A visit to ICOT

Maurice Nivat

Professor at the University of Paris 7

Corresponding member of the French Academy of Sciences
November 25th — December 15th 1988

1. Background

I have had many opportunities to visit Japan and to get acquainted with the Fifth Generation
Computer Project and the work which is achieved in ICOT. I also visited a number of Japanese
Universities including Tokyo, Kyoto, Tohoku, Osaka, Hiroshima and Kyushu and a number of
public and private research laboratories including ETL, NTT, Mitsubishi, Fujitsu and NEC.

Two France-Japan seminars were arranged jointly by ICOT and INRIA and, in both cases, I
was partly responsible for the program with Professor Laurent Kott, the director of IRSISA
which is a branch of INRIA in Rennes and we discussed the program with Dr. Kurozumi, Dr.
Furukawa. I remember very well the friendly discussion I had with Dr. Furukawa, in Pisa, when
attending a TAPSOFT conference: we drafted the program of the second seminar which was
held in Cannes in November 1987 and gave rise to a proceedings volume which has been very
recently published by Elsevier Science Publishers in Amsterdam.

I remember also very friendly discussions I had, both in Tokyo and in Paris, with the late
Professor Tohru Moto-oka at an early stage of the development of the Fifth Generation Computer
Project. We were already discussing the Parallel Inference Machine issue and the real gain
in efficiency that one could expect from the use of several locally connected processors for
logic programming. He was a great physicist, I am, both by training and by taste, were a
mathematician, and of course we could only disagree, but in the most friendly and fruitful way,
each one hearing carefully to the other’s argument and, at times, changing its mind when some
new idea was presented by his colleague,

There remains and deep contacts with quite a number of top Japanese scientists and the experi-
ence | have been fortunate enough to get of the “Japanese-way” of doing research (a way which
can be as cheerful as it is efficient) have had a strong influence on me and I have been ﬁght'ing.
in France, to have no build “un project & la japonaise”(Japanese-like project) with up to now

no real success. Who knows about the future?

— 175 —

2. The present Visit

A word-to-mouth invitation from Dr. Fuchi and Dr. Purukawa given to me in Cannes in
November 1987 was made formal in April 1988 by a letter of Dr. Fuchi. I accepted gratefully
this invitation to spend two weeks in ICOT including the week of FGC5'88. To tell the exact
truth I managed to visit the Institute of System Science of the National University of Singapore
on my way to Japan (I left France on November 13th and stayed in Singapore until November
25th) and also to visit India on my way back (on December 15th I leave Japan to Dehli). The
conference FGCS'88 was quite different from the previous ene in 1984 which I also attended.
The difference can be stated in one sentence.

“A lot of work has been accomplished, in the world, and more speciolly in ICOT, and the problems
to be solved appear with a much greaier clarity.”

The introducing talk of Dr. Fuchi on Monday, November 28th, was really enlightening. We
know now where are the “stumbling blocks” and ICOT seems perfectly prepared to enter the
“final stage” which should result in actual prototypes, meeting some of the requirement of the
original project.

A large number of talks, presented both by Japanese researchers and foreign researchers were
dedicated to the extremely precise problems of parallelizing logic programs. In an other room one
could see demos of the “multi Psi" machine. This was an extremely tense and vivid exchange.
Ueda’s GHC system of “guarded Horn clauses” is an extremely interesting attempt to solve the
above-mentioned problem. (One should refer to the report Gerard Huet, from INRIA, wrote
after a stay in ICOT in April this year), the ANDORRA PROLOG system of D. Warren et alii is
also extremely interesting as well as proposals made by the group of ECRC (in Miinchen, FRG)
and the group of “Logical programming with constraints” (Lassez, IBM Yorktown Heights,
Jaffar, Colmerauer in Marseilles).

Most of my time was spent listening to the talks related to this problem, which is the problem
1 am mostly interested in. I have also listened to several talks on “knowledge base system”
or (the two expressions are synonymous for me) “deductive data bases” and talks on “natural
language understanding” and “natural language processing” (including the talks on “situation
semantics”)

Afterwards, starting December 6th, there was a closed symposium which I did not attend
faithfully. The closing round table was rather disappointing.

