Experiences in Transporting Concurrent Prolog
and the Bagel Simulator to LM-Prolog

Part I of a Report of a Vieit to ICOT November 1983

Kennetk M. Kahn

This is an informal discussion of the experiences Ehud Shapiro and I had in trans-
porting Concurrent Prolog [Shapiro 1983] and the Bagel Simulator [Shapiro 1984] writ-
ten in Decld Prolog to LM-Prolog. This report assumes the reader is familiar with
Concurrent Prolog. LM-Prolog [Carlsson 1983] is a Prolog system written for Lisp Ma-
chines [Moon 1¢83]. Since the implementation of LM-Prolog is accessible it was possible
to modify the system to better accommodate the needs of Concurreat Prolog. This was
a good test of the user-extensible unificaticn of LM-Prolog. Also it was an opportunity
to see if various extensions to Decl(Prolog incorporated into LM-Prolog were of use in
running Concurrent Prolog.

The Initial Transport

For the purposes of comparison we first ported Concurrent Prolog to LM-Prolog
by using a syntactic translator. There were minor difficulties in running the translated
programs. LM-Prolog distinguishes between symbols and terms of no arguments. “true”
and “(true)” are different in LM-Prolog and both are written as “true” in Decl0 Prolog.
The translator made several mistakes of this sort which were corrected by hand. Another
difficulty is that the body of clauses in LM-Prolog is simply a list of predications, while
in Decl0 Prolog they are binary terms whose principle fuactor is %,” (i.e. conjunction).
This necessitated the translation of a list of goals to “(and g-1 (and g-2 ...))". Read
only variables were translated incorrectly by the translaior and needed to be fixed by
hand. Afier a few hours of making such changes, we had Concurrent Prolog running.
We timed the execution of naive reverse of a list 30 long, and found it took about 65
seconds in breadth-first mode and about 35 in depth-first. (Le. nearly 200 times slower
than compiled LM-Prolog and about 60 times slower than interpreted.)

Direect Modification of Unification

The first experiment that I performed was to modify the part of LM-Prolog which
implements the unification of lists with lists. The idea was very simply to special case

—134—

any tenm which was read-only (i.e. whose “car” bezan with “17”). This cut the time for
depth-first naive reverse in half.

This modification to LM-Prolog was both inelegant and slowed down the normal op-
eration of LM-Prolog since a few instructions were added to the unification of compound
terms. Considering that the experiment took less than one hour it way worthwhile,

Representing read-only variables as ordinary variables with speciz]l names

The next idea was to represent read-only variables the zame as ordinary variables
except that their names are lists of their name rather than symbols. LM-Prolog main-
tains the names of variables for the purposes of printing and debugging, so the idea was
to use names to distinguish the two types of variables.

This sped up Concurrent Prolog even further. (About 12 seconds for naive re-
verse.) This scheme no longer slowed down the ordinary execution of LM-Prolog as
much (though the basic binding primitive needed to test the type of the name of un-
bound wvariables). This scheme was incorrect in general however, as I discovered when

iried to run othsr examples. The dificulty was that in following chains of invisi-
ble pointers between value ceils, the system could pass by one that was read-only and
thershy allow it to be bound ("written™). The scheme was also not very elegant, and
prebably was a waste of the half day that was invested in it.

Representing Read-only varlables as Lisp Machine Flavor Inﬂt';anceu

The LM-Prelog vaifier is uzer-extensible. The idez is that when a non-variable term
is unified with a davor instance, the instance is sent a ®unify” message with the other
term as an argument. This facility costs very little if not used. The LM-Prolog system
uses it to implement lazy and eager values created by lazy and eager *bag-of” and
“set-of " and constraints created by “freezing” predications {Carlsson 1983].

It was very easy to define the Havor for read-only wvariables. When an instance
receives a “unify” message it checks to see if the value cull of the variable it is an access
to is bound or not. If it is not it fails. If it is then it calls “unify” on its binding and
the argument of the “unify™ message. It replies to the message “variable-p® with “t" ar
“nil” depending upon whether its variable is unbound or not. It replies to the message
“ordinary-term” (used in the interface to Lisp) with itself if unbound, otherwise with
the value of its variable.

