP' is a functional programming language advocated by J. Backus(1). The universe of
FP may be wviewed as conststing of two dislinct universes of O (f'or object) and 7
(for function). F 15 a set of functiens which operate on objects and deliver an
object as a result of application of a function to an object. FP is thus a typed
system in thal its univeorse consiste of Lwo separate (sub- universes 0 and T,

0 is inductively defined as [ollows:

r e @ 1f 1 15 an atom

o 0 (<> is called nil)

L & 0 % is called bottom:

I X7 L.y X2 € B if 1, = 8 for i=1.2.....n
<. ..y > 1s called a sequence.
< 2An fSrp. 12, .., I, can  be regarded as a sequence forming operator. The

universe 0 is closed with respect to the operator <,

¥ 15 a set of functions f,. f>., ... fn+ ... Corresponding to the sequence forming
operator, a set of operaters called PFD's (Programming Forming Operator’ are
introduced. They are used to combine functions and to create new functions. For
example, "+ ", "), " —~ | " are FFU's. We can construct a self-applicative
universe using PFO's frem primitive (or may be called atomic) functions. Similar to
@, T is inductively defined as follows:

Jf e T if [ is a primitive function.



fi- fs ¢ F lcomposition, for fi, fo =

[fi.f2. . . fn = T lconstruction) for f1, fo, ... fu & F

fy o~ fri o fad e F fconditional ) for fy, fa, fi £ T

and =0 on.

F and O are connocted via apply (00, fra denotes the result of applying f to I,
where f <= . x ¢ 0, hoenee fix o« 0. Backus's intention here is to construct

FP-algebra (F;, #) whore §3 is a set of primitive funclions and ® 15 a set of

FFQ's.

FFf0's can also be regarded as a function taking functions as arguments in the
following way,
Example:
Ay fio - Iz =2 <comp, fi1. f2>
By xy s xpr =2 apud <y o oapnd! 2dya, milee

" on Lhe lefl hand side of (A) 1s a notation when viewed as an operator in
FP-algcbra and “comp” in the right hand side is a notation viewed as a functional.
Similar analogy can be observed in the case of universe © (see (B)). "+ " may not
be:  considered as a higher-order function in FP-algebra, hut the corresponding
“comp” in the righl hand side of (A) can be regarded as a higher-order function in

a systom which defines operational semantics  (Backus called this system FTP.

Similar arguments hold for condilional, construction and so on.

“huy® (binary to unary) is an exception teo the above explanation. “hu” is a FFD
which converts a binary function to a upary funclion by supplying a constant. For
example, addl=ibu.plus. 1. IF we adhere Lo the argument that FP should be consid-
ered as a typed system in which PFO should take only functions as arguments, “bu”
should be defined as taking two functions as argumecnts, i.e. (bu, f, g) where f is

a binary function and ¢ is a constant function, such as 1 in (bi.plus.1).

From the view point of programming. we percelve the following hierarchy;
object --> function --> PFO.

Hence, in this sense PO is higher-order.



KRC (Kent Recursive Calculator)

KRG is a functional programming language designed by D, Turner (3. KRC is a
type free system and is based on a combinalory system (SASLi2; in particular’.
Therefore, funclions are also objects, Let © be the unrverse of KRC and 6, be the

subset of O, consisting of atomic ebjects.

Fellowing illustrates the notion of higher-order in this type-free system:
Examples f: Oy -» O, for function f; lunary .,
and higher-order functions f2 and f:
Jeo Ty 20y 0 -2y, or
Fat 10y =»00 ; > 70y >0y
el
and fr. fa, f3 ¢ (.
For the function of arity n. we have
feo (0= (U= [ .. [On =007 .7
Curried functions such as
fai [0 — 1. [ 0?1 where x ¢ @ and fyr € O can be inkroduced
naturally.
A Lype-free system such as KRC can cxpress certain algorithms more naturally  than
FF. It can be argued. however. that the algebraic struclure of 6 would beocome more

complex than thal of FP.

The following example illustrates the use of higher-order functions in KRC:
intersection (2] = 1

intersection (r:y) = fillter (mewher 1) {infersection Tl

“intersection” is a funclion to take an intersection of lists,

e.&. intersection| (1.2], /5,2],(2.3,4) 1'=[2) . Here "filter” is a higher-order
function which takes as arguments a predicate and a lisl. “member r° is a Curried
funclion which tests whether 1 is in the given list. This construction is not

possible in original FP since it cannot handle a Curried function such as “member



T above, In P, a higher-order function “filler” cannol naturally be defined at
FP-level . "filter” should either be provided as a primitive PFO or be defined in
FFP system {1i. The limitations of FF may be remedied by Bohm's combinatory based
systom 4], Anothor  approach  1s reported 1n (5] to improve the power of FP by a

modest extension.

Comparison of the two systems

It would be inleresling to view the two systems in terms of the combinatory system.
In KRC, conditional expression "if p then g else r” usuzlly given in Lhe Form of
guard in the cyuation) may be translated into S (S (B cond p) g) r, where 8 and B
are combinators, Functions cond, p. g, and r are Curried.

In FP. the form equivalent to the above is p . ) r, This form is translated into
FFP form <concd. p. q. r>. 1In FP’, p, q, r cannot bc variables. That is, functions
should be specified al the time of definition and furlhermore “cond” requires full

arguments at the time ol definition.
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3.3 Software Specification

Kokichi Futatsugi

Higher order concepts in specification/programming would be summarized
a2 follows,

Meta Function(MF): the ability to manipulate specifications/programs
texts themselves as data. LISP's S=gxpression is the most notable
vehicle of this function.

Higher Order Operators{HOO): the feasibility of higher order
functions/predicetes in writing specifications/programs. The systems
based on tke ecombinatory systems (e.e. FP, KFC, ete., see 3.2) are
considered to be most promising in this respect,

Hodularizatiﬂnf?arameterization{HﬁF}: the ability teo give
specifications/programs the "good" structures. The "good"™ structures
should imply the "open-endedness" [Abrial80] (for defining new entity)
of the resulting specifications/programs, Object Orientedness in
Smalltalk and Frame Structures in AL languzges are typical as vehicles
of M/P. M/P would be broken down to the following two features
[Abrialfc].