On Wednesday, December 7th, I gave a 1h 1/2 talk on “Fairness of Finite Transition Systems”,
with the impression that people are less interested by the automata-theoretic approach to the
semantics of distributed systems in ICOT than in many European laboratories (in UK, FRG,
Ttaly, The Netherlands and France). Maybe I would have liked to give a series of lectures rather
than just one. Though apparently simple this automata theoretic approach which was initiated
by Robin Milner when designing CCS is still full of surprise and tricky problems: despite the
fact that all the existing systems to verify properties of concurrent, parallel and distributed

system there are still many non answered questions especially as concerns the notion of fairness
(several definitions have been proposed) and the equivalence of non deterministic finite automata
(extensively studied in Edinburgh, Pisa, INRIA). I had on this question a very interesting
discussion with Robin Milner himself who attended FGCS5'88).

On Thursdey December 8th I was invited to an excellent lunch by Dr Hiroshige, the executive
director of ICOT, the lunch was also attended by Dr, Fuchi, Dr. Furukawa and Dr. Iwata.
We discussed several issues in parallel computing and also the change in European Research on
Computer Technology which is due to the extension and the success of the ESPRIT program of
the Buropean communities.

An extremely cheerful welcome party in the evening of the same day gave me a new proof of
the deep sense of hospitality of ICOT researchers towards their foreign guests and also of the
excellent links which exists between ICOT researchers regardless of rank position and age. Last,
but not least, I have been able to discover the incredible beauties of the Mt. Fuji -Hakone
National Park during two sunny days with a very brisk and pure Jate Autumn atmosphere.

3. Some remarks of a theoretical computer scientist
I must say that [am a doubtfull fellow and recall that I am mathematically minded and trained.

It is obvious from all the talks on the subject which were presented at FGCS'88 by ICOT
researchers, other Japanese researchers and foreign researchers that we badly lack a methodclogy
of parallel programming. Sequential programming has made huge progresses in the past 15 years.
There exist excellent, fast and cheap programming environments. This is due to the skill of a
huge number of system designers, to the tremendous increase in the computation power and
speed and in the memory capacity, but this is also due to a fundamental basic knowledge of what
is & sequential program, how it can be specified by formal methods which allow also to define
implementations and verify that they are at least piecewise correct, how one can define the
environment in which a program component can be reused. In the same vein a lot .of work has
been achieved as program transformation, pa:t:ia.l evaluation and measurement of performances.
This has been achieved for the simplest while (do-loops) programs (with appropriate semantics
such as Hore's logic) for recursive programs (and fixpoint semantics), for LISP and computations
as formal objects, for logic programming including PROLOG and alternatives to PROLOG and
in an even more general framework for general systems of rewrite rules and algebraic data types
(I was a bit surprised that this last topic was running in FGCS'88). For the special purpose of
knowledge and data bases, similar work is being achieved for computation in relational algebras
and, in an interesting way, for the computation of recursively defined relations over a data base,
providing a good theoretical basis for the handling of “deductive data bases” (which are, for
me, the prototype of knowledge base in which one should be able to use not only the basic
knowledge which has been stated but all the derived knowledge which is implied by this basic
knowledge and simple inference rules). I repeat it is obvious from all the presentations that we

do not have the same knowledge about parallel or concurrent or distributed programs but in
one case which is the SIMD architecture and “vector machines” such as the CRAY or the NEC
supercomputers, mainly intended for fast numerical computations.

For computers composed of a number of loosely coupled processors (be they 6, 12, 24, 128 or
32,000) exchanging messages or sharing a memory we are very for to being able of programming
them in the same way. The parallelization of a given algorithm is a problem in itself, usually
quite difficult, and if we slightly change either the algorithm or the architecture of the machine we
wish to adapt the algorithm to we are facing a new problem and little knowledge from a previous
work can be used. Just now it seems unlikely that ordinary users can be left with the problem
of‘q.smgnmg tasks to a number of loosely coupled processors, of defining the messages they
should exchange (or the values in some shared memory architecture) and the synchronization
mechanisms so that the whole process will be correct and efficient. {(What I am writing here is
very close to the introduction of the paper by D.Warren et al).

A natural conclusion is that parallelism should be used at implementation level, the user ignoring
completely how it works and writing plain programs which could be as well run on a sequential
machine. The implementors’ job is to use the parallel facilities of the machine in such as clever
way that the end users can continue ignoring these facilities and only sees that the speed in
higher and the cost lower when such a parallel mechanism is used. This means that, restricting
ourselves to PROLOG programs, all the analysis of the structure of a program and the definition
of the task, which may be carried in parallel (*and” or “or") has to be ensured by the system:
may I-say that, from all my knowledge, we are extremely far from being able to achieve that?