The diffieulty with using this facility to implement Concurrent Prolog’s read-only
variables is in creating the flavor instances. The other applications of favor instances
create instances in epecial primitive predicates. Read-only is a syntactic property of
variables. The solution was fo extended the LM-Prolog parser, so that read-only vari-
ables have their own “template type”. A template in LM-Prolog is like a structure in a
structure-sharing Prolog. The set of types of templates was extended to include read-
only. Then the system functions for parsing, unifying terms with templates, and con-
slructing terms from templates were extended. Ounly the parsing function was thereby
slowed down if no read-only variables are used. The others were extended by adding
new cases after the existing ones 5o that no performance degradation was involved.

— 135 —

This third experiment was very successful. i took about half a day to implement
and debug. Its performance was equivaient {o the variabie name scheme, but this one
was more general and modular. It also entailed no rua time over head when read-only
variables are not used (except for assert and comapile which need to parse). It had two
additional advantages. The syntax of read-only was now more flexible (I choose to follow
the Decl0 implementation and use “7” at the end of the name). Also, the existence of a
read-only access for a bound variable was made irvisible to the entirs system including
all built-in predicates and Lisp. This is » consequence of the definition of the “ordinary-
term™ methed. Unlike the Decl0 implementaiion, there is no need to remove *1°
when printing or doing arithmetic, Concurrent Prolog primitives such as “wait” were
thereby greatly si:nplified and Lheir performance enhanced. Also LM-Prolog's built-in
predicates “variable” and “not-variable” behave correctly for read-only accesses.

Along with this change in the representation of read-only variables another opti-
mization hecame feasible. When LM-Prolog interprets a predication, it tries to unify
the heads of the appropriate clauses with the predication. Only if the unification is
successful is the body of the clause copied. This is why the clause is represented in
z asructure-sharing like “template” structure. This could now be done by Concurrent
Prolog. A change to the “guarded-clanse” predicate significantly improved the perfor-
mance of Concurreat Prolog in the case where the unification of the goal with the head
of the first clause (or clauses) fails.

Use of Multiple Worlds to Enhance Performance

LM-Frolog finds the definition of a predicate by searching through a list of the
current worlds called the universe. A world is a set of predicates. This search is only
done the first time a predicate is used in the current universe, One rather expensive
aspect of the Decl0 implementation is that in order to implement tracing and the Bagel
simulator, the system does run-time checks to see if they are enabled. This happens
sc frequently that the system could be speed up by about 40% by eliminating the
trace predicates. One wants to be able to trace the execution of Concurrent Prolog,
however, so the solution to this was to have traced and untraced versions of pieces of the
implementation in different worlds. Tracing works fine in the LM-Prolog implementation
and yet costs nothing when not used.

After these optimizations and a {ew others, the implementation of Concurrent Prolog
was running naive reverse of a list 30 long in about 4.5 seconds — the same speed as the
Decl0 implementation on the 2080. This is especially noteworthy when one considers
that Decl0 Prolog on the 2060 typically runs about 8 times faster than LM-Prolog on
a 3600 running Symbolics Release 4.5. (LM-Prolog runs about 15% faster in Release
5.0.) Ibegan to break down that 4.5 seconds into components and discovered that about
.75 seconds went into unification, about .5 seconds to copying bodies of clauses and .1
seconds to finding clauses in the database, The rest is presumably in reduction and
scheduling.

Use of Worlds to Maintaln Different Verslons of Concurreént Prolog

— 136 —

We have alrcady seen how worlds were used to maintain tracing and non-tracing
versions of Concurrent Prolog. It was also used to have two versions of the predicate
“schedulel” where one of them lived in the “depth-first-cp” world. By simply adding
or removing that world from the current universe we can switch from breadth-first to
depth-first processing.

The Implementation of the Bagel Simulator

Shapiro has extended the Concurrent Prolog interpreter to allow one to specify
using turtle commands where a process shculd be executed [Shapiro 1984]. The Bagel
upon which such programs are run is a torus of processors which communicate only
by sending messages. This Bagel is simulated Ly displaying the current state of the
processes running on each processor. The processors are mapped to a rectangular grid
on a display.

The Bagel simulator in LM-Prolog exploits the Lisp Machine's window system and
high resolution graphics. The displaying of the processes can be done in any font and
at any raster location. Arrows for up, down, left, and right are real arrows as opposed
to the approximations uszed on the YT100 Bagel simulator display.

