Fast dynpamic multiway merge using destructive operations

Ehud Shapirc

The Weizmann Institute l:lf Science
26-11=84

Abztract

A method for implementing multiway dynamic stream merge which
achieves constant delay and bounded waiting i3 descoribed.

The method can be implemented almost entirely in Concurrent Prolog,

with the addition of destructive assignment. This is in contrast with
the method of Ueda and Chikayama [3], which achieves similar performance
but szhould be provided by the underlying implementation language, and
the two-three trae merge of Shapiro and Mierowskd [1], which ia
implemepted in pure Concurrent Prolog, but achieves only a logarithmie
delay.

The implementation deseribed uses Takeuchi's "short-cipcufit®
programming techmique [2] for the detection of global termination.

1. Introduction

Agoess to a shared resource is bast implemented in Concurrent Prolog

by message passing via a shared stream.

Mlovwing several processes access to a shared requires the merging of their
corresponding streams. Efficient stream mergers were studied by

Shapire and Mierowsky [1)], and by Ueda and Chikayama [3].

One criterion for evaluating stresm-mergers 18 aoccording to thedir
fi(delay), which is the mmber of primitive operations required for
each message to pasa throogh the stream merger. Another criterion
ia Bi(fairness). A stream-pmerger is said to guarantee 81i{k-bounded
welting) if a message that arrives in one o its input streams will

be overtaken by at most k meesages, arriving later then it, in the
merger's output stream. A stream merger is @i(falp) if it goarantees
k=bounded waiting, for some k>0.

Shapiro and Miercwsky [1] show how to achieve logarithmie delay and
linear bounded walting multiway dynamic merge, using the concept of
two-three trees, Uede and Chikayama (3] present an implementation
technique that achieves constant delay and lipear bounded waiting.

In prineiple, the algorithm they use can be generated by an optimizing
compiler, applied to a nmaive Concurrent Prolog merge program, and hence
its external behavior can be specified by a Comeurrent Prolog program.
They propose, bhowever, that this code will be provided as a system
predicate.

In thia paper we propose a different algorithm that also achieves
conatant delay. Due to the simplieity of the algorithm, the constant
is much smaller. The algorithm guarantees p=bounded waiting for merging
n streams if a breadth-first scheduler is used, and (k¥n)}-bounded
waiting using a k-bounded depth first scheduler.

An added benefit of the algorithm is that, in contrast to the algorithm

= 167 -

of Ueda and Chikayama, it can be ifzplezented slmost entirely in
Concurrent Prolog, as shown below, with the addition of
deatructive-asaignment primitives.

Anoiner difference between the two algorithms is that Ueda and
Chikayama's algorithm requires the awvakensd merge process to lmow which
variable woke 1t up, whereas the algorithm proposed here achieves this
effect wihout the need of this mechaniam. This can be useful in
implementations of Flat Conecurrent Proleg [1] which, in generzl, do not
require this information.

2. The Algorithm

Even though the algorithm uses destructive operations, it seems that
the easiest way to specify it ia using Concurrent Prolog, (actually
Flat Concurrent Frolog) souped up with destructive assignment
primitives. Since destructive assignment is pot part of the legle
program computation model, the resulting program can be understood
only through the operztional semantics of Concurrent Prolog, in
eunjunction with the way destructive assignment can be added into it.

¥e do not, as yet, propose to add destructive assignment to Concurren
.PFrolog. The one example shown in this paper that uses it (which should
actually be a system provided predicate) is not quite enough of a
reason. However, when considering what is the eazlest way to implement
a mul tiway dynamic merge system predicate that embodies this algorithm,
adding destructive assignment to Concurent Froleg and using the
pseudo-code described below seems to be one of the eazier approaches.

2.%. A first approximation

The key idea of the algorithm is to use a multiplte-assignment variable
as a shared, updatable, pointer to the tail of the mergerd output
stream, The algorithm operztes as follows. The stream merger is invoked
with a (lazy) stream of streams to be merged and an output stream.