Generic Definition(GD), whereby certain statements can be
parameterized in such a way that the same "soheman may subsequently be
instantiated in a variety of different contexts,

Abstraet Structures/Named Classes(AS/NC), which permit the definition
of particular concepts to bhe "encapsulated™ so that the correspending
properties may be applied in constructing other entities,

In the following we briefly survey how the higher order concepts have
been treated in formal Specification languages with respect to the above
mentioned points., The specificaticn languzges considered are, Z, Clear,
and HISPF. The survey will be done mainly around the MJF (GD and AS/NC)
for these are cruecial Froperiies in software specification.

I. 2 [Abrial T9,80]
£ is a formal specificstion languege based on set theory.

I-1. MF in 2

There is no Meta Function in 2. 7 ias not running on machines and the
designers of Z do not seem to be aware of the necessity of MF,

I=2. HOO in 2

Z is based on zet theory and functions/relations(predicates) are all
considered as sets which satisfies certain conditions, In Z, one can
define power sets as well as products and sums (unions) of sets. As a
result, one can freely uses the higher order functions and relations in
Z.



I-3. GD and AS/NC in 2

One of the main design aims of I is to provide "open-ended formal
framework for defining new theories". For this purpose Z provides two
constructs which correspond to GD and AS/NC, As a result one can easily
achieve M/P in Z.

[Examples]
{a) Generic Definition:
The set union operator op(l) is defined genericszlly as follows in 7.

op{U}[X] = fune 51,52 -> 53 for
521,52,53 & subset(X)
/% op{U) is a2 function from 51 x 52 to 53
where 51,52,53 are subsets of of X #/
then
23 = set x for x ; X where
xe 85 or x e 52
/% x is a element of 51 or S2 %/
end
end:

This definition is generic beczuse the X in the definition standa [or
any set. X can be associated to any kind of set afterwards.

(b) Abstract Structures/MNamed Classes:

In I, to define "moneid”, one can firstly define a class "semi-group®, and
then define "monoid™ as a subclass of the "semi-group”.

semi=group [8] = class
oper : 3 x 3 =» §
where
oper o (cper prod ident[S])
= oper o (ident[2] pred oper)
/* oper is associative #/
end;

monoid [5] = subclass semi-group [8] olass

u: s

where
oper 0 (const(S8,u) & ident[S]) = ident[S$]:
oper ¢ (ident[S] & const(S,u)) = ident[S]

/® u iz the unit of monoid #/
end;

Note also that the definitionz of "semi-group" and "monoid" themselves
be generic with respect to set 5.

--E‘--—



1I. Clear [Burstall 77,80,81)

Clear is & formal specification languapge based on algebraic
specification techniques and its smemantics has been defined using

category theory,
IT1-1. MF in Clear
There seems tc be no Meta Function in Clear,
II-2. HOD in Clear
One can not use the Higher Order Operators in Clear. All operators in
Clear are restricted te first order. That is, the operator in Clear is
declared zs,
appendText: Text, File =» File
and the declaration like,
mapler: List, (Element =» Element) -> List
iz not permitted,
II=-3. GD znd AS/NC in Clear

In Clear, GD and AS/NC are supported by the parameterized theories{theory
procedures) and enrichment operations respectively.

[Examples]
fa) GD with Parsmeterized Theories:

The generic (parameterized) theory which represents fsorting® on generzl
partisl ordered set (poset) would be written as follows in Clear.

procedure Sorting(P: Poset) = ...
"Sorting® is defired to be theory proecedure, and s0 one can easily
define "sorting™ on any kind of "poset™ by specifying a specific "poset®
as fellows.

Sorting(Natleq[clement is nat, <= is leg])
{(b) AS/NC with Enrichment:
In Clear cluss-subelaszs relation could be realized by enriching a theory
{class) and geting a more detailed another theory (subelass). For

example, the theory Rat (rationzl number) could be defined by enriching
the thecry Interger as follows,

—— 3 -



const hat = /% Rat is 2 eonstant theory,
net a theory procedure #/
Integer enriched by
sorts rat
epns 0,1: rat
=8/ rat,rat =» rat
rational: int =3 rat

enden

III. HISF [Futatsugi 80,82&,82b]

HISP is a specification language/system based on algebraic specification
techniques and term rewriting systems,

III-1. MF in HISP

HISF system provide zn operation for transferming the specification
texts in EISP into the HISP's basic dzta structures (i.e. terms). HISP
has MF in this respect.

III-2. HOO in HISP

One could not use the Higher Order Operators in HISP, Presently,
however, higher order cperators have been implemented inte HISP and the
declaration like,

mapCar: List, (Element =-> Element) => Lisat
is now permitted in EISF.
II1-3. GD and AS/NC in HISF
In HISP, any software system are embodied as hierarchical structures of
modules, and these structures are constructed using predefined module
constructing operationz. GD and AS/NC are supported by the HISF's
substitution and refinement operations respectively,
[Examples]
{a) GD with Substitution Operation:
HISP provides the substitution operation for replacing base-module(s) of
any module with another module{s). And =0, all HISP'a modules are

generic in this sense, For example, "sorting® thecry in II=3 ean be
written as follows in HISP.

