Summer 1988 at ICOT: Some Impressions and
| Preliminary Results

Andrzej Ciepielewski SICS, Sweden

Abstract

ICOT and SICS are two somewhat similar research organizations in two very different countries,
One of the main research areas in both institutes is parallel execution of logic programming languages.
I stayed at ICOT for three months working with subjects of common interest, and studying work done
al the institute. The preliminary results presented in this report concern parallel implementation af
OLDT resolution, and/or parallel exccution of Prolog related languages, suitability of MIMD and
SIMD architectures for logic programming languages, and finally architectore simulations.

1 Background

My visit to ICOT has been made possible thanks to mutual interest on many different levels. First comes
my personal interest in Japan and in the research conducted at ICOT and elsewhere in Japan. That is
closely followed by the common interests of ICOT and SICS, two somewhat similar institutes in two very
different countries. The institutes agreed on exchanging researchers, or rather ICOT agreed to receive
researchers from Sweden. Finally, there are surely some common interests at the national level, but of
that [know vecy little. -

The concrete plans had been setup by Koichi Furukawa and me, and approved by the respective
directors. We easily found some research pursuits from which both ICOT and SICS could benefit. We
agreed on the following subjects. (1) Investigation of suitability of or-parallel implemientation technigues
in the context of knowledge bases in general, and for implementing OLDT in particular. (2) Comparison
of Andorra Prolog with ANDOR-IL (3) Cooperation with Evan Tick in his effort to compare cache
behavior of the Aurora Prolog and the KL1 systems.

2 Overview

A three month visit to an exciting research institute in an enchanting country induces an extreme effort
to pursue {and balance) what are essenlially contradictory interests: professional and other. T will omit
describing all of the excitement outside [COT, but my advice is lo come and see it, there is nothing like
Tokyo at 9 p.m. (any evening), and there is already a lot of beanliful country side as soon as | hour from
the downtown.

I wanted Lo carry out my outlined plan, but at the same time [wanted to learn as much as possible
about all the different subjects being investigated at 1COT. The results of all the compromises are
described helow, :

In Section 3, [present my work on knowledge bases which [carried ont together with the members of
the 3rd laboratory and Teshiba's Research and Development cenler. The first oulconws are a prololype
parallel implementation of QLIYT in Aurora Prolog {mostly by Y.Morita), a parallel scheduling algorithin
which is an improvenenl over the |||||Ii.i-!-'=ln,t_;f" geheduling algorithm proposel by Tamaki {”J!. aml an
outline of extensions Lo the Aurora I'rolog system necessary Lo implement OLIYT efficiently. In Section
4, | discuss some language and implementation aspects of Andorra and ANDOR-1I, and also give some
more general comments on and-or paraflel logie lnguages. In this part of my work I had many fruitful

= 148 -

exchanges with A.Takeuchi and K.Takahashi from Mitsubishi's Central Laboratory in Osaka. In Section 5,
I cepare ICOT’s and SICS's approache to implementing logic languages on parallel computers, and also
offer some thoughts on feasibility of using SIMD machines. This part of the work has been influenced
by discussions with members of the 4th laboratory and M.Nilsson from Tanaka Laboratory at Tokyo
University. In Section 6, I give a very short summary of my contributions towards instrumenting the
Aurora system for cache simulations. Finally in Section 7, I mention some other events from my. stay at
ICOT.

