REPORT ON A VISIT TO ICOT

Mare Snir
Department of Computer Science

Hebrew University of Jerusalem

1.0 IDNTRODUCTION

I visited ICOT for three weeks, from March 9th to March 29th, The
main purpose of my visit was te collaborate with the teams working on
the architecture of the parallel inference machines, the PIM-R and the
PIM-D. | I intended to cheeck to what extend my work on the HYU
Ultracomputer, and related work on parallel zlgorithms, 1z relevant to

the work on parallel inference machines.

During my stay I had fruitful discussions with Mr., Rikio Onai, and
with members of the PIM-R and PIM-D desipgn teams: Moritoshi Aso, Fanae
Mesuda, Hajime Shimizu, and Noriyoshi Ite. I also had discussions with
members of the design team of the PSI machine, and with other ICOT

members, My stay was made pleasant by the help of Mr. Hiroyuki Kusama.

I gave at ICOT two seminars: The first one was a presentation of
work done on the NYU Ultracomputer. In particular I presented those

aspects that I kelieve to be relevant to the work on PIM, indeed to any

— 202 —

work on parallel computer architectures: memory interconnection
netweork, organization of shared memory, process scheduling, parallel

data structures and parallel algorithms, ete.

The NYU Ultracomputer was designed with numerical applications in
mind, but it is not an overly specialized machine. As such, it can
support with reasomable efficiency non pumerical zpplications as well,
and data-flow, or reduction oriented apprcach to logic programning. To
some extend, the work on the NYU Ultracomputer complements the work done
here on FIM: We have done much less work done on detailed processor
architecture, and on programming languages. On the other hand, much
more wWork has been done on basie parallel algorithms, parzllel data

structures, and coordination mechani=sms.

My second talk was an informal discussion of issues in the design
of parallel computers, based on my impressions from my visit at ICOT,

and on my previous experience in this field.

I was very impressed by the advanced stage of development of the
prototype PIM-R and PIM-D machines. With such powerful prototypes
available it becomes possible to gather data on parallel execution of
logiec programming programs, On the other hand, it is important to
consider these machines as being experimental tools. This implies that
they should be as flexible zs possible, so that different approaches can
be tried, especially in the area of processor and memory mBanagement.
They should be instrumented for data gathering (preferably, at the level

of the microcode).

Some possible epplications of these experimental tools, and some

possible means for achieving this flexibility were discussed.

2,0 PARALLH, ALGORITHMS

Extensive work has been done on the detection of parallelis=m in
sequential code. Most of this work has centered on nmerieal
applications, and conventional languages, such as FORTRAN. The general
oubtcome of such work is that there is limited scope for parallelisa in
the execution of wusual, seguential code: the largest number of
processors that can be efficiently used in parallel is in the range
B-16. Similar results were recently obtained for production systems
(OPS5). QMoreover, automatic detection of available parallelism (by a

compiler) is a hard problem.

Several researchers have seen in this situation a proof that large
scale parallelism is unlikely to be useful for most applications. The
following arguments can be used to counter this pessimistic point of

view.

1. Limited parallelism has been detected in current codes because
people have considered small problems., When problem size is
inereased, more parallelism becomes available. A large scale
parallel machine will not be used to =olve problems that fit
comfortably in present day machines, but to solve much larger
problems. It is important, therefore, to extrapolate the

behavior of existing codes when problem size is increased.

2. The use of a conventional programming language encourages a
sequential style of programming, and introduces spurious
dependencies into the code. By coding into a more advanced

language (data flow, reduction driven, logic programming, etec.)

one increases the amount of available parallelism, and

simplifies the task of detecting such parallelism,

3. Comwventional algorithms may, indeed, exhibit only a low level
of paralleli=m: After &ll, they are optimized for sequential
execution. However, if the programmer uses algorithms that are
suitable for parallel execution then a much higher degree of

parallelism becomes available.

4 few remarks concerning these aralmenﬁs.