PR | —



POSET ::

sort Element

op - %=_: Element,Element -3 Bool

end

HATLEQ ::

sort Nat

op _leq_ : Nat,Nat =» Boal

end

SORTING ::
create
sub  POSET

/* POSET is cne of the base modules of SOHTING LT

=@

end

SOFTINGonNAT ::

SORTING (® POSET <~ NATLEQ: Element ¢- Nat; <= <= leg *®)

PR

®)} is a HISP's substitution construct %/

(b} AS/NC with Fefinement Operation:

In HISP, elass-subclass relation could be realized by refinement

cperation in HISP,

HISP'a refinement operation is almost the same &g

Clear's enrichment operation. For example, the rational number could be
defined as a subclass of integer using HISP's refinement cperation as

follows (eof, II=3),

RAT ::
refine INT/*INTeger®/s
aort Hat
op 0,1: Rat
~+_! Rat,Fat ->» Rat
_=~_: Rat,Pat -» Rat
_® : Hat,Rat => Rat
/_: Rat,Rat => Rat
raticnal: Int =-> Rat

end

-1-5—-
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4. Reduction and Resolution
Yoshihito TOYAMA

We will consider substitution operations appearing in wvarious
computation nmodels. It is shown that, froem the viewpoint of the
Substitution cperations, computation models are classified into four
types: Foarmal Language type, Data BDase type, Reduction type, and
Resolution type.

First, we explain our computation model. The computation model is
defined by C=<0,R», where O is the set of objects and R is the set of
rewriting rules (i.e., computation rules ). In this wodel, the
computation is defined by a binary relation —» on the set of objects.
This relation is determined by using the rewriting rule set R and
Substituticns, Fer example, we consider a reduction system having the
following rule,

f[x]P‘iffzero[x],l,x*f{x-l}!.

Let £{3)+]1 be a object, Then we first take an instance of the
rule, £{3) if(zero(3),1,3*£(3)), by using the substitution [x:=3].
Next, we replace the term £(3) occurring in the object £(3)+1 by the
right hand side of the rule instance. Thus, we can get a computation,

E(3)+1 =» if(zero(3),1,3%£({3-1))+1.
Continuing the above pProcess, we finally get the following
computation:
E(3)+1 = if(zero(3),1,3%£(3-1))+1 & 641 — 7,
where =9 is the transitive reflexive closure of —». The above
example shows that, in reduction Systems, the computation = isg
defined by the following way. Let M be an abject term and P be a
subterm of M, denoted by ME...P... where £ is syntactical equality, If
there are a rule APB in R, and a substitutionf such that A#EP, then the
occurrence P in M, i.e., Af, iz replaced by Bf. Thus, we ebtain the
fellowing computation from M to N:

ME...Af... =% N=...BH... .



Hote that the substitution 1is applied to only the rule AP B,

On the other hand, in resolution systems, substitutions usually
appear in both rules and objects, A resolution system, such as
Programming Loglc system, has rules denoted by AP Bl,B2,...,Bn. Let
clause M=Ml,s.. Mi, ... ,Mm be an object in this system. If there are
substitution and & , such that A5 =Mif , then Mif occurring in M
=M15 ,...,Miéf ,...,Hm§' can be replaced by Bl0 ,...,Bnf, and we
ootain the following ¢computation:

MEML, ... Mi, ... tim = nEdB,...,B18,...,Bnd, ..., M00 .

Note that, in this case, substitutions appear also in the object. Thus,

W2 Can get the next table:

Type ] Rule Object
-&Eductiun ) X
Resolution 8] 9]

Substitution ,

Wext, we consider the rest of combinatien, i.e.,

Ty e Rule Object
? Z s
’ A 9
Substitution

First, we give an example for the case <X 0, that is,
Rule: friend(YAMADA)I" OGAWA,
friend (OGAWA) L HAYASHI,
Object: friend(friend(x)).
This object means the question who is connected to someone by using
the friendship relation twice., By using the substitution [%:=YAMADA]
for tne object and applying the above rules, we get the following

computation:



friend(friend(x)) —» HAYASHI.

In data base systems, we usually use only relations between concrete
abjects to answer queries, hence, the above computation may be said
Data Base type.

Finally, we consider the pair <X ,% >, This situation appears in
Formal Language Theory. For example, context free language {a' b '} is
defined by:

Rule: st ah,
5t aSb,
Object: 5.
Then, we cbtain a computation S—a f without substitutions.

From the above discussion, we abtain the following table

representing four computation models, Here, the Data Structure column

shows from what each object is constructed,



Type Rule Object Research Area Data Structure
Formal Class of Languages,
Language Automata, String
X, X
Complexity of
computation.
Data Base Decomposition of
a relation, Table
P o
Consistency.
Reduction Reduction process,
- Semantics, Tree
# x
Theory of
computation.
Resolution Logic, N
Proof method. Set
o) o

Substitution

Acknowledgment. I wish to thank Dr. 5. HAYASHI who suggested us to

call Data Base type for the computation

CX L0050,

model defined by the pair




5. Proof Systems for Logics with Types

Masabhiko Sawo

Summary

We have voliccled here a small bibliography that will, to some extent, cover existing
implementations of proof systems for logics with some lype slructures,

Martin-Lof"s Type Theory
See Hagiva's memo fur more information on Martin-L&s theory, We note that lype

structures  are  very  similar among  Martin-Léf"s  system, Edinburgh LCF (PPA)  and

AUTOMATH although underlying logics are different,

l11 Kent Petersson: A Programming System for Tupe Theorv, LPM Memao 21, March 1, 1982,
Laboratory for Programming Methodology, University of Goteberg Chalmers University
of Technology.

[2]  Martun L&t, P 4n Inrisionisiic Theary af Types: Predicative Pari, Logic Colloquium 73,
North-Holland, 1975.

3] Martin L&f, P.: Constructive Mathematics and Comyputter Programming, Logic, Mcthodology
and Philosophy of Science VI, Studies in Logic and the Foundations of Mathematics 104,
Naorth-Halland, 1982,

[4]  Nordsiréim, B.: Programming in Constructive Ser Theory: Some Examples, Proceedings of the
1981 Conference on Functional Programming Languages and Computer Architecture,
L9381,

Edinburgh LCF
In Edinburgh 1.CF, the polymorphically 1vped programeming language ML 15 used as the
meta language [or the ahiect langusge PPy, The Iype structures belween ML and PPA is very
similar and Constable [8] claims thal it is possible 10 design a language which is at the same
lime its own meta language.
I51  Gordon, M., Milner, R and Wadsworlh, C.- Edinhurgh LCF, Lecl. Notes in Comp. Sci,
78, Bpringer 1978,

PL/CV2

PL/CV1 is a proof checking system hased on a natural deduction stvle first order classical
logic. However. Constable has an intention of exlending it to a system with types like that of
Martin-L&t"s and LOF.