3 Parallel OLDT

One of the main goals of ICOT is to design an integrated inference and knowledge base machine. Up
to now two separate machines were ivestigated. Oune of the main differences in techniques used in the
database area and in the problem solving area is the way queries are solved: in the DB area, mostly
bottom up and in the problem solving area exclusively top-down. Another difference is the approach to
search completeness. Prolog, for example, is not scarch complete, it is up to the programmer Lo write
clauses and goals in a proper order, and to pose suitable queries so the program will terminate, e.g., when
all solutions are required. Database systemns must be scarch complete, at least for a class of programs
(e.g. stratified programs), and the search completeness must not depend on the order of literals in a
query or the ordering of rules and facts in the database. One attempt to solve the search compleleness
problem in a top-down manner is OLD resolution with tabulation (OLDT) [10], extended to OLDTNF
to handle finite negation [7]. There are at least two other attempts to solve the problem in a similar
way [2] [12]. The last one scems to be the most general of the three as it does not require that goals be
chosen in a fixed order, which OLDT does. My aim was to investigate the feasibility of an or-parallel
implementation of OLDT and QLDTNF.

In a sequence of meetings with Y.Morita, F.Itoh, and H.Monoi {rom the 3rd laboratory, researchers
from Toshiba's R and D laboratory, and H.Yokota from F ujitsu, we discussed the database work done
at ICOT and associated companies, and relational database techniques in general. We also discussed,
extensively, or-parillel implementation Lechniques in general and the or-parallel Aurcra Prolog system
in particular, With that background we could identify the main implementation problems of QLDT
as being: representation of terms for efficient subsumplion testing, organization of OLDT tables for
avoiding congestion on access by processors working on different branches, and creation of an efficient
parallel scheduling algorithm to replace the multi-stage scheduling algorithm proposed by Tamaki.

ILIto is investigating theee methods for representing terms: superimposed code word techniques, TRI
representation proposed by 1. Yokota [16], antl indexing with hashing as used in most Prolog implemen-
talions. Y.Morita is working on a pilot implementation of OLDT in Aurora Prolog. His implementation
is quite realistic, it is expected to have fairly good speed and already shows good speed-ups (up to 8 times
on 8 processors). Morita's implementation is one of the first extensive tests of Aurora’s asynchronous
predicales and of the “save arca” facility [5). I am working on a parallel scheduling algorithm, and on
integrating OLDT resolution in the Aurora parallel 'rolog system.

Tamaki’s multi-stage scheduling algorithn is sequential. A compntation proceeds in stages. In cach stage
OLD extensions and lookup reductions are executed in order until no more operations are possible. A new
stage starls if the previous one has produced some new solutions. Tamaki's algorithins can be trivially
parallelized by removing the ordering restriction for execution within a stage. The reduction within a
stage can be done in any order or in parallel. ‘Phe algorithm rewnins correct as long as the division into
stages is kept. Such simple parallelization is not satis ying because it restricts parallelism unnecessarily.
The algorithm is based on the worst case assumplion, waunely thial all subtrees rooted in diflferent solution
nodes are interdependent (a lookup node in one tre is suspended on a solution nade in another sublree).
I am working on a less restrictive algorithin, a local tilli-stage scheduling algoritlin, based on the
following observations: (1) The solution list of a solition node can only e expanded by Lhe braoches

— 149 —

below this node in the OLDT tree; (2) The solution list of a solution node cannot be expanded in the
current stage (global stage as defined earlier) if every branch below this node is suspended either on this
solution node or on its descendant. The main idea of the algorithm is to divide the computation into many
local stages and allow as many stages as possible to be executed simultansously. A local stage consists
of reductions and extensions below a solution node. Local stages can be nested and interdependent. The
algorithm determines when the stages are disjoint, and thus independent.

Morita’s parallel interpreter implements a parallel version of Tamaki's algorithm. He is also trying to
implement an approximation to the algorithm proposed by me. It seems fairly hard because it requires
knowledge of the structure of the suspended part of the OLDT tree. Another inefficiency in the pilot
implementation is the handling of suspension. The state of a suspended computation is copied to the
internal database on suspension and copied back to the runtime area (code and heap} on activation.
By extending the Aurora system the efficient scheduling algorithm can be implemented and copying of
suspended branches avoided. Imiplementation of the algorithm is facilitated by the fact that even the
suspended branches are kept in memory, and thus the structure of the whole tree is available. Copying can
be avoided because in the Aurora system information about about conditional bindings [13] is available
(from trails) even for suspended branches.