The use of an advanced programming langwage, such as logie
programming languages, indeed encourages a programming style that is
less sequential in nmature, and facilitates the detection of parailelism.
Hewever, it is unlikely that this is sufficient to achieve efficient use
of a large scale parallel machine, Parallelism must be present 4in the
application studied; parallelism must be present in the algorithm used
for its solution; finally, parallelism must be readily available in the
code of this algorithm. "Conventional®™ Prolog programs are likely to
exhibit only a low level of parallelism, This is supported by the
results of simulations done at ICOT [TR-048]: As for conventional
numerical code, the amount of available paralleli=m ssems limited to

4-8.
This suggests the following approach to parallelism:

1. Study the application field of interest (A.I, matural Jlanguage
processing, knowledge processing, ...). Try to define a few

fkernel® problems that recur in these applicatlons, such that

if these basic problems are solved efficiently, then the
application 1s supported efficiently. Typleal kernel
applications for numerical processing are matrix computations.
For non nuperical processing, searching and sorting seems to
have a central position. It is not clear (to me) what are the

paradigmatie problems for the applications sought at ICOT.

Define parallel algorithms for these central problem. Use an
abstract setting to define these algorithms. At that stage one
can verify whether the studied problems are amenable to
efficient parallel solution, and what is required (in
theoretical terms) to support such solution (ean we run the
algorithm efficiently using a special type of communication

network; can we run it using coarse grain tasks; ete.).

Note that it is usuvally easy to design parallel algorithms
for a fixed number of processors that are efficient on very
large problems, The real issue is: How large need a problem
be in order to use efficiently a given mumber of processors?
Or, inversely, how many processors can be efficiently applied

to solve in parallel a problem of Fiven size?

Encode these parallel algorithms in a concrete programning
language. At that stage one may verify whether the language
supports efficiently parellelism: is the parallelisa ipherent
in the theoretical algorithm still readily detectable in the
coded version of it? Is such parallelism mnaturally expressed

in the language? Do we have adequate data structures?

4. Verify whether the algorithm {e.g. its coded version) is
efficiently supported by the target architecture: Are
communication mechanisms adequate? Is the scheduling peolicy

suitable?

At each stage, the analyses and simulations should not be
restricted to =mall problem sizes. Theoretiecal analysis is naturally
concerned with complexity as a funetion of problem =size. The same
concern should be for the analysis and simulations of code run on the
target architecture. Simulations done on small programs should be used
to develop an amlytical model of performance, and extrapolate

performance for large problems (and large machines).

This type of "top-down®™ approach to parallel processing 1is
essential to the successful design of & new parallel computer
architecture. Without it there c¢an be no adequate definition of

requirements, and any proposed architecture is a shot in the dark.

In addition, such study can have the following results,

1. The development of parallel algorithms to support essential
computations in logiec programming, and logic programaing

applications.

2. The definition of basic data structures, and of parallel
algorithms for their manipulations, in support of such

al gorithms.

3. An appraisal of Proleg as a tool for programming parallel

applications, and evaluation of possible extensions.

— 207 —

2.1 Analysis And Simulations

Decisions on the structure of PIM-D and PIM-R, and on scheduling
policies, are based on simulations of actual Prolog programs. The
simul ated programs are typically small (due to the limitations of the
existing Dec20 prolog system, and to the lack of large applications in

Prolog, or concurrent Prolog).

The properties of large Prolog programs may be quite different from
the properties of s=mall ones. The (dynamic) occurrence frequency of
different predicates is likely to change (less I/0 ?); the (dynamie)
occurrence frequency of "structured data"™ or Mdatabase clauses" is
likely to change; programs may grow in "width™ (more OR or AND

branching), or in "depth".

Moreover, in order to utilize efficiently high level paralleli=m it
is necessary to restructure algorithms. Programs restructured to run
efficiently in parallel may exhibit quite different properties than
conventional "sequential"™ programs. MNote that such restructuring is not
what obtains when cuts, asserts, retracts, are mechanically removed from
Frolog programs. Restructuring should increase parallelism with no
significant increzse in the number of operations; just removing cuts
from a Wsequential' Prolog program usually will increase significantly

the number of operations performed.

Simulations and analysis can not be performed extensively on large
programs; also, it is hard to understand results obtained from
simulations of composite programs. it is important to define standard

parameterized benchmarks, such as exist for data processing or numerical

processing. These benchmarks should be relevant to logle programming
applications. It is not clear to me what are suitable candidates, To
start with I propose to consider algorithms for sorting, merging, and
related data manipulations. Other candidates are algorithms for
heuristic search, algorithms for alpha-beta tree search, ete. Even if
these algorithms are not typieal of logic programming applications, they
are well understood, and will still take a significant fraction of

computing time in large applications.