[6] Constable. R., Johnson, S.. Eichenlamb, C.: Introduction to (he PL/CV2 Programming

Logic, Lect. Notes in Comp. Sci. 135, Springer 1982,

[Tl  Constable, R.: Iwrensional Analvsis of Functions and Types, Dept, of Computer Science,

Univ. of Edinburgh 1982

18] Constable R.: Formalizing Metamathemarics in Tupe Theory, Dept of Computer Science.
Univ. of Edinburgh 1942,



ALUTOMATH

AUTOMATH is a proof checking system that has successfully verified a text book on a
theory of real numbers.

(9]  de Bruin, J.Goo The mathemarical language AUTOMATH, its usage and some of its exten-
stoms, Symposium on Automated Demonstration, Lect. Notes in Math, 125, Springer
1970, 29-61.

(100 Jutting, L.5.: Checking Landau’s "Grundlagen” in the AUTOMATH System, Math. Cen-
tre Tracls 83, Amslerdam (979,

Feferman's System, Hayashi's System and Sato's System

These systems all treat Lisp's domain of symbolic expressions or its variants. The choice
of the domain is based on the fact thar encoding of algorithms and preofs can be done guite
naturaily into their respective domains.

[11] Feferman, S.: fnductively presented sysiem and formalization of meta-mathematics, Logic Col-
loguinm "B, North=Iolland, 1982

[12] Hayashi, 5.: Extracting Lisp programs from consiructive proofs: A formal theary of constructive
mathematics based on Lisp, Publ. RIMS, Kyvoto Univ., 19 (1983, 16%-191,

[13) Sato, M.: Theory of Symbolic Expressions, I, Theorstical Computer Science, 22 (1983), 19-
35
FOL and EKL

FOL is a first order svstem, but its reflection mechanism is powerful enough to make the
system a kind of meta-circular one. EKL is extended to finite-order predicatc logic with typed
A-calcufus.

[14] Weyhrauch, R.: Prolcgomena 1o a theory of mechanized formal reasoning, Artificial Intelli-
genee, 13, 1980, 133-170,

[15] Ketanen, I and Weening, 5.; EKL — An Inicractive Proof Checker, User's Reference
Munual, Depl of Computer Science, Stanford University 1982,

Meta reasoning systems
These systems can reason aboul themselves,

[16] Baoyer, R.S. and Moore. 1.5, Metfunciions: proving them correct and using them efficiently as
new progf procedures, The correctness problem in computer science, Academic Press, 1981,

[17] Bowen, K. A and Kowalski, R.A.. Amalzamaring Language and Metalanguage in Logic Pro-
gramming, Logic Programming, Academic Press, 1982,

TPSs
Unlike the sysicms mentioned above, TPS is a theorem proving system for type theory

wilh A-abstraction.

[18] Miller, D., Cohen, E., Andrews, P.: 4 Look at TPS, Lect. Notes in Comp. Sci. 138, 6th
Conference on Automaled Deduction, Springer 1952,

[19] Huet, G.: A Unification Algorithm for Typed A-calculus, Theoretical Computer Science, 1
{1975), 27-57.

[20] Jensen, D)., Pietrzykowski, T: Mechanizing w-Order Type Theory through Unification,
Theoretical Computer Science, 3 (1976, 123171,



6. Constructive Set Theory
Masaml Hagiya

©.1. Lntroduction

. Constructlive Set Theory (C3T) was formulated by Per Martin-L&f in
L1] as a logical theory to develop constructive mathematics in
general. The study was started purely from the logical and
metamathematical interest, but as was discussed in 2], almoat all the
constructs of CST had their natural counterpart in the field of
programming, so the possibility to directly implement CE7 as a
Programming language began to be recognized.

At least two projects arc now running in the University of
Gdteborg to lmplement CST, which will be discussed later in this note.

Wnen viewed ms a4 programming language, C51 has the following
features:

* lf a program is correctly typed, it terminates for any
legal inpul, which means that only total functions are
definable in CST.

* The type structure of C3T is =0 rich that when = type of a
program 1is written in sufficient detail, it can serve as a
specilication of thaet program.

From the purely operational point of view, one can say that 08T
is a typed lambda-caleulus with a lambda-term as a type. Butb it is
far more complicated than the usual typed lambda-caleulus, sincc the
terms and their types —=-- which are also lambda-terms --- zre
generated simultaneously (i.e. eo-recurscively}.

6.2. Qutline of C8T

dince CAT is a logiecal theory, ita fundamental operalbion is to
prove theorems. A theorem of CS3T is called a Judgement. There are
two kinds of judgement in C8T. The First one is of the form

a & A

and read in one of the following ways:
is an element of the set (type) A.
is 2 proof (construction) of the proposition (formula) A.

is a program for the task A.
iz a solution of the problem 4.

E
B opp o

The second reading is obtained by regarding a propoesition as the set
of ull the constructions that prove the proposition. This identity of
sete and propositions is called Lhe formulae-as-types notion and is
inherent in intuitionistic logic. The third reading is derived by
expressing a task as a proposition i.e. in a form of a logical
formula, and this io what we mean when we say that the specification
of a program is written as the type of the program.

The judgement
b set



asserts that A 18 a set. It is a judgement one level higher than the
zbove kind of judgement, since it seys that A is an element of the
class of all the seta.