The pilot implementation is currently being used to estabkish the raw speed of the interpreter, and get
an idea of the time consumed by different operations like subsumption testing and suspension. The speed
is compared to the speed of a Prolog system, on feasible examples, and also to the speed of the sequential
OLDT interpreter from which the parallel one originates. The speed-ups are being measured for different
programs. When the investigation is completed we will try to answer the following questions: Is the
implementation in Aurora a useful tool in itsell; How much is gained by parallelism and what has to
he done to extract it; Is it worth-while Lo extend Aurora with local multi-stage scheduling? A question
which cannot be answered by this investigation is how subsumption testing can be improved.

4 Andorra and ANDOR-II

Programis written in logic programmiug Janguages have potential for both AND- and OR- parallelism.
Because of the difficulties in combining the two, most of the systems designed so far ulilize just one
form of-parallelism. Or-parallel Prolog {e.g. Aurora) allows parallel search for alternative solutions while
keeping execution of goals sequential. This impairs efficiency, but does not limit the expressive power
of Prolog. Committed choice languages allow parallel exploration of goals, but commit to one choice in
each predicate, making programming of many problems inconvenient if not impossible. Two languages
have been propesed recently, Andorra Prolog and ANDOR-11. Their main objectives are different.

"The initial objective of the Andorra model [14, 15], was to allow and/or execution of Prolog, but it is
now consideres! as a base for some other languages. One passibility is Andorra Prolog [4], a language
intended Lo subsume bolh Prolog and commitied-choice languages. [n addition to dont-know and don't-
care non-determinism the language supports control of or-parallel split, synchronization on variables, and
selection of elanses. '

The main ohjective of ANDOR-IT [8] is investigation of distributed problem solving, with proh-
Irtns comiing from Al The language inherits most of its properties from FGIC, extending it with
non-determinate (all solutions) predicates. The method of realization is a general transformation of
or-parallelism into and-parallelism, using colors to identily solutions coming from alternative branches.

| have rather informally compared two aspects of the above languages: expressiveness and execution
inodels, In the comparison [do not simply use the Andorra model, but Andorra Prolog, a language huilt
upon the model,

The two languages secin approximately expressive power, assuiming that built-in predicates in Andorea
suspend until their argnments are nongronnd, There is one exceplion. Andorra, as currently delined,
sulfers from unfair scheduling. Becanse of this many programs which designers al ANDOR-I have in

— 150 —

mind, e.g. programs defining systems of communicating non-determinate process, processes giving all
solutions, will loop in Andorra, not producing any results. This is so because Andorra’s scheduling always
chooses the leftmost among suspended non-determinate goals. This scheduling principle is not inlierent
in Andorra Prolog. 1t has been adopted to get a program behavior (order of goal execution) as close to
that of Prolog as possible. My opinion is that the principle of choosing the leftmost go can be replaced
by fair scheduling without any great loss. The close affinity to Prolog will be lost anyway, because of the
necessary suspension of built-in predicates. Andorra with fair scheduling would run the same programs
as ANDOR-II, and the programs would be very similar. :

In contrast to the expressive power, the computational models of the two languages are different in at
least one important respect: Lhe handling of multiple solutions. ANDOR-II computational model handles
multiple solutions using “colors”, Andorra uses restrictive copying.

ANDOR-IL is implemented on tep of FGHC, but this is not of primary importance, as an FGHC
implementation could be extended to support colors efficiently. The important fact is that each process
must potentially manage solutions from different worlds (branches in the search tree), because incon-
sistent solutions (belonging to different worlds) might “meet” in a process, but must not be combined.
Consistency checking is the main source of overhead in the ANDOR-II model. A nice property of the
model is that the same solution is not recomputed in different worlds, as it is in Prolog and in Andorra.