It first initializes a multiple-assignment variable 'I10ut' to refer

to the output stream. Then, for every input stream Xs it spawns a
"destructive copy'! process, with a reference to X5 and to the

mul tiple-assignnnet variable {0ut. For every new input strem element

X the 'deatructive copy! process operates as followa: 1t allocates

a new list cell [X|Y¥s], unifies it with the variable referenced by
10ut., and modifies the value of [0ut to be a reference to Ya. This
last modification is the only destructive operation in the algorithm.

A defindtion of the algorithm in pseudo Concurrent Prolog is shown
below. By convention, the form X i3 used for multiple-assignoent variables.

The implementation uses the following two operations on such
variables:

#{1X)=T :- unify the term referenced by !X with T.
1X:=T ;= assign !X a reference to term T.

Fseudo=-code using these cperationz is surrounded by double-quotes.

merge(InStreans, GutStream) :-
% Initialize the shared multiple-assignmnet wvariable
" j0ut :=CutStream™ |
merge] { InStreama?, 10ut).

]Ea

A more elegant, distributed, way te detect global tezination that does
not uge multiple-assignmnet shared variables san be achieved using
the shert-circuit, a Concurrent Prolog programming technique developed
by A. Takeuchi [2]. The best way to understand the technique is

via an amalogy.

Cofisider a blind slave-driver who wants to deteot whether his slaves have

finished their jobs.

He chains all the slaves in a row through their feet, using iron chains,

so that each slave's foot is connected to one end of a chain, and each

chain is connected to the left foot of ope slave and to the right Tfoot of
apother,

except for two chains, which are sonnected to one foot only each,

The slave-driver keeps the two free ends of these chains, He

attaches one to pewer, and the other,

via a light-bulb, to ground.

The rule ia that every slave combines his legs zo0 that the two

chains touch each other as he finishes his work, but

not before that. If every slave obeys the rule {and no-one's budy conducts
electricity), then the light-bulb will turn on exactly when every slave
finishes working. The remaning question, how does the blind slave-driver
detects that the light i1s on, is left as an exerclse to the reader.

En analogoues algorithm can be used in Concurrent Prolog: subordinate processes
represent slaves, and shared variables represent chains.

The driver process that creates the slave processes chains them using shared
variables. When a process terminates it unifies its two '"chain’

variables. The driver instantiates one end of the chain (the 'power')},

to a eonstant, and keeps the other end to itself. When it Pinishes

spawning processes, it examines the other end of the chain (the

"ground'} in read-only mode, and, if everyone plays by the rules, that

variable will become instantiated as scon zs all the subordipate

processes terminate,

The technique is used in the enahanceement to Program 1, shown below.
The addition in functionality compared to Progrem 1 is that upen the
detection of global termination, the merge process closes t'.h& oubput
stream, by unifying *(10ut) with nil.

merge (InStreans, OutStream) :-
Pi0ut :=OutStream™ |
mergel{InStreams, I0ut,done) .

mergel{[atream{Xs}|InStreams], 10ut,Left) :-
destructive copy{Xs, 10ut,Left, Right),
mergel(InStreams?, 10ut, Bight).
mergel([],Chain)} :-
close_outstream(Chain?, 10ut),

close_outstream{dene, IQut) :-
rE(10ut)=[]1" | true.

destructive copy{[X|Xs], I0ut,Left, Right) :-
" [0ut)=[X[¥s], IQut:=¥s™ |
destructive copy(Xs?, I0ut,Lelt, Right).

destructive sopy([], !0ut, Chain, Chain).

Program 2: Closing the output stream upen gleobal termination

— 169 —

mergel1{[stream{Xs)|InStreans], I0ut)} :-
destructive copy(Xs?, l0ut),
mepgel(InStreams?, 10ut).
merge1((],_).

destructive copy{[X|¥Xs],10ut) :-
§ allocate a list-cell, unify its car with X,
% unify the variable referenced by !0ut with the list-ecell,
% and destructively update [0Out to be a reference to the cell's odr,
n¥{10ut)=[X{¥s], 10ut:=¥s" |
destructive copy(X¥a?, 10ut).
destructive_copy([1,).