Such study will also provide realistic amalytical meodels of Prolog
programs, It is expensive to study problems concerning the efficiency
of a2 computer architecture using simulations of actual prograns. For
sequential architectures, problems such as caching policies, paging
policies, ete., are studied using analytical models, with parameters
derived from real program simulations. Such analytical models are
especlally important in the first stage of development, when 1t is
desirable to test many different options. Such analytical models can be
used either for amalysis, or for simulations using synthetic inputs.

Example of possible applicaticns are the study of the performance of

interconnection networks; the performance of different process

scheduling policies; ete.

2.1.1 An Example -

Te illustrate the approach suggested, let me describe a analyses of
two simple algorithms that I did with the help of mr. Shimizu, The
analysis was done at the level of the theoretical algorithm, and of the

Prolog code, but not at the level of a concrete computer architecture,

2.1.1.1 HEI‘EEED{"t- -

The algorithm sorts a list of length n by splitting it into twe
sublists of length n/2, recursively sorting them, next merging them. If
a list structure is used to store data, then list copying is a lipear
operation. Likewise, merging is a linear operation. The two recursive
calls to sort can be executed in parallel. Assuming unbounded
paralleliszm, the time reguired to perform mergesort is given by the
recursion
T(n) = Dt_nj + T{n/2)
which solves to
'T(n) = 0(n).

The number of operations executed is the same as in sequential
mergesort, namely

t(n) = 0(n log n).

Thus, an the average, there are O0(log(n)) operations available for

execution at each cycle,

When p processors are used the algorithm runs in Eime

Tp(n) = 0((n/p)log(n/p) + n).

The efficiency of this parallel algorithm (the ratio between the
nunber of operations executed in the serial case and the mmber of
operations executed in the parallel case is equal to
T(n) / pTp(n) = 0 (logln) / (log(n/p) + p)) .

In order to have a constant efficiency we must have

p = 0(log(n)loglog(n))

or

- 210 —

n= 0((c*¥p)/p), for some constant e,

This algorithm, therefore, is efficient only when the number of items to
be sorted is exponential in the number of processors used. This implies
that mergesort is not suitable for large scale parallelism: its
efficiency will decrease as the amount of parellelism inecreases, as the
input size is not likely to inerease exponentially in the number of

processors.

Mr. Shimizu impl emented this algorithm in Prolog, and made a

dynamic amalysis of its execution. The table below presents the results

| n ! 10 | 20 I 30 ! 40]
| total number | 220 | s17 | 838 | 181 |
{ of reducible subgoals | | ' ! !
| av. number of reducible 2.89 3.92 66 | L.96 |

H subgoals per level

The total amount of work done is proportional to the total number
of reducible subgoals, and behaves like n*Log(n); the average amount of
parallel tasks available for concurrent execution is roughly equal to
the average. number of reducible subgoals per level, and increases as
log{n). Thus this concrete Prolog implementation of mergesort behaves
as predieted by the theoretical amalysis (there is no loss of efficiency

or loss of parallelism).

Note that the amount of available parallelism would be inereased
(by a constant factor) if a data structure that can be copied in
parallel would be used, rather than a list. #lso, after the initial
list has been split into more than p sublists, then the algorithm

essentially sorta sequentially each of the sublists. Thus, allocation

4

- 211 -

overheads can be aveided by running a sequential sort algorithm on each
sublist (equivalently, by reverting to sequential Prolog when reduction

depth exceeds log p).

Clearly, the amalysis and simulation ean be further refined, to
extract more detailed information, and reflect more accurately the
machine model. Also, a comparative study of (Prolog implementation of)
sort programs can be ecarried, We do not pursue this direction as
sorting is not a main stream problem for logie programming, and the
thecretical amalysis of sorting alpgorithms is well documented in the

literature,

The simple pattern matching algorithm executes, for a text of
length m, and a pattern of length p, pn-p{p-1)/2 comparisons, in the
worst case, The algorithm can be run in parallel, by starting in
parallel to test for a match from any point in the text. This parallel

al gorithm requires p comparison steps.

It is not possible to start in Prolog m tasks in constant time; if
the text is represented using a conventional list representation, then
the m tasks must be started sequentially. We obtain an algorithm that
requires 0(m) steps, assuming that Q(p) processors are available. The

algorithm can use efficiently at most O(p) processors.