A more significant experiment done on the LM-Prolog Bagel implementation was
the introduction and use of real numbers for the position and heading of processes. The
position is rounded down to the nearest integer when determining what processor it is
running on. This is a2 more flexible and .general scheme than the one forced upon the
Decl0 implementation by the lack of real numbers. For example, 2 very large array
relaxation problem where the preblem’s dimensions are 10 times larger than the Bagel
can be programmed where the turtle commands are “forward .1" rather than “forward
1", In this way several processes are time shared upon the same processor. Using
the “wrap around” facility of the Bagel would be inappropriate here since it would
unpeceszarily increase the amount of communication required. Also the ®real turtle”
version of the Bagel does not need the twist ed wrap-around that the integer version
needs. For example, in order to create an infinite linear pipe exploiting all the processors
of the Bagel, one can either begin the program headed at some small angle or in addition
to going forward also going to the left a2 small amount. Again, using worlds one can
have both versions and switch between them easily.

Prolog in Concurrent Prolog in LM-Prolog on the Bagel

One question I explored is how to implement Prolog in Concurrent Prolog. The
difficulty is to achieve the full non-determinism of Prolog in Concurrent Prolog which
lacks “don’t-know” non-determinism. A more practical and general, but more complex,
solution to this problem can be found in [Hirakawa 1984]. The program I developed is:

(define-cp pr ;;top-level queries come here

{{pr ?query)
(prove (and ?query (and (prolog (print ?query)) (fail))))))

— 137 —

(define-cp prove ;;equivalent fa Prolog’s "call®
((prove (true)))
{{prove (and (true) ?b) (prove b))
((prove (and ?a ?b)) (coramit (system 7a) (sequential-and ?a 7b)))
{(prove (and 7a 7b))
(commit (clauses 1a clauses) (try-2ach ?clauses 7a 1b))))

(defins-cp try-each
((try-each ((?goal Tignore-guard tbody) . ?} ?goal ?cont)
;itf its @ Prolog elause it shouldn’t have & commit
(commit (prove (and body ?cont)) (true)))
((try-each {7 . Tmore-clauses) 7goal 7cont)
(commit (try-each Tmore-clauses 7goal fcont) (true))))

The next question which I began to explore is how to allow the Prolog programs to
use the Bagel. Slightly simplified, the following two clauses can be added to “prove”:

((prove (and (9 ?a turtle-program) 7b))
(commit (system ?a) (@ (sequential-and ?a ?b) Tturtle-program)))
({prove (and (% Ta Tturtle-prolog) 1b))
{commit (clauses 7a Iclauses)
(@ (try-each ?clauses 7a
(2 b (run-backwards Murile-program)))
Tturtle-program)))

Where “run-backwards” is a turtle command that causes it to interpret its turtle
program “backwards”, i.e. last clause first and all arguments become the negative of
their original value. This is used to return the rest of the conjunction to its original
location. How to do this more elegantly and efliciently is an interesting topic for future
thought.

Toples for Future Research

The integration of read-only variables with other parts of LM-Prolog could be worth-
while. In particular, the idea of using them for communication between LM-Prolog
processes created by “eager-bag-of” is very promising. Read-only variables may provide
an alternative to “freeze” [Colmerauer 1982].

The implementation of Concurrent Prolog does busy waiting. If instead, “unify”
suspended when unbound read-only variables are unified then efficiency can be improved
significantly for suspended processes. Also the Concurrent Prolog primitive “otherwise”
could then be implemented correctly. Perhaps “freeze” would be ideal for implementing
this change.

Adding a general ability to define arbitrary appearances to processes. Perhaps this
is a good way to do graphics and animation?

Applying the techniques of partial evaluation to the implementation of Concurrent
Prolog. Tkis could be done upon the LM-Prolog implementation of Concurrent Prolog
using a Prolcg partial evaluator. A prerequisite to this is to re-write the interpreter
without “cut®. This would enable one to compile Coneurrent Prolog programs into
ordinary Prolog. Ancther idea would be to re-write the interpreter in Lizp and then
run a Lisp partial evaluator on it. This would enable one to compile Concurrent Prolog
programs into Lisp. See [Kahn 1982| for a more detailed discussion of this,

Addendum

Upon return to Sweden, I showed Mats Carlsson the extensions I had made to LM-
Prolog to support read only variable references. He then modiSed the micro-code sup-
port for LM-Frolog accordingly. We then proceeded to benchmark Concurrent Prolog
on the Cadr Lisp Machine and we surprised that it took about 7.5 seconds to compute
naive reverse of a list 30 long We then used LM-Prolog's interface to the Lisp Ma-
chine’s metering facility snd discovered that more than half the time was going into
& routine for converting LM-Prolog terms into Lisp s-expressions. In general, this is
not necessary since the representations are compatible. We quickly tracked down the
source and added an exira argument to the call to the Lisp interface specifying that
LM-Prolog terms should be passed to Lisp unchanged. Naive reverse then ran in about
3 seconds. While at ICOT, I had access to their Symbolics 3600 which currently lacks
a lunctioning metering facility so [was not able to discover this performance bug.