Program 1: Multiway dynamic merge using destructive cperations

The algorithm requires n+1 processes for merglog n streams.
It requires one process reducticn, and the alloeation of
cone list cell, per one streéam element merged.

If' breadth-first scheduling is used, then each ready destructive copy
process will copy one element at a time, and no process will copy two
elements before another ready process has copled one, so linear bounded
waiting is puaranteed. If k-bounded depth-first scheduling is used,

where every (iterative) process is zllowed at most k reductions before

it is suspended, then each destructive copy process can copy at moat a run
of k elements at a time, and a (k¥n)=bounded waiting is guarant.aad, when
n is the mmber of active destructive copy processes.

The behavior of the algorithm in casze the output stream is connected
to a bounded-buffer [4] is slightly more intricate. If breadth-first
scheduling is used, it may be the case that all n destruective ecopy
processes are suspended on the variable referenced by 10ut. When this
variable is bound to a list eell, all are woken up, but only the first
will succeed in copying an element to the output stream, and all the
others will suspend agpain,

If non=busy walting is used, then to

guarantee bounded-waiting, the suspension/wakeup mechanism should
presarve the relative order of processes in the active queus and

the suspension queues.

If bounded depth-first scheduling is used, the situation is a bit more
compl icated, but not much better. In other words, when bounded-buffer
is upsed, the algorithm may exhibit linear delay, The algorithm of
Ueda and Chikaysm suffers from a similar problem. The two-three tres
meprge algorithm, on the other hand, can be adapted to bounded=buffers
in & way that preserves its logarithmic delay.

Another problem with the algorithm just deseribed is that it does not
close the output stream upon termipation of all the merged input streams.
The second version of the algorithm sclves this problem.

2.2, Detecting global termination using the short-circuit technique

One way to detect global termimation in the algorithm described

is to have an additional '

multiple-assignment global variable, '[fActive', to maintain the number
of active processes.

This variables is initialized to 1 by the merge process.

When a destructive copy process

terminates it checks whether its is the last such active process
{lActive=0),

if so, unifies the variable referred to

by "10ut' with nil, Similarly for the merge process,

3.

Disoussion

Efficienct multivay dynamic merge is essential to realize efficient
applications in Coneurrent Frolog, especially systems-type applications.
A simple method for realizipg it have been shown. The method is

not readily specifiable by pure Concurrent Prolog, las previous proposal

L

Mention two choices:

Shared destructive variable in the heap or in the process descriptor.

Mention why cannct hide side-effects (with a atream merge).

o'

References

[1] €. Mierowsky

(2]

[3]

4]

Flat Conourrent Prolog: Design, Implementation, Applications,
M.Sc. Thesis, Welzmann Institute of Seience, Technical Report
CEXX-84, Movember, 198%.

E. Shapiro and C, Mierowsky

Fair, blased, and self-balancing merge operators: thelr specification
and implementation in Conctirrent Prolog.

Journal of New Generation Computing, 2(3), 1984,

E. Ueda and T. Chikayama
Efficient stream/array processing in logie programming languages
Froe. of FGCS'84, pp.317-325, ICOT, 198%4.

A, Takeuchi
How to solve it in Concurrent Frolog
Unpubl ished memorandum, 1983.

[5] A. Takeuchi and K, Furukawa

Interprocess comnunication in Concurrent Prolog
Proceedings of the 1983 Logie Programming Workshop,
Fortugal, University Mova de Lisboa, 1983.

Curriculum Vitae
Ehud Y. Shapiro

Ehud Y. Shapiro received B.A. degree in mathematics and philosophy from Tel
Aviv University in 1979, and PhD degree in computer science from Yale
University in 1982,

His PhD thesis, “Algorithmic Program Debugging”, was selected as an ACM
Distinguished Dissertationl. Since 1982 he has been associated with the
Department of Applied Mathmatics at the Weizmann Institute of Science.

Ehud Shapiro is the designer of the programming language Concurrent Prolog.
His current research interests include logic programming and parallel
processing.

He iz a member of the editorial or advisory boards of Computer Compacts, The
Journal of Logic Programming, and the Journal of New Generation Computing,
and is the Program Chairman of the Third International Logic Programming
Symposium.

171 —