The second kind of judgemant iz of the form
a = h £ A

which says that a and b denote the same clement of the set A. In C8T,
the egquality expresses just the convertibility between two terms, i.e.
2 = b meuns that a is convertibvle to b by the conversion rules, or a
and b have the same cancnical (normal) form. The usual reduction
sequence from a to b by the reduction rules can be interpreted in C8T
as a derivation of fthe judgement a2 = b € A, since a reduction is just a
one-way conversion.

The inference rules to derive a new judgement from already
ggtablished judgements are divided into the following four kinds:

rile of set formation
introduction rule
elimination rule
equality rule

* * ¥ %

The rule of set [ormation dsfinco how to make a2 new set form Lhe
existing ones. Its conclusion is of the form A set. The introduction
rule determines how to construct a canonieal (nermal) element of that
new set. The elimination rule gives the way to break down the element
in the set i.e. gives the scleciors of the set. The equality rule
dEflnes the cenversion rules between terms in the set as was discussed
apove,

To cach sel forming operator correspond four inference rules, one
from each of the asbove four kinds. Here, let us list the fundamental
set forming operations.

finite set

natural numbers

lizts

function set (implication)

direct product of two sets (conjunction)

direct sum ot two sets (disjunction)

general direct product (universal quantification)
general direct sum (ecxistential quantification)

ok ¥ ¥ 3k ¥ ok &

Each operator can be read as in the corresponding parentheses, when
gets are interpreted as propositions.

6.3. Projects to Run CST

The first project to "run" CST was that of Bengt Nordstrém (3],
in which was implemented the reducer i.e. interpreter of CST in Franz
Lisp. |3] gives wmany example programs written in CST, which show the
expreasive power of CS8T as a higher order functional programming
lenguage. Let us give an example from [%), the summation operator,

sum{1l, h, e} = rec h-1 of
0: e(17,



suce(x): from p to
p + elsuce x§+l]
andrecg.

{sum(1l, h, &) expresaes :§:e{i}-} [3] uses what is called concrete

im

syntax %o increase the readability and writability of the programs.

The second project is that of Kenl Petersson [4], in which the

proof checker of CS5T is being built on ML of LCF [5), where GST takes

the
the

role of PPlambda of Edinburgh LCF. The projest tries to evaluate
feasibility of CST for the program verification problems.

It is said that the movement to unify the two projects by

incorporating Nordstriém's reducer into the proof checking system has
been completad.

[1]
t21]
[3]

4]

5]

Per Martin-L3f, An intuitionistic thecry of types: predicative
part, Logic Colloguium '73, H. E. Rose and J. 0. dhepherdson eds.,
North~Holland, Amsterdan, 18974,

Per Matin-L&f, Constructive mathemaztics and computer prograsping,
Logie, Methodology and Philosophy of Bcience VI, North-Holland,
Amsterdam, 19382,

Bengt Nordstrim, Programming in conatructive set theory: some
examples, Proceedings of the ACM Conference on Funclbional
Programming lunguage and Computer Architecture, 1981.

Kent Petersson, A programming systew fur type theory, LPM MEMOD 21,
Laboratory for Frogramming Methodology, Department of Computer
Sciences, University of Giteborg, Chalmers Univerasity of
Technology, 1982.

M. Gordon, R. Milner and O. Wadsworth, Edinburgh LCF, INC3 'H,
Springer Verlag, Berlin, 1979.



7. Combinatory systems

We will describe higher-order concopts in combinatory systems. SBection
7.1 shows how we can treat higher=-order functions in conmbinalory systems.  1In
Section 7.7 combinatory svstoms with higher-order concepts, abstraction

mechanism, are explained.

7.1 Higher=order functions and their implementation by combinalors

T. Hikita

We will first examine higher-order concepts 1n applicative languages SASL
(5t. Andrews Static Language [7]1, 12791 and KERC (HKent Recursive Calculater [8],
{211, both developed by Turner. The concepts treated here are higher-order
funstions and Zr set abstractions, although the latter may not particularly be
"higher-order"”. We then explain the combinator implementaticn of applicative

programs in SASL and other variations of implementations.

Higher-order functions in SAS5L and KRC

First we give an eoxample of a higher-order function written in KRC [9].
1]

"The followinag higher-order function "fold" distributes a binary operation "op'

among elements of a list. The definition takes a torm of recursion eguations.

fold op g [ | = 5
fold op s (a:x] = op a (fold op 5 x)

Here | | is an empty list, and "a" and "x" are the head and tail parts of a
list, respectively. Note that all the functions in KRC are considered as those
with Just one argument by so-called Currving, as follows: a + b as (+ al b,
The association of application iz always to the left when parentheses do not

appear. Some applications of “fold" are

sum = fold plus ©

product = fold times 1

How we turn to the concept of ZF set abstraction. A simplest form of set

apstraction in XRC is

{x ;% <y}



where y 1s a (possihiy tnfinite) list and % i=e assigned each element of the

list successively., an example of the use of set absLraction: the function

"perms" generates all permutations of a given list.

perms [ | = [[ 1]

perms % = {a:p rada*x;op pcrms{x-—[a}ﬁ}

Haere "—=" miins the set difference operation for lists.

Trprlementation of functional programs by compinators

Nigher-nrder functions, thet ig, fanctions recaiving as argquments
functions or those returning functicns as result values, etc., are very
naturally realized in the lambda caleulus. Bur the dircct implementation of
substitution (f-roduction) i= tnefficient in general. Turner proposcd that the
use of combinators could remady this difficulty while Proserving the natural-
ness of Lhe treatment of higher-prder functions | 7). (11 seems that the
language ERC is not Lnplemented by combinators. )

Turner's impiecmentation of functional programs by combinators procesds in
the following way. First a user's Program is translated to a combinator
expression by succassively eliminating bound variables. Thiz 13 a rather old
and well-known fact in combinatory logic [2], but Turner's ilnvantion is 4 neaw
base set of combinators which prevents translaled expressions irom combinatorial
explosion of sizes. In Lhe second phase a graph which the translated
PXPression ropresents is transformed (reduced) Lo a result value when supplied
with actual input arguments,

Fellowing is an example of the implemantation process,  'he function

"pick" selects the "n"-th clement of & 1ist "s" {(written in SASLI.,
def pickns = n= 1+ his . plek {n=1) (£l =)

This function is translated to a combinator expression by abstracting the

variables "=" and "a" in this ordear.,

def pick = 5' 5 (C' (B' cond) (r &g 13 hd}
(C* (B' pick) (C minus 1) t1}

Whis is the object program for graph transformation. The definitions of the

combinators by lumbda SXPrassions are;

- ¢ =



3 Amvz.xzivzl, c AXyE ., %2y,

5' Awryz.winzhye, B Awxyz.wxiyz), C' = Jdwxyz.wixz)y.