Acknowledgments

I wish to thank all the people at ICOT for a fascinating visit and a chance to explore
the issues discussed in this paper. I also wish to thank Ehud Shapiro for his help in

transferring his programs to LM-Prolog.

References

[Carlsson 1983] Carlsson, M., Kahn, K.
“LM-Prolog User Manual”, UPMAIL Technical Report No. 24,
Uppsala University, Sweden, Nov. 1983

[Colmerauer 1982] Colmerauer, A

“PROLOG II Manuel de Reference ei Modele Theorique®,
Proe. Prolog Programming Environments Workshop,
Linkoping Sweden, March 1982

[Hirakawa 1984| Hirakawa, H., Chikayama, T., Furukawa, K.
“Eager and Lazy Enumerations in Coneurrent Prolog®,
submitted for publication

[KCahn 1982] Kahn, K.

“A Partial Evaluator of Lisp written in Prolog”,
First International Logic Programming Conference,
Marseille, France, Sept. 1982

—139 —

[Moon 1983] Moon, I, Stallman, R. M., Weinreb, D.
“Lisp Machine Manuai®, MIT Al Laboratory, January 10983

[Shapiro 1883) Shapiro, E.
A Subsct of Conceurrent Prolog and lis Interpreter
ICOT “lechnical Hepori, TR-003, ICOT, Tokyo, 1983

[Shapiro 1984] Shapiro, E.
“The Bagel: A Systolic Concurrent I'rolog Machine”,
to appear as an [COT Technical Report, 1934

Kenneth M. Kahn

UPMAIL, Uppsala Program Methodology and Artificial Intelligence Laboratory
Computing Science Department, Uppsala University, P.O Box 2059

5-750 02 Uppsala, Sweden

Tel: Domestic: (018) 15 54 00 ex. 1840, International: +46-18-11 19 25

Professional Objectives:

To do research and teaching in computer science. My interests are primarily in artificial
intelligence, language design, education, and computer graphica.

Educational Background:

Massachusetts Inatitute of Technology, Sept. 1973 to Feb. 1979
Ph.D in Electrical Engineering and Computer Science, Jan. 1879
Thesis: “Creation of Computer Animation from Story Descriptions”
M.S. in Electrical Engineering, Aug. 1975

Thesis: “Mechanization of Temporal Knowledge”

University of Pennsylvania, September 1969 to June 1971 and September 1972 to June
1973

B.A in Economics magnum cum [aude with distinction, June 1973

Thesis: “Bankruptcy, Information Costs and Equilibrium”

University of Stockholm, September 1871 to June 1072
Research Experience:

From 1973 to 1975 I implemented two versions of a time specialist, a computer program
capable of accepting a wide range of temporal statements, checking their consistency,
and making inferences to answer questions. Following that I implemented in Logo
several small systems used by elementary school children for programming animation
and natural language. Until 1980, I was invelved in the design, implementation, and
use of an actor-based computer language called “Director” for use in programming
knowledge-oriented computer animation. Simoultaneously I was working on my thesis
project involving the creation a system capable of making simple computer animated

films in response to vague incomplete story descriptions. In 1981 I designed and imple-
mented a2 language based upon extended unification called “Uniform”. The language is
an attempt to combine the important features of Lisp, actor languages, and Prolog into
a simple coherent framework. I am the co-author of LM-Prolog, 2 commercially avail-
able state-of-the-art Prolog system on Lisp Machines. [am also working on a project
to automatically generate a compiler from LM-Prolog to Lisp, by partial evaluating the
LM-Prolog interpreter written in Lisp. The partial evaluator is an LM-Prolog program
that I have developed that generates efficient specializations of Lisp programs. [am
also building a partial evaluater for LM-Prolog.

— 141 —