The simple Prolog code for this algorithm is given below.
match(T,P) :=- seqmatch(T,PF).

match([A]T],P) := match(T,P).

— 212 —

segmatch(T,[]).

seqmatch([AlT],[AlP]) :- seqmatch(T,P).

OR parallelism is used to generate the parallel match tests, that

are then executed deterministically.

A simple amalysis shows that there are m+3 levels (including the
main one), and the mmber of reducible subgoals is
(m + (3-p)/2)(p+2).
This formula was verified by simulation by mr. Shimizu. Thus, the
number of reducible subgoals per level, e.g. the amauﬁt of available
parallelism is roughly equal to p+2, conforming to the theoretical

results,

3.0 REMARKS ON PIM-R
3.1 Humber Of Proocesses

Ihe number of processes concurrently active during parallel
execution of Prolog can be very large. Assume, for sake of
definiteness, an exscution tree with an OR {(dynamie) branching factor of
Bo, an AND (dynamic) branching factor of Ba, and depth 2d, The mmber
of reductions is (roughly) equal to (Bo*Ba)¥*¥d, An existing process is
either running, ready (scheduled, but not yet running), or waiting
(suspended, and waiting for 2 message - from a child in our case). For
each existing process one has to allocate space for the associated data
structures (Task Control Block). Thus, we are interested to estimate
the maximal number of processes that can exist at the same time (in

elither of the tree states).

— 213 —

Consider first a sequential execution (one processor).

1-‘

Consider

Let

We have

If processes are scheduled according to a First In, First Cut
poliey (normal queueing discipline) then the tree is traversed
in breadth first order, and the mmber of concurrently existing
processes can grow to (roughly) Bo¥%d, This happens when the
(AND) root node is waiting, one of its children is waiting, all
the children of this OR node are waiting, and so on, up to the

last level.

If processes are scheduled according to First In, Last OQut
policy (stack used) then the. tree is traversed in depth first
order, and the mmber of concurrently existing processes can
grow to {roughly) Bo*d. This happens at the maximum reduction
depth: there is one active (OR) process, d-1 waiting (OR)

processes, and Bo®d ready (OR) processes.

now AND sequential, OR parzllel execution, with p processors.

I be the mumber of reductions executed per processor;

Fr be the npumber of concurrently existing processes per

processor;

p be the number of proceassors.

p¥*L = (BofBa)##d ,

— 214 —

If each processor schedules tasks with least reduction level first
{pseudo breadth first), or each processor schedules locally tasks in
FIFO corder, or a global FIFO scheduler is used, then the tree is visited
{roughly) in breadth first order, and the number of concurrently
existing tasks can grow to be Bo®#®d. We obtain p¥Pr = Bo®#¥d,

80 that

Pr = I##{{-a)/p#%a,

where

a = log Ba /7 (log Ba + lag Bo) .

Consider a machine consisting of p=100 processors, each executing 30
Kips. Bach oprocessor, running for 10 minutes, will execute I= 18
Mglips. Taking Ba=Bo, we have a = 1/2, and PFr =~ 400, Taking Bo =

Ba##2, we have a = 1/3, and Pr = 15000.

If 2 global =zcheduler is used that schedules the processes in LIFD
order, or in largest reduction level first then the mnumber of
concurrently existing processes is bounded by p*Bo®, so0 that Prd{d2Bo,
as in sequential depth-first reduction. This ean still be significant
for programs that are nearly deterministie, For exampl e, with

Bo=Ba=1.1, and 18,000,000 nodes, we still ecan have

24000 independent tasks, in an AND sequential, OR parallel
execution (so that the problem is suitable for parallel execution); the

depth of the tree is more than 200.

Ho central scheduler is planned for PIM-R. There are two Llocal

scheduling policies that approximate depth-first

— 215 —

1. Pseudo depth-first: Each processor schedules fasks in its

gueue according to a largest reduction level first poliey.

2, Pseudo LIFO: Each processor schedules tasks according to a

last arrived first executed policy.

The nmumber of concurrently existing tasks, when a lceal scheduling
policy is used, depends also on the processor allcecation policy used.
It is expected that the mmber of concurrently existing tasks, when
these two scheduling policies are used, is approximately equal to the
number that would obtain in a true depth-first execution, but I do not

have firm analysis.
We can reach two conclusions:

1. Depth-First scheduling (usually) consumes much less space than
breadth=first scheduling. This is probably even more marked
when only one solution is needed. A sa, as programs are
written with a depth-first search mechapise in mind,
depth-first search will be more efficient. Simulations done

for the PIE machine leads to the same conclusion.

