ICOT Trip Report

J.W. Lloyd
University of Bristol

December 14, 1988

The Fifth Generation Computer project has come to an interesting stage
with just three years to go before the end of the 10 year project. In the
following, I will present my impressions of the project gained from this trip,
concentrating on those aspects of the project closest to my own research
interests, which are mainly concerned with applications languages.

1 Discussion

It is evident to me that considerable progress has been made on the project
since my last visit in 1986. Furthermore, it is heartening to see a consensus
emerging amongst the logic programming community, including ICOT, of
the likely architecture for fifth generation computers. Surprisingly, they are
likely to be much more like general-purpose computers than most people
expected when the project first started. What has emerged is that highly
optimised special-purpose logic machines are not likely to be significantly
faster for running logic programming languages than more general-purpose
machines. I think that, if it is confirmed in the next 3 years, this is a highly
significant result and also a good one. It will mean a smoother introduction
of logic machines, as users will be. more easily able to integrate their logic
programming applications with their existing applications.

Next I would like to comment on the applications side of ICOT research.
Istill feel, as I did in 1986, that this is the weakest part of the project. First,
there is the technical problem of getting applications languages, which mostly
exploit OR-parallelism, to run very efficiently on machines for which GHC
is the kernel language and which mostly exploit AND-parallelism. Some
progress has been made on this problem, but there is certainly much more
to do. This is a crucial problem, since ultimately the success of the project
depends upon the usefulness of the applications which come out of it.

The next point concerns the applications languages themselves. I believe

— 183 —

that the majority of applications languages which we have available today,
especially those based on Prolog, are far from satisfactory. I will not go into
the reasons for this in detail here, since they have already been explained in a
series of seminars which I have given at ICOT and FGCS’88 and also in a se-
ries of papers which I have left at ICOT. But, in essence, the problem is that
Prolog and its derivatives have considerable semantic difficulties, especially
with their declarative semantics. These problems show up in many Prolog
constructs, such as var, assert, retract, cut and also in the lack of the occur
check. This is not just a matter of concern to theoreticians, because these
semantic problems greatly affect our chances to verify, debug, partially evalu-
ate, etc. logic programs and also greatly decrease the potential for exploiting
parallelism in these programs. In the period since Prolog was d:signed 15
years ago, we have achieved considerable understanding of the semantic ba-
sis of logic programming languages. This, combined with our experience in
implementing logic programming languages and their application in a wide
variety of domains, strongly suggests that the time is ripe to redesign the
applications languages with a view to providing them with greatly improved
declarative semantics and at least the current level of expressive power. I
strongly believe that any effort put in this direction will pay great dividends
in the long run.

Another area which I believe ICOT needs to look at is knowledge assim-
ilation. There was some early work on this at ICOT which was reported at
FGCS'84, but it seems not to be studied at the moment. A knowledge base
system consists of four different kinds of theories: knowledge bases, inter-
preters, integrity constraint theories and assimilators. When it is necessary
to update a knowledge base, an assimilator must interact with the knowledge
base and the appropriate integrity constraint theory to achieve the required
update. Typically, an update request (in the following case, a deletion) takes
the form: the following formula (often just an atom) is currently a logical
consequence of the knowledge base, so modify the knowledge base in order
that it no longer be a logical consequence. This is an important problem,
which has not received the attention from the logic programming community
it deserves. In particular, I do not know of any work at all on this problem
for knowledge bases allowing negation, which is the usual situation.

Incidentally, understanding the way assimilators interact with knowledge
bases requires an understanding of meta-programming. There are many
other parts of the project which also require a good understanding of meta-
programming. I agree entirely with ICOT’s current emphasis on this topic.
As pointed out above, this is an area which Prolog and its derivatives do

— ls,q_

badly and any work towards putfing meta-programming on a better basis
will be an important contribution to the success of the project.

Finally, let me say once again I am impressed with the overall progress of
the project and I look forward to inspecting the prototype fifth generation
computer which will be unveiled at FGCS'91!

2 Acknowledgements

First I would like to thank Dr. Fuchi for his kind invitation to visit ICOT
for the second time. Dr. Iwata was very helpful in taking care of the non-
technical details of the trip. For stimulating technical discussions, I would
like to thank Dr. Furukawa, Dr. Hasegawa, Dr. Ueda, Dr. Chikiyama, Mr.
Fujita, Dr. Murakami, and Mr. Seki. As during my first visit, Mr. Seki
once again was very kind in looking after me. Finally, I would like to thank
everyone at ICOT for their considerable hospitality during my visit.

RESEARCHE RESUME

WName Joho Wrylie LLOYD

Current Appointment

Senior Lecturer in Computer Science at Melbourne University.

Research Interssts

My research interests are in Logic Programming and its impact on Database Systems and Artificial

Intelligence.

Logic Programming is currently attracting substantial interest, much of which is due to the wide

publicity given to the Japanese 5th Generation Computer Project. However, there are very strong

technical reasons why Logic Programming will play an incressingly important role in Computer Science.

The most fundamental reason is due to the fact that logical inference can be regarded as the fundamental

unit of computation. From this perspective, many divarse areas of Computer Science can be unified and

simplified. For example, PROLOG is now commoaly used as the core of database systems, as 2 systems

programming language and as an Artificial Intelligence programming language.

The lollowing is = list of the specific research topics in whick I am interested.

- 185 —

(a) Theoretical Aspects of Logic Programming
There are many important unresolved theoretical issues in Logic Programming. My interests here are

mainly concerned with negation (esp. negation as failure), completeness, control and concurrency.

[b) Theoretical Aspects of Deductive Datebase Sysiems
A firm theoretical foundation for deductive database systems is just emerging. My interests here concern
soundness and completeness of query evaluation, logic as a query language, integrity counstraints and

various update issues.

(¢) Implementation of Deductive Databese Systems

PROLOG provides a satisfactory query evaluator for deductive database systems. However, PROLOG
peeds to be augmented with indcxi;lg schemes, query languages and so on, before it can properly be
regarded as a deductive database system, My interests here concern clause indexing, query optimization,
integrity constraint implementation and query language design and implementation.

(d) Pregramming Environments

Oue of the weaknesses of current PROLOG systems is their programming environments. This is a major
reason why many programmers still prefer LISP to PROLOG. [have recently been investigating
declarative error diagnosis, starting from the work of Shapiro and Ferrand. I have written a debugging
system which finds errors in extended syntax programs by asking questions of the programmer. Ty pically,
it asks if an atom is satisfiable (in the intended interpretation) and sometimes asks for values of variables.
The programmer does not need to have any understanding whatsoever of the computational behaviour of
the PROLOG system.] believe such debugging systems are crucial for the future development of
PROLOG because they ofier the potential for writing and debugging programs at a very high and purely

declarative Jevel

Machine Intelligence Project

I am one of the principal investigators for the Machine Intellizence Project at Melbourne University.
This projest is being funded by the Department of Science. One major task of this project is the
development of a deductive database system based on MU-PROLOG, whose performance will be
competitive with state-of-the-art relational database systems. The other major task is the development of
a compiler version of MU-PROLOG.

Book on Foundatlons of Logic Programming

I have written this book to provide t.h;"ﬂrst account of the mathematical foundations of Logic
ngrzmmin;,. The purpese of the book is to collect, in a unified and comprehensive manner, the basic

results of Logic Programming previously available only in widely scattered research papers.

186 —

Assoclations with Journals and Conferences
Editorial Advisor for The Journal of Logic Programming
Member of Editorial Board for Information Technology: Research & Development

Member of Program Committes for Third International Logic Programming Conference to be held in
London in 19886,

— 187 -

