ICOT Technical Report: TM-0009

Th-0009

Basic Constructs of the SIM
Operating Sysiem

by
Takeshi Hattori
and Toshio Yokoi

June, 1983

©1983, 1COT

Mita Kokusai Bldg. 21F (03} 456-3191—5

|GOT 4-28 Mita 1-Chome Telex ICOT]32964

Minato=ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Basic Constructs of the S5IM Operating System
Takashi HATTORI and Toshio YOKOI
Institute for New Generation Computer Technolagy ¢ICOT)

1-4-28, Mita, Minato-ku, Tokyo 183

Abstract
The hasic constructs of SIMPOS (Seguential Inference Machine
Programming and Operating System) are explained. E;HFEE is an
gperating system for & super—-persanal :umput:r. (5IM}), based on
a logic programming language (& moedified Prolog, called KLB).
Our design principle is the simplicity both in concepts and the
structure. Thg entire system w:ill be constructed using these

odsic constructs.

Page 2

1.0bjects and Relations

1.1 Objects

The elements of the system (also called the universe) are
cb jects, which are classified into elementary objects, compound
objects, and variable objects.

An elementary object is an atomic object without any
structure, such as a Eymbnlic atom {e.g. abc), an integer ataom
(e. g. 12, or a real number atom (e.g. 4.5), which is an
elementary term in Proleg.

A compound object is constructed with its subobjects, which
are objects themselves, and is described as a compound term in
Prolog:

(cIasz—name}({sghobJecri}.....(subob;e:rH}J.
where (class-name) is a symbolic atom.

A variable object, which is represented by a logical
variable, is an object whose value is initially undefined and
can be bound later. The wvariable objects have two basic
operations, & unification and an (destructiwve) assignment.

1.2 Relations
Relations are defined among objects. A relation is a set
of ob;ect-tuples and is represented as a predicate
{relation-namel({object!},.... objectN}).
Each relation is defined with the clauses as facts andrsor rules.
fact: (relat:on-nameld(Cob ject!d, ..., CobsectND}).
ruls: (relation-nameX(<{ocb ject!id, ..., {objectN>) 2~
(precicets=!}, ... ,{predicateMl.

A clause ig cons:pgersd as & meta-pbject wheose ciess name

Page J

fact: -(Chead), true)

rule: r={<head).body(<goalld,....<{goalN)))
where (head) and (goall) are predicates.
2. Classes

The class concept ig introduced ag a4 means of dlt;
abstraction. A class is & set of the objects which have the same
fratures. These features are given by the data structure of
those objects (am instance template of the class) and the
relations they should have.

As found in the Flavor system of the Lisp machine 12,
multiple inheritance mechaniem is supported in our class systenm.
In a relation-based system, inheritance is not so simple as in
a functional system, though. The classes which a new class
should inherit are said to be itse component classes. It means
that a4 new class can be built from many other classes as its
components.

An instance template iw used to create an object of the
class and to access the subobjects of the object. It has the
following form: '

{class-names{<{subobjectl?),... . {subobjectN>},
where (subobjectl} is a variable object.

An instance template definition is given as

newl{<{clasg-nameld:classe,
{subpb ;ect-namesr,
{component-class-names’,
{reguired-subob ject-namesl,
{reguired-component-class-names)),

where <{gubobject-namesr 18 & Jist of the (slot) nam=s of The

Page 4

subob jects and (component-class-names) is a list of the names
of the component classes which this class should inherit.
{Required-subob ject-names) and <(reguired-components-class-names)
are what are used in thie class, but must be defined elsevhere.

A relation among the objects describes the actfun uﬁich is.
taken when rhe. corresponding predicate is called on thn:“u.
objects. A relation which the instance has to have is defined
by the clauses of an extended form:

(relation-namel(<{variableld:<{class-namell,...,

{variableM):<{class-nameM}) :-
{predicatelb,...{predicatel).

Here, (class-namel) specifies the class of the argument object
(vrariable]>. When a relation is defined on some class, & new
class which inherits it can have that relation implicitly. of
course, the new class can have ity own relations, which may or
may not use the inherited relations.
J. Pools and S5treams
J.1 Pools

A peol is & container which can hold many gbjects. Some
operations on & pool, which is an instance of the class ‘pool’,
are

¥ to insert an object inte & pool,
¥ to extract an oh; ;ect cut of a poel,
¥ to find an object in & pool.

We define a tap which is plugged in & pool and is used when
sequent:al access 15 necessary to the objects in a poel.

J.2 Streanms

A stTeam 15 & pip= through which opb ects fiow. Some

Page 3

operations on & stream, which is an instance of the class
fgtream’, are
¥ to put an opbject into & strean,
¥ to get an pbject out of a stream.