2. The mmber of concurrent processes generated is very dependent
on the type of scheduling used, and on the dynamie properties
of the program executed., Mo scheduling policy <can keep it

small for any type of problem.

The analysis presented is very rough, as it assumes that all executed
branches have the same depth. A more accurate analysis, taldng into

account actual dynamic properties of large Prolog programs, is needed.

— 216 —

Ml so, one should refine this analysis to estimate the. number of

processes in each state.

3.2 Process Control

The previous section indicates the need for controlling the mmber
of processes generated during parallel execution of Prolog. Since the
number of concurrent processes is heavily dependent on dynamie
properties of the Prolog program it does not seem feasible to have this
control at compile time; the mmber of generated processes mnmust be

controlled at run time.

One approach to this problem is that of controlling process
creation by using a suitable scheduling policy. We have already pointed
out that First In, Last Out will be adequate for programs with large
nondeterminism. This, however, might not be enough for nearly
deterministic programs. In any case, the scheduling policy does not
infiluence the total number of processes generated (in a pure Prolog
program), Process generation has a significant overhead, as it requires
resource (processor and memory) alloeation., Thus, it is desirable to

reduce the total number of processes created,

This result can be achieved by "chunldng®: Each c¢lause is,
potentially, an independent process. However, the system may "chunk"
several such independent processes together. Such chunk of processes
will be executed serially on one processor. Since they run on the same

processor they may share structures.

— 21T —

Chunking may be done at compile time, based on the static
properties of the program. However, since the static properties of a2
program may be quite different from its dymamic properties, this is

better done at run time,
Follows seversgl possible chunking poliecles:

1. Chunk together AND related tasks; this is the default mode for

Parallel Prolog on PIM.

2, Chunk together OR related tasks; this is the default mode for

Conecurrent Prolog on PIM.

3. Chunk together a node and all its desecendants. For example,
execute program sequentially when reduction level exceeds a

fixed threshold.

We emvisape a system where chunlkdng is based both on statie
analysis of the program {(e.g. the amount of sharing between AND related
tasks, the amount of OR branching, ete.), on dynamie properties of the
currently -executed task (e.g. depth, number of unbound variables,
ete.), and system-wide parameters (number of processes). The process
scheduler has to decide on execution mode whenever 2 new goal 1s
generated, and whenever a literal is selected. Currently the decision
is fixed, We advocate an architecture where this decision is taken at
run time, based on static information available at compile time, and on

local and global dynamic information available at run time.

Complex analysis can be done at compile time, to decide on optimal

chunking. This analysis will be used to generate the code that decide

— 218 —

at run time whether to generate independent tasks, or chunk, This ocode
must be efficient, so that it will use only limited information on run
time environment: mainly reduction level, and .p-::ssibly restricted
information on present goals and bindings. In addition global

information, such as number of existing processes may be used.

I assume that decision on chunking is reversible: processes that
have been chunked together ean be latter separated., If the chunking
policy is efficient, then the need to reverse a chunldng decision will
arl'ise seldom, and one may be willing to aceept a significant overhead

whenever chunked processes are split.

It is often claimed that the granuliarity of Prolog programs is too
small for efficient execution on a large scale parallel machine. One
possible solution is provided by a programning language that provides
for large grain modules, The other altermative we suggest is akin to
program restructuring, when done statically; the possibility of late

decision gives even more flexibility.

There have been a few suggestions on the literature of possible
algorithms for chunking, and no analysis of their performance on large
programs, I view this issue as an important research topiec.

3.2.,1 Implementing Chunking -

Chunldng can be implemented in several ways

1. Beveral processes are chunked together by running them on the
same processor, This saves communication over the netyork, but

do not save the overhead of copying structures, and creating

— 218 -

new task control blocks.

Several processes are chunked together by using structure
sharing, rather then copying. The processes are executed
sequentially one one processor, as in usual sequential FProlog
impl ementations. Such method saves the overhead of copying.
However, it iz now difficult to reverse the chunking decdsion:
it is difficult to restore the enviromment of 2 process that is

not currently running.

Several processes are chunked together by partially sharing
their respective control blocks (and running them on one
processor). There are many possible compromises: For example,
one can generate the same structures that are generated for a
new process with copying policy, but refrain from copying that
part of the PIB that has not changed.