One drawback of this combinator implementation is the difficulty at
debugging because of the long-winding ebject code.

Several actual implementations using combinators have been reported
besides 5457, both in soeftware and hardware, #.g. [1]. Comparisen between the
usual and combinator implementations have been done in [B], showing that the
combinator implementatior is better in speed for programs with higher-srder

functions.

Other combinator implemcntations

Since the work of Turner there appeared other similar but somewhat
different ways of conmbinator implementatiens for functiopal programs. Jones
and Muchnick [4] gave & (usual von Neumann-type) stack machine model and
presented a translation wothod of combinator expressions to fixed programs on
the machine. Kennaway and Sleep | 5| studied a distributed processing model for
cvilluating combinator expressions. Finally Hughes [3] proposed an interesting
implementation method using “supox—uumb;nators"‘which is, in a sense, a top-
down implementation of functionmal programs by a non-prefixed base set of
combinators, in contrast with Turncr's bottom-up representation of programz by

a prefixed bauc set of combinators.
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7.2 Combinatory Reduction System

Yoshihito TOYAMA

The concept of the Combinatory Reduction System (CRS) is
introduced by J. W. Klop [1]. Roughly speaking, the Combinatory
Reduction System is a Combinatory System having abstraction mechanism,
in other words, the union of a Combinatory sSystem and the Lambda
Calculus. Let C be the set of constant symbols and V be the set of
variable symbols. The set of terms of CRS is defined by
(1) Cu WV Term,

{2) [%]A€ Term if x& WV and A< Term labstraction),
{3} (AB) £ Term if A,BE Term {application),

where abstraction [%]A is analegous to A x%.A in the Lambda calculus.,

The Reduction rule in CRS is a pair <H,H > of meta-terms, written
as H—»H, where a meta-term is a term containing meta-variables (i.e.,
function variables ) denoted by 21, 22,... . For example, § -reduction
is written as ([xj2l(x))Z2 — 21(z22).

If any reduction rule in a CRS is non-ambiguous and left-linear,
then the CRS is called regular. In a regular CRS hold the basic
syntactical theorems such as the Church-Rosser theorem, the standard
reduction theorem, the finite develecpment theorem, and so on. Thus,
the concept of CRS gives a natural higher-order extension of

Combinatory Systems,



The following diagram shows the relation of various notations of

reduction,
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B, Term Rewriting Systems

In this section the attempts for defining Term Rewriting Systems
with higher order functions {operators) are sketched. B.1 is a brief
explanation of such TRS based on Combinatory System with Type (TCS).

8.2 is a preliminary attempt to define such TRS using S-expressions.

8.1 Higher-Order Term Rewriting Systep

Yoshihite TOYAMA

We will attempt to explain higher-order Term Rewriting System
(HTRS) by using Combinatory System with type (TCS). HTRS may have
function variables in the following way,

Examplies:
(1) B{L,x)> £(£(x)),
{2)) Gla,0,x)> x,
Gla,si(y),x) P alGlg,y.x)),
where H and G are hicher-order function symbols, and f and g are
function wvariables. Rule(2) gives a reduction Glg,n,x) =

glgl...g(x}...)) for n30,

3

First, we will explain TCS. Type is definea by:
(1) Typed < Type where Typel is an elementary type,
{2) %f& Type if x,B€ Type.

Let C be the set of constant symbols and V be the set of wvariable
symbols, and each symbol s ¢ CU WV has a type denoted by Tis).
Then, term set T is defined by:

1) MeT if MeCU W,
(2) MNcT and T(MN)=5 if M,N € T, T(M)=xf, and TI(N)=0 ,
The set of terms with type is denoted by =M : T(M)y=4}, hence
T=E}T3. A substitutionf is a mapping frem T to T such that
(1) £8 =f if fe C,

(2) voer™™ if vev,



(3} (MN)E =(MB) (NO),

where = is syntactical eguality. A rewriting rule is a binary
relation on T, written as APB (type), where typecType. Tf APB (type),
then T(A)=T(B)=type, The rewriting rule defines a reduction relation —r
as follows:

M—>N Iff M=C[Ag ], N=CIBJ], and Ae B (type), for some A, B, type,
context C[ |, and§.

HTRS R 13 defined by TCS., Let TC5 have an elementary type
Typel={0}. If ITRS R has a function symbol f with arity{f)=n, then we
PUut a constant symbel f inte TUS, where {f}=g;;;y {association of
type is to the right). Then, the previous Examplegﬁuf HTRE are denoted
in TCS as fellows:

{1} Let H be a constant symbol with T (H)={00)00, and £, x be a
variable symbol with TIEY=00 and T (x)=0, respectively, Then we
obtain the following rules on TCS:

HEx = £lfx) (o) .
(2) Let G, =, 0 be a constant symbol with T(G)=(00)000, T(s)=00,
T(0)=0, respectively, and let g, x be a variable symbol with
T{g)l=00, Ti(x)=0, respectively. Then we can get
{Ggﬂxt}x {0y,

Cols(y) )=z giGayx) (0).
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.2 CTES: Combinatory Tern Fewriting Systems
[extended abstract]

Kokieki Futatsugi

In this note we will propose term rewriting systems in whieh the terms
are zllowed to be "combinetory terms". This extension implies that we
gan freely uses higher order cperztors in the term rewriting systems.