In Andorra different worlds do not interact. Execution of a non-determinate predicate prepares for
the creation of independent worlds. A world is actually created by restrictive and delayed copying of
conditional bindings using the binding array technique.

Summarizing: in ANDOR-II inconsistent solutions can be produced and as a resull a consistency check
is nceded. In Awdorra, in contrast, worlds are separated by restrictive copying and no incousistencies
arise. It is an open question which method is better on the average.

A.Takeuchi has made an interesting observation after studying S.Gregory's propesal to implement An-
dorra in Parlog [3]. One of the main sources of overhead in this proposal is the copying of goals. It seenis
that copying the goals could be made efficient using the binding array technique used in Andorra. That
would make Andorra in Parlog a viable alternative to the other two.

While studying the scheduling problems in Andorra, two reflections occured to me, one coneerning gen-
eralizing the Andorra model, and one on scheduling in KL/1.

(1) Animportant preperty of Andorra is that at most one non-determinate goal per branch is executed
al any time. In this way conflicting bindings are avoided. Currently a non-delerminate goal is chosen
when all goals in the branch suspend. The goal could be chosen earlier, e.g. when the Jast goal is about
to suspend, or even eaclier. In the latter case all goals in a branch would have to be stopped while the
non-determinate goal is execuled, and then restarted in different worlds. Such flexibility makes possible
the design of schedulers wlhich could give different priorities to different goals depending e.g. on the
availability of processors,

(2) T think that similar problems will have to be considerd in a FGHC implementation running
ANDOR-II programs. Two types of processes, all-solutions process and ordinary and-processes, will have
to be introduced aml scheduled appropriately. ‘This is especially true in view of the sensitivity to the
choice of scheduling shown by the existing implementations [9].

5 FGHC on MIMD and SIMD

Both ICOT and the Gigalips project have the ultimate goal of developing machine architectures for the
eflicient utilization of parallelisn in logic programuming. The approaches of the two organizations are very
dillerent.

" Rescarchers at ICOT have made an a priori decision that a MIMD architecture with loral memories
15 an appropriale base for a parallel inference machine, Such an architeclure has the very inportan
advantage of being sealable, bul it also has a erucial disadvantage in not eMciently supporting for glohal
address space, This decision las influenced the form of the language used {committed-chioice, one way
head unification), and the pragmas {explicit control of scheduling). The resitlts of the 4th lahoratory are

— 151 —

very impressive, they have already managed to design a success{ul parallel machine that will be able to
run many programs at excellent speed. At the same time, the simulation results show clearly that the
machine is not quite satisfactory, because it does not allow transparency [9]. A program moved from a
sequential machine to PIM will require extensive rewriting in order to run efficiently. This is due to the
time taken by the remote accesses, and the resulting high sensitivity to scheduling decisions.

The consensus in the Gigalips project is that logic programming on a parallel computer should not be
much different than on a sequential computer, and thus, that efficient support of a global address space
is essential. The strategy is to extend the existing technology, and search for an architecture which would
support the “dream language” efliciently, all the while keeping a check on' the appropriateness of this
direction of research. This approach is at the same time more cautious and more uncompromising. The
difference in approach could be caused just by the 10 years limit hanging over ICOT, but there might be
some deeper reasons. ;

There is an alternative to the directions of ICOT and the Gigalips project. Recently a very successful
SIMD computer, the Connection Machine, has been constructed. It was intended for Al applications, but
it seemed at first that it was most suitable for numerical computations. Now there is growing evidence that
it is good for Al alter all. There is also some evidence that it suitable for committed-choice languages
too. M.Nilsson {6] shows that massively parallel FGIIC programs can be executed efficiently on the
Connection Machine. The solution proposed by M.Nilsson is a parallel SIMD interpreter for FGHC (via
FLENG). The parallel data structure evaluated by the interpreter is the list of goals. Nilsson's sclution
shows very good peak performance, i.e. speed with all processors busy. His results also reveal some
serions weaknesses of the approach, at least on currently existing SIMD computers. Due to the one bit
processors of the CM, Nilsson's interpreter performs very poorly when there is not enough parallelism in
executed programs. This makes the system impraclical except in very special cases. Most of the problems
considered suitable to be solved using committed-choice languages do not have the amount of parallelism
that would make a CM-like computer compelitive as a general purpose computer.