Specifically, we azsume that a pew header and a new variable
area is created; we also assume that the structure arez is not
required to be consecutive: the address of each structure is
absolute. Nofte that this is anyhow the case for structures
stored in the SMM; 4if the 3MM becomes writable that will be

the case for most (all?) structures,

We call such policy lazy gopvine: A new PIB is coreated,
but copying is deferred until need arise, e.g. until the task
is dispatched to another processor. It is quite easy to
generate a new separated PTB from the information available in

the "skeleton PFIB" desoribed above,

One possible benefit of flexible chunking is the ability to run AND
related «clauses in a pipelined fashion (the forwarding methed).
Consider a clause of the form
p i~ qlx,y) , rly) , s(2z)

Preszently, a procesa is created with goal gq,r,s; for each value
returned by this process, a separate process is created with goal r,s;
for each value returned by this last procesa, a process with goal s is
created. if the different processes with goal r,s that are generated as
children of the first goal are chunked together, then it is possible to
keep only one copy of their shared information, using a "skeleton PTB™,
This effectively means that the goals qrs, rs, and s are processed in a

pipelined manner,

3.2.3 Load Balaneing -

Hote that there is a tradeoff concerning the number of processes
created: The higher is the number of processes created, the higher is
the overhead of process creation and resource alloecation. On the other
hand, the higher is the number of processes created, the easier it is to

obtain a good lead distribution in the system,

Analytical researches [Kruskal,Weiss] have shown that for most
distributions it is preferable to have a =mall number of processes: the
average waste of time occurring when processors idle, waiting for last
processor to terminate is =mall compared with the overhead of splitting
processes intc subprocesses, and allocating these. This suggests to

revert to =zequential backtracking once the number of active nodes in the

— 221 —

computation tree is order of the number of processors, It is clearly

desirable to study this issue by amalysis and simulation.

3.3 Structure Memory Medule

The Structure u:'aemm':r Module (SMM) supports three operations on
lists: Read CAR (returns a pointer o an atom), read CDR (returns a
pointer or an atom), read list (returns an entire list). Writes (CONS)
are not supported. When an entire list is returned from memory the SMM
is busy for many memory cycles. This is undesirable: it means that the
busy time of the SMM has a large variance and, therefore, the average
queuveing delay is large. Is it possible to design an 3MM such that
accesses to large atrucﬁuras will be spread over severzl modules,

without increasing too much the communication overhead?

The simple solution is to interleave memory space across many
memory modules., Then the access of a list will require many successive
memory access operations from the processor, generating a significant
communication overhead. I propose an alternative tentative s=olution.
It has not been eveluzted carefully, so that I am not sure it represents

an improvement.

We assume that each node in a structwre has one pointer pointing to
it; if there is more than one pointer pointing to a node, then this
node might be replicated. The SMM's are connected in a cireular manner:
module i communicates with modules i+1 and i-1 {(mod n). In addition,
the SMM's are connected through a mul tistage interconnection network to
the FPE's. If a node is stored in module i then its CAR is stored in

module i-1, and its CDR in module i+1. When a list access is performed,

module i receives =z message containing the address of the root of the
list. If one of the fields of the node iz WIL, or atom, a value is
returned to the PE; if one of the fields is a pointer, a message with
the pointer value and the PE mmber is sent to the adjacent SMM; the
process is repeated there recursively., Indirect memory access can be
done in the same fashion: a message is sent to the memory module
containing the pointer. This SMM sends a message to its neighbor with
the pointer value and PE number, The SHMM that receive the message

answers the reguest,

If one wishes to support CON's (write cperations) as well then one
either have to duplicate structures whenever the two CONsed lists are
not in correct SMM's. Alternpatively, one can have glebal comnunication
between SMM's (a pointer does not mecessarily point to a location in an
adjacent SMM). However, if it is the case that few new structures are
created, sc that most pointers still point to a location in an adjacent
5MM, than one can use a global communication network between the SMM's
that is optimized for communication between neighbors, An example of
such network is a ring shifter, The same SMM interconnection network

will also be used for garbage collection.

3.4 Exception Handling

It is harder to debug parallel programs than sequential programs.
It is, therefore, essential to have hardware support for good exception
handl ing mechani=ms, Such mechanisms will allow to localize exception
handling to any desired level, They will also support efficiently

tracing and other debugging mechaniasms (the design of efficient

— 223 —

debugging software for parallel systems is an entire issue by itself).