We will use S-expressions (Z-exp) for expressing terms in CTES.

HOTATIONS

{1) The foliowing =ymbols are meta symbols in ENF notation.

Peocit t[r t]ll 1=| LI | lfl 11r t__
{2) <SyntaxCategory>:"s-exp" denotes the "s-exp" whiech belongs to the
SyntaxCategory.

TEFEMS

Atom ;:= Mame | Veriable

Varisble ::= { any LISP's Atom starting with the character "#v |
Name ::= | any LISP's Atem which is not Variable }

Sortlame ::= MName

SortDecl ::= (S0ET SortName,..)

(1) Type i:= Sortiame

(2} | (PROD Type...) =-- Cartesian product
(3} | (SUM Type...) =-- disjoint union
(4) ! (L1837 Type)

(5} ! (Type . Type) -= function type

<Typer:typed "matches" <Iyped:typeF if and only if

(1) typeF = <{SortNamel:sortl and typel = sortd
{(2) typeF = (PROD typeF1 typeFz ... typeF(n)),
typet = (PHOD typeAl typeh? ... typehA{n)) and
typel{i) matches typeF{i) for i =1, 2, ... , b
(3) typeF = (SUM typeF1 typeF2 ... typeFi(n)) and
typed matches typeF(i) for some 1 = 1, 2, ..., 0,
or,

typel = {SUM typelhl typed? .., typeh(m)) and
any typef{i) (i = 1, 2, ... ,m) matches typeF(3j)
for some j = 14 25 «ss 40
{4} typeF = (LIST typeF1), typed = (LIST typedl) and
typell matches typeF?
(5) typeF = (typeF1 . typeF2),
typeh = (typedl . typel?) and
typehi(i) matches typeF(i) for gll 1 =1, 2

_-— ] ==



Cplame ::= KName
OpDecl ::= (OPEF (OpName Type)e..) == vperator declaration

When

(OPER (cpl typel) (cp2 type?) ... {op(n) type(n)))
has been declared, we say thst the op(i}'s type is type(i) for
i= T,E,...,ﬂ.

(1) Tere ::;= (Variable Type)

(2) ! OpName

(3) b Term...) -= {# is a reserved Name

{4} 1§ Term...) == % is a reserved Mape

{5) i (Term . OpName) -- OpName zpplies to Term

{£) I {Tera . Tern) -~ the second Term acts as a operator
The map:

typelf_: Tern -> Type
A851Ens some spocific <Typerilype to every <Termd:term a=s fellous,
(1) Lypelf <Term>:(<Variabled:var <Type>:type)
= type
(2} If <OpMamed:op's type be <TypeX:type then
typelf cp = Lype.
{(3) Ir
typedf term(i) = type(i) for i = 14250eatl
then
typelf (# ters term? .., termin))
= (FFOD typet type2 ... typein)).
iy 1
typedf tern{i) = tyoe foo i o= 137234..1
then
typeldf (& tercl tern? ... term(n})
= [(LIST Type)
{5) If <QpKame>:op's type be CTyped:
(<Typed:typel <Iype>:typeF2 ... <Type>:typeF{n})
andg,
Lypelf <Termd:termFi = <Typer:typel and
Lypel matches typeF1,
then
LypeOf (termd . op) = {typeF? ... typeFin)).
(&) Ifr
typelf <Terr>:term
= <Typed:{<Typed:typeF1 <Typed:tvpeF2 ... {Type>:typeF{n))
and,
typelf <Termd:termd = <Typer:;typed and
i¥ypeh matches typeF1,
then
LypeOf (terni . term) = (typeF? ... typeFin)}.

Every terms must be "well-formed® in the sense that the typeOf map can
be defined for that terms,

== ==



FEQUATIONS AND TERM FEWFRITIRG

LEg ::= (EQ Tern Term)

In any <Eg>:
(EQ <Termh:iterml <Ternd:itermit),

(i) typeCl terml must matek typelf tercl, and

{i1) the <Term>:term of the form {Variable Type) which appears in
{Term»:termll must also appeare in <Term>:terml,

EqDef ::= {(DEFED Eq...)

When {Eqlefl:

{CEFEQ <Eq>:eql <Eq>:eq2 ... <Egr:egirn))
has been declared, we =ay that <{Egrieq(i) (i =1, 2, ..., n) have been
declared.

If" re <Terp>:iterm of the form {(Variable Type) appeares in <Term»:eTerm,
gTerm is said tg be "ground",

In the cnvirenment where the <Eg>:eq(J) (j =1, 2, ..., n) are declared,
we define the relation:
{Term>:ternsl => <Teorm>»:terps

of "term! is rewritten to term2" on the set of fground® terms, if there
exist some <Eg>:ieq()) (J = 1, 2, ..., n) suck that term! ezn be
rewritien to term2 using eq(j). (Precise definition of rewriting is
omitted here.)

If there exist no {Term>:term? such that <Term>:term] => <lTerm»:termz,
then the terml iz ealled "czrnoniczl®, Let =23 dencte the reflexive and
transitive eclosure of =>. If (Term>:ters] =%> <Termd:term? and term? is
cancnical, then the tern? is seid to be & "eznoniezl tern of termi™,
Sometimes it is convenient to consider the case whore every term has at
most cocne eanonical tero.

In CTHS, same &85 ordinary THS, construetion of csortbeel>, <0Oplecl>, and

<EqDef> corresponds to program construction, and running that prograr
irplies obtaining the the canonical term(s) of some given ground term.