If one wishes to have several processes cooperate to explore the proof free corresponding to the
resolution of a PROLOG program then these processes should all know what has been done by
itself and the other processes. And this requirement leads to a shared memory link between
all the processes in several papers presented at FGCS'88. But none of these papers given an
evaluation of the speed which will be obtained using such a' mechanism. It is not even proved in
any way that several processes sharing 2 memory and cooperating to run a PROLOG program
will do the job faster than a single one, or with a gain in speed which does not justify the use

of several processes.

My attitude towards this precise problem would be to try to understand better what is really
happening in the resolution of a PROLOG program (be it a pure PROLOG program or a pro-
gram with “cuts” or a program with “constraints”). For example, the so-called “lazy evaluation”
mechanism for erdinary sequential recursive programs has been studied extensively and proved
to be the optimal way of computing the result of such a pmgl:am. Lazy evaluation has also
been studied for lambda-calculus and other “functional” programming language. And it has
been successfully implemented in some interpreters of LISP-like languages. I cannot see, just
now, a clear definition of "parallel lazy evaluation” which implies that the interpreter knows

— 178 -

at each instant of the computation which subexpression should be evaluated next (or in logic
programming which subgoal has to be tried next). .

“Then it is a real puzzlement to me to listen to JCOT directors say that we are at the end of
the “intermediate stage” (which I understand as an experimental phase of the project in which
several possible machines and system architectures were experimented) and that a 3 years period
of “final” stage can be launched aiming at a substantial progress in “ndusirial” ing using
parallel multi-processors systems. My own feeling is that it will fake many more years before we
understand well enough the phenomena linked with parallel computation and design a general
purpose efficient and easy to use parallel machine and its built-in software,

As a matter of fact, one can also remark that the time lag between the birth of an idea and
its use in some widely spread industrial product is much longer than what several computer
manufacturers say: over ten years where needed to define completely high level imperative
languages and learn how to compile them (roughly the period 1958-1968), ten years also elapsed
between the first ideas which lead to the UNLX system and its being really used on an industrial
scale (roughly 1972 - 1982).

~

We can guess that the rather theoretical ideas about parallel programming in a PROLOG like
language will take the same amount of time before they are really implemented. And, in this
precise area, the situation is worse than in others. Since PROLOG like languages are in current
use in only a small part of the community of uses of computers (2 %?) The efficiency issue
which was raised above and is a difficult one may be a less important issue than the training of
a substantial proportion of users to this type of programming. In fact the two issues of efficiency
and effective use are completely linked: one has to show that logic programming will bring an
improm.::mgnt to solve the problems for which most people use computers. These problems are,
as everybody knows, problems of large data manipulations, i.e. problems in collecting, storing,
sorting, searching, restructuring large amounts of data. Up to know logic programming failed
to demonstrate that it is a2 more efficient way to perform all these actions than a classical
programming language like FORTRAN or PASCAL. The 8-queen problem and more generally
the n-queen problem, as challenging as they may be far a theoretically-minded researchers, do
not reflect the difficulties of real data handling: PROLOG was invented and proposed as a good
way of describing and implementing “parsing aigorifhms“, It is still the best way to describe
and efficiently implement such algorithms in which the depth of recursion nesting is low, and
the amount of data which is used at each step of the computation is also strictly bounded.

I am completely conscious that I am questioning 2 basic options of the research which is achieved
in ICOT, :

- why parallel machines rather than sequentizl ones? _

— why logic programming and PROLOG rather than plain old sequential imperative program-
ming langnages.?

Since I dedicated a large amount of my time, as a researcher and as a professor, during the
past 10 years, to work on parallel processing I hope ICOT researchers and the directors of this

Institute will understand what I mean: there is no need that an appealing idea prove eventually
to be a good one.