Exception handling mechanisne on a sequential machine are global:
they have access to the entire job erwiromment, and can use it to base
their decisions; this enviromment does not change while the error is

processed,

It is possible to build a "global™ exception handling mechanism for
a parallel machine as well: the global enviromment is implicitly
available in the tree of processes; 1t can, in principle, be accessed
by any process; it is in particular feasible for a process to access

the enviromment of its ancestors.

Note, however that such access reguires interprocessor
communication, Moreover, the information in the TCB of a process may
change while an error is processed at one of its descendants. Thus,

global exception handling seems hard to support.

A loecal exception handling mechanism supports abnormal termination
at each process; the programmer may specify error handlers for each
type of error at each process; such error handler may in partiecular
terminate the process abnormally, and return information on the error to
the parent (the default being abnormal termination, with an exception
flag returned). Such exception handling mechani=m has to be provided by

the machine language (KL1), and be supported by the firmware.

A process terminates after all its children have terminated., If an
error occurred in some child, then the parent process can be terminated
(abnormally) even though some children are still active. A similar

situation ocours in Concurrent Prolog, if OR related tasks are executed

— 224 —

in parallel: if one child committed, and executed its body, then the
parent process can be terminated, even though other children are still

evaluating their guards.

In the currently proposed implementation a process that termimates
while its children are still active is hlocked, and its control block is
not deleted; the children pursue their aectivity, and termimte
normally; the parent process is deleted only when all its children have

terminated.

This can cause inefficient use of processing resources, Moreover,
this does not provide any means to terminate a process that deadlocks,
or exceeds its allocated resources. Mechanisms that support process

killing have to be provided.

If "infanticide™ is rare, then child killing can be handled by
sof tware, by running "process garbﬁg& collection™ code at prescribad
intervals: Processes that have a dead parent are marked as dead, then
del eted. Such code can probably be run without halting the machine by
using concurrent garbage collection algorithms; more ressarch is needed

on this issue,

Dead process collection is facilitated if each process has pointers
toe all 3its children, In such case a parent can kK1l its children when
it terminates abnormally (or when one of its children is committed, in

Concurrent Prolog).

Such reverse links will also be useful for debugging.

— 225 —

4.0 EL1

In discussions with the PIM design group I found agreement that
Frolog, and GHC, while being elegant languages with a clean semantics,
lack many facilities that are needed to develop efficient parallel code,
and to design an operating system for a parallel machine. Several of

the desirable features for the machine language of PIM are

1. More efficient communication mechani sms. Presently
communication is uniquely done through shared loeogleal
variables; this is not sufficient and inefficient for system

programuing.

2. Powerful modularization features. We already discussed the
performance advantapges of coarser grain tasks. A language that
provides good modularization faecilities encourage the
programmer to design its code using modules with 1little
interaction; such modules are patural alloeation units. Also,
good modularization is important for correct development of a

large system,

3. Powerful data structures. Pure Prolog has only lists as data
structures. List aceess dis dinherently serial; such data
structure does not provide good support to parallel algorithms.
The addition of vectors, sets, functions (tables), etec,, would

facilitate development of efficient parallel codes.

4. Facilities for real time programming (e.g. synchronized

communication).

5. Facllities for exception handling. These have been already

discussed.

6. Facilities for explicit resource control. For oritical code,
the programmer will want the abllity to control explicitly the
allocation of resources, e.g. the mapping of processes to

Progeasor s.

Some of these different featwes are found in different Prolog
versions: Parlog has facilities for modularization; Dr. Shapiroe
proposed a notation for the mapping of processes to processors; set
operations oceur in different versions of Prolog. The integration of
all these features in one language with <lean semanties is no mean
issue, Dr. Reeves suggested in owr discussion, that rather than
attempt to incorporate all these feature in one language, one should use
a two level system: at one level processes written in pure Prolog; at
the pext level communication mechanisms between such processes, using
C3P-like semanties. Such approach, which is similar to the approach

used for ESP, merits serious consideration.

The design of the machine language is the most important aspect of
the design of a machine architecture. It has to be done with much
avareness to the appliecations it will be used for, and to the

technologleal constraints of hardware.