When a stream is empty, a get operation is suspended unﬂl a put
operation ig performed.
4. Werlds

A world is & scope of the knowledge which can_ be used te
solve a given question, and wmany worlds can coexist in the
universe. A world is created dynamically from many pools, each
of which contains some data or programs. Ue can also include
other worlds to be elements of the new world, which we call a
combined world. This kind of mechanism is useful for creating
@ hypothetical world on the existing world.

A world is a meta-objecct, an instance of the class ‘world’.
The pools which are included in & world are listed in the pool
list of the world. An object in the world is searched in the
order of the pool] list.
5. Processes

A process 16 an active entity which sclves a given guestion
in & specified world. A process can be created dynamically, and
terminates when it cannot solve the question, or it finds an
answer which is the only answer or the last one., It is suspended
when it finds an answer, but there may exist other answers. In
this case, the process has two options which it can take lJater,
that is, it may try teo find another answer, or it may terminate.

5.1 Process Creation

SIMPOS supports Two usefu! ways of process creation, & fork

Page &

cperation and a remote call operation.

A fork aperation is described as, for example,

«sss{process—namel }r:{questiont) !
‘process-name2l::i{question2d, ...

as found in Relational Language 2) or Concurrent Prelog J). The
above operation creates two child processes. The process with
{process-namel) as its identifier tries to solve (guestiont) and
the process with <{process-name2) tries to sclve {gquestion2).
After forked, the parent process waits until all its child
processes terminate. At that time, & join operation is
performed, and the parent process Tresumecs its execution.
However, if the parent process does not have any other goals left
to soluve, it can terminate when forked.

A remote call is a predicate which asks a guestion about
another world. In order to sclve tuch a guestion, & process has
to be created in that world. SIMPOS creates & surrogate process
implicitly to implement & remote call, although a user may not
think hesshe creates a new process. A remote call is represented
as

vaepfguestiont & Cworldr, ...
which means solving (question) in {worldd. HNote that the caller
will be suspended until an answer is returned from the callee.
The call can be backtracked in the sense that we can reguest
alternat:ve answers.

A process, after created, can communicate with other
processes through streams, and can cooperate wath cach other to

solve & guestion. A stream is the only basic mechanism for inter-

prosess ZaommunRICcETIronNn.

Page 7

5.2 Process Operations

A process i§ tonsidered as a meta-gbject, and is created as
an instance of the class "process’. [t accepts such operations
as

¥ procesws initialization

¥ process termination

¥ process suspension

¥ process resumptian
6. Ports and Channels

A stream ig suitable to implement & one-way communication,
a semap hore, or a synchronization. However, it iy often
necegsary to provide a4 means of two-way communications between
two processes. A channel, which is created by connecting two
ports, is such a mechanism to allow a process to communicate with
another process in two directions. A process holds a port which
works as an inputsoutput gate, and sends or receives an object
through the port.

A port is allowed be connected to many ports. In this case,
the object which is sent through the port arrives at every port
which i1s connected to it, and the object sent from these ports
arrives at this port.

We define a special kind of a port, that is, a sourcessink
port. It works as @& hole into the outer world, through which
2 process can accesg the ob,ects there. Conceptually there s
4 pseudo-process in the outer world., for example, a user at the
terminal, another machine connected through computer networks,
and o on. The process sets up the ppen-ended channel] with such

& pse*uctC-pTOCEES, The i+ subsystems, which are not expla:ned

Page 8

here, take care of the actual i“o operations.
7. Conclusions

Wle have here defined several basic concepts,. which we hope
are sufficient to build the entire operating systea (SINPOS).
Ve are currently at the functional design stage of the
development, and are writing down its specification in a
semi~-formal notation which looks like a logic programming
language and can be converted easily into the executable codes.
These basic concepts may be modified to incorporate better ideas
and implementation details, though. The first version of SINMPOS
will be hopefully finished in the fall of 1984.
Acknowledgements

We would like to thank each member of Ird Lab. of ICOT for
their participations in the conceptual design of SIMFOS.
References

1Y D.Weinreb and D.Moon: Flavors: Message Passing in the
Lisp Machine, MIT A.I. Memo No.&682 (November 1988).

2) K.L.Clark and S§.Gregorys A Relational Language for
Parallel Programming, Imperial College, ODepartment of
Computing, Research Report DOC 81-16 (July 1981,

J» E.Y.Shapirao: A Subset of Concurrent Proleg and Its

Interpreter, ICOT Technical Report TR-883 (January 19783).