-3 -



9. BICHER CRDER UNIFTCATLON

K. Bakai and T. Matsuda

9.1 HISTORY:

The wunificction problem for a formal languzge is the problem of

deterpining whether any two terms of the lanpuape possesses a  combon
instance or nct. The =tudy of unification was initiated by J.R.0uard
[Guard 64] and J.A.Robinson [Fobinsan aal. The unification problem
For first order language is decidable and the latter paper includes
an algorithm that finds 2 unique substitution, czlled the most gensral

urifier,

for two furmulas of a first order languzge together with a

complete infercrnce rule, czlied resclution principle, for mechanizing
first order logic., Fxistence of the most peneral unifier is of critieal
importance for the proof procedure currently used in zutomatie theorem

proving.

Basically it perpmits usz te restrict the riule of substitutiecn

to the most general unificr in order te zpply the cut rele (i.e. modus

penens ).

[Fobinsen 60] suppested a systenm of  higher opder logic and

dizcussed the iwplementation of the proof procedurc  for  the systen,
P.B.&ndrews [Andrews T1] has described a refutation system for Chureh's
type theory, [ Lucchesi 721 and [Huet T3] independently showed that
there are two terms of third order for which it iz not decidzhle whethep
they have a common instance o» pot, Their resultis imply thet the third
order k-adic unification preblem 1= undecidable for k >z 4, hecause
the proofs roduced the unification prablem te  the BPCP (Post's
correspondence problem!  and  there axists k b= 0 such that the PCP with

K pairs

of words is undecidable. [Baxter T8) refined thke result teo

Lthe third order dyadie wnification problem by  reducing it to the
Hilbert's tenth problem. [Solafarb B1] showed that the s=econd order

urificat

problen

fon prebler is undecidable by reduring it to Pibert's tenth
arain,

Q.2 DEFTHITIONS:

We will deline types, torms, unifiers for higher order unification

gecording te [Huet 737,

“Lypes>

“lermar

Let T0 be 2 finite set of clementary types. The set T of Lypes
ind the funotionus O, #, called the erder and the arity of types
respeclively, from T into the =et of positive integers are
defined recursively as follows.

(1) If t iz in TO, then t is in T and DLEY = 1, Aft) = O,

(2) If t1, +euey th is in T and t is in TO, then
tto= (tt, ..., tn =» L) i2 in T
and
Olt") = max{O{ti}! 1 =¢ 1 =¢ n | «+ 1,
ACE') = n.

The =é¢t of terms consistes of atoms, applications and zbstractions,
Fvery terr e possesses a2 type T{e), piven by the following definition,

{1) Atoms: There exists a denumerable set of variables of each type
and artilrary rnumber of constants of any type. We shall usually
dencte variables by strings headed by a lower case letter and
constants by strings headed by & upper casc letter,

{2) Applications: If e is a term of type



Tig) = (t1, ceey tn =2 £}

and if &1, ..., em are termns of types
T(ei) = ti 0 =<4i=<{m =< n,
Lhen we define the application
e' =z eflel, ..., en)
az a term of type
Tiet) = {t m+1, ..., L => t) ifn>nmnm
=t if n=m
{3} Abstractions: If e is a term and ul, ..., up are distinect
variables with
T{e) = t,
T{ui) = ti 0 =< i=<n
then we define the abstraction
et = {("ut ... und.e
as a term of type
Tle') = (t1, ..., to => t) if t is in TO
= {ETe wuwy tm, B17, ooy Em' =2 £1)
if t = {817, s.., tRT =32 t%)

“Hormal form> Iterztive appliecition of lambde conversion reduces a torm
to 2 unique normpal form, which dees not sontain any subterm of
of the forms:

E-u1 o w UII‘:.[('I?‘H 'R V[.i_‘,';,l}},
fefel, ooy em})(f1, ..., fnl,
fi"ul .. umb.eldlel, ..., enl.

We will consider lWwo or more terms identiezl if they have the
same nornal fore.

“3ubstitution> A substitution S iz a set of finite ordered pairs

[€ud,eis! =< 1 =< n }
where ui's are distinct variables, ei's are terrs and
Tlui} = Tiei) 1 =¢ i =¢ n.
The applicetion of S to & term E 1s defined as the normal
form of:

S(E) = ({1 ... un).Ed(el, ..., en).

<Unification> Two terms el and &2 of the same Lype are said to be
unifieble if there exists 2 substitutien 5, ecalled unifier,
for &1 and &7, such that Af{e1) = 5(e2).

9.3 PERSPECTIVES

The undecidability results for second and higher order unification
as well as the enormous proliferation of unifiers even for small problems
have cast some shadows on earlier hopes for higher order theorem proving.

Unificetion iz a fundamental process in all ocontemporary firat
order theorem provers, since it is embedded as the basic operation
in rules such 2= resolution, factoring and paramodulation. It ia not
possible tc extend these rules to higher order logic directly, because
of the absence of a most general unifier.

J.A.Fobinsen  [Robinson  f9] proposed another approach to
automating higher order logic, which does not reguire the process of
unification, Unfortunately it would probably suffer the same
disadvantages as Herbrand-basc saturation methods for first order logie.

A new mothod trying to overcome the difficulties of unifier

bazed method iz presented in [Huet T2]. Basieally, this procedure
computes unifiers for a sequence of outs leading to a refutation, rather
than for &n individual cut, The mein advantage here is that, by

delaying as much as possible the search for unifiers, we  save



computation timo, because the cumulated information permits us to reject
2 lot of irrelevant czses. Unfortunately we still nee¢ te detect the
existence of 2 unifier, and therefore some enumerating prooess is still
necessary.

Given =ome equational theory T, the higher order unification
problen Jor it is less complex than free higher order unification
problem. For exanple the second ordep monadic unification problem
clozely resembles the string-unifiestion  problem. Mow the
String=-unification problen is infinitary, it peosed =a very hard
decidability preblem and the known string-unificetion algorithms
[Flotkin 721, [Siekmann 75], [Livesey 75], arc almost useless for 211
practiczl proposes, However string-unificatien under commutativity
is comparatively simple [Stickel 75], [Livesey T6], : 4t is Finitary,
decidability is casy to compute and the unifieation algorithms are
not tao far away from practical applicability.
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