It is an interesting question whether a 1000-processor SIMD with powerful 32 bit processors could be
an allernative to a 1000 processor MIMD. The main problem is still the sequential performance. Nilsson's
solution is a parallel interpreter. The interpreted speed is known to be an order of magnitude lower than
the compiled speed on conventional uniprocessors. Does Lhis rule of thumb still apply? If so, can a single
SIMD processor be made 10 times faster than the corresponding MIMD processor? Other problems
concern load distribution and garbage collection. Are there reasons to believe that Lhese problems have
more efficient solutions on SIMD architectures?

These are some open questions which must be answered in order to establish whether machines with
SIMD architectures could be practical engines for logic programming.

6 Awurora Instrumentation

A non-trivial siep in the design of a new architecture is simulation of the dilferent aspects of the archi-
tecture. E.Tick is investigating cache behavior of Aurora and KLJ1 systems [11] using a pacallel cache
simulator connected to current implementations on Sequent’s Synnnetry. During my stay at 1ICOT @ ap-
plied my expertise concerning the internals of Aurora to miake Lthe system run together with Matsumoto's
eache simulator, and to behave properly when instrumented. Sowe guite central changes to the system
were required, probably the inost essential being madification of the process management, new choice of
idling times, and allocation of binding arrays in the shared memory. [seems thal the instrumented sys-
e now behaves reasonably. Tn the course of this work I learned a lot about. simulation, and discovered
that it is indeed an art.

I am taking home with me Matsumoto's cache sinmilator, hoping that the work of Tick will be continued
and extended at SICS, '
As a spin-off from my work with Tick I have got somwe ideas about caches for Aurora, ideas Lhat happen
to coincide with the ideas of “Tick, Hermenegiklo, and Shen. In the eurrent Aurora implementation,
the memory of a processor is divided into private read/write memory, shared read-only memory, and

— 152 —

shared read/write memory, the last one being used for storing nodes of a search tree. The need for
rea i/write shared memory can be eliminated if a scheduler using the “wave-front” data structure is- used
(1). Caches for a system where only private memory is read/write would require a very simple cache
coherency protocol. Namely, when a part of worker’s memory is made shared, part of its cache must
be either written back to memory or broadcast to other caches. The question is how much of the cache
contents must be “made public”.

7 Other Activities

During my stay at ICOT I gave two formal talks, visited 3 companies (Toshiba, Fujitsu, Mitsubishi) and
talked to many ICOT members. Below I shortly summarize those activities.

7.1 Talks

The Aurora Or-Parallel Prolog System
Aurora is a prototype or-parallel implementation of the full Prolog language for shared-memory multi-
processors, developed as parl of an informal research collaboralion known as the "Gigalips Project”. It
currently runs on Sequent and Encore machines, 1L has been constructed by adapting Sicstus Prolog, an
existing, portable, state-of-the-art, sequential Prolog system. The techniques for constructing a portable
multiprocessor version follow those pioneered in a predecessor system, ANL-WAM. The SRI model was
adopted as the means to extend the Sicstus Prolog engine for or-parallel operation. We describe the
design and main implementation features of the current Aurora system, and present some preliminary
experimental results. We conclude with our plans for the continued development of the system and an
outline of future research directions.

The system is available at ICOT's Symmetry machines. [plan to demonstrate the system bath
directly after the talk and at some later time we can agree upon.