This leads me to the last remark, I wish to make, and these remarks concern knowledge
bases systemns. My remark will concern only the “knowledge-bases” intended fo help either
a “computer-aided transformation system" or an “automatic natural language understanding
system”. Clearly all the rules of the form “in context 7 the word ¥ can be either translated
in Z or understood as W” can be written in Situation Semantics. In fact, Barwise's Situation
Semantics was designed precisly to express rules of this kind. The problem is then, not to find
an expressive-enough system, but to write down 2ll the rules which are needed. Let me call this
set of rules a “dictionary” which will incorporable linguistic informations as the following

Je suis tombé sur Pherbe is translated in English by “I fell on grass” (you need know that in
French you say “je suis tombé” and not “j'ei iombé" the auxialiary verb “aveir” which is used
with most verbs to build the past tense being replaced for the verb “tomber” by the auxiliary
verb “Gtre”. One should note also that the substantive “grass” which translates the French
“herbe” is preceded by no article). “Je suis tombé sur un vieil ami" is translated in English by
“I came across on old friend” (the meaning of the same verb “tomber” with the same preposition
“sur” is entirely different). '

“Je suis tombé sur la téte” can be, roughly, translated as “I become mad”™: it is what my friend
and colleague M. Gross calls a “fixed-expression”, i.e., an expression whose meaning cannot be
determined from the meaning of the components.

‘We have no precise idea of how many rules of that kind are needed either to handle a language
in other one or to understand the meaning of a sentence. Likely the number of such rules (in
every natural language) is 5 or 6 or 7 hundred thousands. Immediately an efficiency problem is
raised: how shall we handle such a h':lge number of rules? But there is an other problem which
is even worse: who will write down such a set of rules? Computer scientists will not write these
rules for the excellent reason that they do not know enough about linguistics, And linguistists
are unlikely to do it for they do not know enough about computers and also because it would
be a tremendous and not very rewarding job. Maybe also a hopeless job. Consider the French
sentence

“Je suis tombé sur Pierre”

It can be translated into English either as “I fell on Peter” or as “I came across Peter” and it is
perfectly, semantically ambiguous (no semantics, situationists or not, can distinguish these two
possible meanings of this extremely simple French sentence). :

Hence 1 can see a lack of reflexion, not only in the Japanese project, but indeed in all the
projects which tend, all over the world , to either translate one natural language into another
or to understand some natural .I:mgungc, Fortunately, the problems of translation and natural
language understanding seem too complicated to be solved by a computer. I would hate a

computer understanding me!

4. Conclusion

ICOT is an excellent laboratory and I am really surprised that it could, in such = short period
of time, train so many very high quality young researchers. Now, ICOT is a place where one can
find people to talk, about, more or less, every real issue in computer science, All these people
have also brought to light many ideas which seem to me very impnﬂanf. and promising for the
future of computer science, and the future of computer Industry.

But ICOT, as all other laboratories in the world working on similar subjects is facing very hard
problems: some will be solved, maybe, in the next 10 or 20 years, and some may not be solvable
in any predictable future. Trying to go {aster may be dangerous for the future of ICOT and for
the future of Computer science, as a whole. '

Maurice Nivat

CURRICULUM VITAE OF

Maurice Mivat
bormn in Clermont-Ferrand (France) - Dec, 21st 1937
Citizen of France, married 3 children

Edueation

Ecole Normale Supérisure de la rue d'Ulm (entrance in 1956)
Mester degree and Agregation in Mathematics (1961)
Doctor degree in Computer Science (1967)

Occupation

Professor since 1969 at the University Paris 7

Firstdirector (1975-1985) of the LITP (Laboratory for Theoretical Computer
Science and Programming) associated with CNRS (Natonal Center for
Scientific Research)

Sull head of the research am “Langusges, concunency and parallelism® and
head of the scientific council of this laboratory.

Advisor o the President of INRIA (Wational Institate for Compuer Science
and Automation)

Editwr in chief of Theoretical Computer Science (North Holland Publishing Cy,
Amsterdam, the Netherlands) -

Honors

Corresponding member of the French Acedemy of Sciences
Knight of Légion d'Honneur and Ordre National du Mérite.

— 181 —

Research activity
Over 100 papers on the following subjects

- formal langusge theory, especially context-free languages, rational
transductions, congruences on words

- algebreic semantics of programming languages, free algebras, tree
grammars, compuagonal nies

- infinite and biinfinite words, infinite trees and infinite computations
- finite automata models of distuibuted systems

- scanered combinatorial and algorithm problems : shuffle, tree cbdes,
tlings of the plane.

Several reports © the French Government on Training and Research
in Compuer Science.

— 182 —