5.0 FUTURE COLLABORATION

I see the possibility for extensive collaboration with ICOT on the

issves mentioned in this report. Many members of the Computer Seience

— 227 —

Department at the Hebrew University, including myself, are actively
engaged in research on parallel and distributed processing. This
includes work on the design and analysis of parallel and distributed
algorithms, work on distributed operating system, work on the semanties
of distributed processing, work on distributed databases, work on
coordination protocols, work on the design and evaluation of parallel

computer architectures, ete.

I see the possibility for collaboration in the following areas.

1. Design and analysis of parallel algorithms. This includes in

particular
1. eoordination algorithms;
2. parallel data structures;
3. =earch algorithms
4. graph manipulation algorithm (the latest will be required
in knowledge processing systems).
2. Design and an?lysia of parallel computer architectures, In
particul ar
1. design and analysis of interconnection nmetworks; and
2. design and analysis of memory structures;

3. Design and amalysis of scheduling policies for parallel

computers.

Such collaborative research would be facilitated by dimproved
communi cations. In particular, it would be very helpful if ICOT gained
access to CSNET, or other similar network. My department has been
connected to C3NET for a year, and this connection has greatly increased
the amount of collaboration with colleagues from the US; It emables us
to pursue joint work inltiated during personal visits, by the exchange

of written comments, and verzsionz of papers in preparation.

Curiculum Vitae

Marc Snir

Born in 1948 in Paris, France. In Israel since 1960.
Israeli Citizen. :
Married and father to two children.

Military service 1967-1969.

Homeaddress:
Ramot 619, Jerusalem, Israel
{02-861190)

Businessaddress:
Institute of Mathematics and Computer Science, The Hebrew University
of Jerusalem, Jerusalem, Israel. (02-585439)

Degrees:
B.5¢c., Hebrew University of Jerusalem, 1972.
Ph.D., Hebrew University of Jerusalem, 1979.

Positions:
Hebrew University of Jerusalem, Teaching Assistant 1974-1977, Instructor
1977-1979.
University of Edinburgh, Dept. of Computer Science, HResearch Fellow
1979-1980.
New York University, Dept. of Computer Science, Ass., Professor 1980-
1983,
Hebrew University of Jerusalem, Seniocr Lecturer 1982-,

Holding the John Cahan chair of Computer Science at the Hebrew
University.

Grants:

1981 - NSF grant for research on Communication Complexity of Parailei
Algorithms ($30000).

1983 = Elta Electronic Industries grant for research on Parallel Computer
Architectures for Signal Processing ($2800).

1984 - MNational Council for Research and Development grant for
research on Top Down Design of Large Hardware Systems {($40000).

1984 - Elta Electronic Industries grant for the development of a Syntax
Oriented Microcode Editor ($28000).

Chairman of the Research Center on Parallel FProceasing and Special
Computers. The center is funded by Elta toc an annual amount of $65000.

Researchinterests:
Advanced computer architectures
Deaign and analysis of parallel algorithms
Software for logic design
. Computational complexity

Researchactivities:
While at Edinburgh I contributed to ongoing research on Very Large
Scale Integrated (VLSI) circuits. At NYU I was a senior member of the
team that designed the NYU Ultracomputer, a parallel processor proto-
type with a novel architecture. I continue to contribute to the
research in the Utlracomputer project during my visits in the US.

At the Hebrew University I continue my research on theoretical and
practical aspecta of parallel mrocessing. I have established & research
laboratory on digital hardware design. This laboratory supports research
on software for digital hardware design, and research on parallel com-
puter architectures. A parallel computer prototype is cwrently being
designed. Fruitful collaboration has been established with several Isreali
electronic manufacturers. One of them (Elta) funds a center for
research on parallel processing in our department.

I have introduced new courses in the area of parallel processing, paral-
lel computer architectures, and computer design, and have been active
in many areas in the administration of the Computer Science Depart-

ment.

Three PhD students and fouwr MSc students are involved in different
aspects of these research activities.

— 230 —

Invitedlecturesandsejours:
IBM Yorktown Heights (1977, 1982, 1983, 1984)
Paris VI (1980)
Univ, of Toronto (1982)
Harvard Univ. {1982)
IBEM San Jose (1983)
Univ. of Berkeley (1983)
Univ. of Nlincis (1983, 1984)
Carnegie-Mellon Univ. (1984)
Columbia Univ. (1984)

— 231 —