Andorra Prolog: its Computational Model, Applications and Iniplementation

The Andorra Model, invented by D.H.Warren and R.Young is a solution to the problem of exploiting
dependent and-parallelism transparently in Prolog programs. The solution is to execute determinate
goals in and-parallel, with the determinacy analysis being perforimed mainly at compilation time. The
model extended with wait declarations is a base for Andorra Prolog, designed by S.Haridi, a coroutining
language more powerful than Prolog. I will present the model and the language. Then I will briefly
describe thh application of Andorra Prolog to distributed simulation, and outline an implementation
of the model. Finally, 1 will try to compare Andorra Prolog with ANDOR-II, a language proposed by
K.Takeuchi et al. -

7.2 Visits

Toshiba:

I visited the Information System Laboratory at Toshiba’s Research and Development Center. My host
was Mr. M.Minami. The laboratory receives corporate, division and stale funding. It consists of
B groups working on advanced architectures, knowledge base soflware, man-machine interface (multi-
media), speech understanding and vision. "The resilts of Lhe laboralory range from close to exploilation
{like an attached Prolog processor) to Lhe very speculative (like a paralle] Al machine). The laboratory
coopuerates with [COT in the knowledge base research. Amoug the results are a liardware accelerator for
IRBU (retrieval by unification), and a multiprocéssor database miachine Mu-X.

Fujilsu

I visited the Al laboratory in Kawasaki. My host was Y. Yokota. The laboralory consists of 3 groups
working on basic Al, neural computing, and hardware. ‘The laboratory coaperates with 1COT on building
PIM. A Sequent. Symunetry is used for experimentation in implenentation technigques for GIE. Other

- 153 —

activities include construction of parallel hardware for image recognition and display; I was shown CAP
(cellural array processor), a MIMD computer constructed at the laboratory, meant to be used e.g. for
car interior design using high quality images; and robot control by neural networks; I was shown a neural
network based system used to control a set of toy robots playing cops and robbers.

Mitsubishi

I visited the Central Research Laboratory in Osaka. My host was A.Takeuchi. This is one of several
computer research laboratories supported by Mitsubishi. It is fairly small (slightly over 10 people),
and fairly theoretical. The main thenies are parallel problem solving, intelligent programming systems
(verification, synthesis, analysis, algorithmic debugging) and expert systems. I spent most of my time
discussing ANDOR-II and Andorra systems mentioned earlier in this report. I also had an opportunity
to discuss the Pegasus chip, a one chip processor to be used in embedded systems, e.g. home appliances.

7.3 Presentations and Discussions

I was given a general introduction to ICOT by Dr.Iwala, an overview of the second laboratory by 777, and
an overview of the third laboratery by Y .Morita. I talked with K.Yokota about Kappa, with K.Yoshida
about A'UM, with H.Scki about OLDTNF, with Golo,Taki,Salo and Chikayamna about PIM and multi
PSI, and with K.Ueda about program transformations and constraint programming in FGHC. I also
showed a simple integer constraint solver written by S.Haridi to K.Ueda and his colleagues, who are
comparing it to a constraint solver wrilten in FGHC. Finally I talked with M.Hermenegildo about compiler
time analysis for RAP.

8 General Remarks

The keys to a successful visit are common interests, good organization, and openness on both sides. |
think that in my case all the keys were given. I have benefited from the visit both by being exposed to
new issues and by being forced to explain my work.

9 Acknowledgements

I am very much impressed by ICOT’s procedures for welcoming guests and new coworkers. | have never
felt so important in my life. | want lo express my special gratitude to Dr.Iwata who helped organize my
trip, and to ¥Y.Morita who always had time to help me with my daily problems in and outside 1COT (e.g.
when the air-conditioning started to Nlood my apartment).

References

[1] Per Brand. Wavefront scheduling. Internal Report, Gigalips Project, 1988.

[2] Extension Tables: Memo Relations in Logic Programming. [n Proceedings of the 1987 Symposium
on Logic Programming, San Francisco, 1087,

[3] Steve Gregory. Thoughts on the Relationship between David’s Proposal and Parlog. In Gigalips
Workshap, Manchester, 1938,

[4] Seif Maridi and Per Brand. Andorra Prolog ~ An Inlegration of Prolog amd Committed Choice
Languages. In Intermational Conference on Fifth Cleneralion Compuler Systems 1988, ICOT, 19583

[5] Ewing Lusk et al. 'The Aurora Or-parallel Prolog System. In fnternational Conference on Fifth
Generalion Compnler Systems 1988, 1COT, 1988,

— 154

[6] Martin Nilsson and Hidehiko Tanaka. Massively Parallel Implementation of Flat GHC on the Con-
nection Machine. In Inlernalional Conference on Fifth Generation Computer Systems 19288, ICOT,
1988.

[7] Hiroshita Seki and Hidenori Ite. A Query Evaluation Method for Stratified Programs under the
extended CWA. In Proceedings of the 1988 International Conference on Logic Programming, Seattle,
1988.

(8] Akikazu Takeuchj, Kazuko Takahashi and Hiroyuki Shimizu. A Parallel Problem Solving Language
for Concurrent Systems. In Proceedings of IFTP WG 10.1, 1988.

[9] Kazuo Taki. Measurements and Evaluation of the Multi-PSI/V1 System - A Study of Inter-PE
Communication versus System Performance. 1COT.

[10] Hisao Tamaki and Taisuke Sato. OLD Resolution with Tabulation. In Proceedings of the 1986
Internalional Conference on Logic Programming, London, 1986,

{11] Evan Tick. Performance of Parallel Logic Architectures. [COT Technical Report TR-421, 1988.

[12] L.Vieille. A Database-complete Proof Procedure Based on SLD-resolution. In Proceedings of the
1987 Internalional Conference on Legic Programming, Melbourne, 1987,

[13] David 1. D. Warren. The SRI model for or-parallel execution of Prolog—abstract design and
implementation issues. In Proceedings of the 1987 Symposium on Logic Programming, pages 92-102,
1987.

[14] David H. D. Warren and Rong Young. The Andorra Model and Its Implementation. In Gigalips
Werkskop, March, 1987.

(15] Rong Yang. Prograinming in Andorra-I. Internal Report, Gigalips Project, August 1988.

[16] Haruo Yokota et al. Knowledge Retrieval and Updating for Parallel Problem Solving. Fujitsu
Limited.

Ciepielewski Andrzej

Researcher at the Laboratory of Logic Programming Systems
SICS Swedish Institute of Computer Science

Home Address
Renstiernas Gata 31, I 11631Stockholm, Sweden, Phone +46 §
417344

Academic Degrees

. Ph.D. in Computer Science from the Royal Institute of Technology
(KTH) Stockholm, 1984,

. Docent, in Computer Science from the Royal Institute of

Technology (KTH) Stockholm, 1988.

~-155

Employment

. Current employement is stated above, Dec./85.

. Extra university lecturer Oct./84 - Nov.85 at KTH.

. Research Engineer at KTH, department of computer science,
July/80 - Sept./84.

. Assistent at KTH, department of computer science, July/76 -
June/80.

. Programmer at Institute of Applied Mathematics (ITM), Jan./78 -
June/78 '

. Programmer at Mydata AB, June/75 - Dec./77.

Referee for: !

. Journal of Logic Programming

. The International Journal of Parallel Programming

. International Conference in Logic Programming, Melbourne 87,
Seatle 88

. IEEE Symposium on Logic Programming, San Francisco -87, Salt
Lake C. - 1986, Atlantic C. - 1984

. IFIP, Dublin -1986, Paris - 1983.

. Annual Symposium on Computer Architecure, Tokyo -1986,
Stockholm - 1981.

. International Conference on FGCS, Tokyo, 1984

Program Committee Member:

. Parallel Architecture and Language Europe, PARLE'89

. International Conference in Logic Programming, Seatle 83
. IEEE Symposium on Logic Programming, San Francisco 87

— 156 -

