GETTING STARTED WITH PARLOG
(DEC-10 PROLOG, ICOT version)

8. Gregory

October 1983

L INTRODUCTION

The PARLOG system described in this document comprises a compiler and an interpreter
which are combined in one interactive system. Both compiler and interpreter are written in
DEC-10 PROLOG (which is compatible with MPROLOG).

The document begins with features which are independent of the implementation and
becomes more specific. Section 2 is a general description of the PARLOG language. Section 3
is relevant only to the PROLOG implementation of PARLOG and describes how to use the
PROLOG language from PARLOG. Sections 4 and 5 are specific to the PARLOG system
written in DEC-10 PROLO (and MPROLOG): section 4 gives the concrete syntax of
PARLOG programs and section 5 lists the PARLOG system commands. Section 6 tells how
to access the PARLOG system running on the ICOT DEC-20

The appendix lists some files containing wsaful primitive relations

2. PARLOG LANGUAGE FEATURES

This section briefly describes the features of PARLOG which are supported by this
implementation. It is not intended 2s an introduction to programming in PARLOG; for this
purpose the definitive paper [CIG 83] should be consulted The PARLOG paper also contains
many example PARLOG programs

In this section we use the “publication syntax™ of PARLOG, which is also used in [CIG 83}

2.1 Syntax of & PARLOG program
A PARLOG program consists of a set of relation definitions (reln_defn), each of which is

the keyword 'relation’ followed by a relation declaration (reln_decl) followed by a relation body
(reln_body), ie

— 108 —

reln_defn = ‘relation’ reln_decl reln_body
The relation body is constructed from clause groups (cl_grp) by the operators ' and '

reln_body = ¢l_grp *." reln_body |
cl_grp ";' reln_body |
cl_grp

The *.* operator specifies parallel search for a candidate clause, while *;' specifies searching in
sequential left-right order.

A clause group is either a clause or a parenthesized relation body. This allows an
arbitrarily nested combination of "' and '{ in a relation body:

cl_grp = clause |
‘(" reln_body ")’

A clause consists of a head atom, a guard conjunction and a body conjunction. The guard
or body conjunctions may be empty:

clause = head |

head ":-' body |

head ":-' guard "|"' body
head = atom
guard = conj

body = conj

A conjunction {conj) is an arbitrarily nested structure of literal groups (lit_grp) using the
operators ', (parallel “and") and '&' {sequential “and"}:
conj = Tit_grp ", conj |
Tit_grp "&" conj |
1it_grp

Tit_grp = literal |
(conj "}'

A literal is a positive or negative atom or a "lazy call® (see later):
1iteral = atom |

'~' atom |

— 110 —

"lazy' aiom

An atom has the same form as a PROLOG atom. Variables are identifiers beginning with
a lower case letter. Other identifiers, and quoted strings, can be used as constructor function

names.
The relation declaration takes the form

r(ml.....,ma)

where r is a relation name and ml,...,mn give the mode of the relation definition Each mi is
either '* (for an input argument) or "~ (for an output argument). Every clavse in the
corresponding relation definition must have the same number (n) of arguments.

Note that if a relation is to be used in more than one mode, the whole relation definition
must be repeated with an appropriate relation (mode) declaration for each mode, ep.

refation merge(7.7.")
merge({[u|x].y.[ulz]) :- merge(x.y.z} .
merge(x,fuly].[ulz]) :- merge(x.y.z) .
merge([1.[]1.(1)

relation merge(~.".7)
merge([ufx].y.[u]z]) :- merge(x.y.z) .
merge(x,[uly].[ujz]) :- merge(x.y.z) .
merge([].[].[])

Although in this case the relation definitions are the same for each mode, they may in general
be different

2.2 PARLOG modes

In PARLOG programs, every relation call and definition has a particular mode associated
with it The mode of each call is determined at compile time by an analysis of the direction
of communication through variables. Details of this mode analysis can be found in [CIG 84]
Here we will illustrate the mode analysis by means of examples

Consider the definition of the 'seqplus’ relation, where seqplus{x,y,z) is the relation "z is a
list in which each element is the sum of the corresponding elements in lists x and y":

relation seqplus{?.7,*)

seqplus([ufx].[viy].[w|z]) - plus(u,v,w), seqplus(x.y.z) .
seqplus([1.0].[1)

— 111 —

In the first ‘seqpius clauss, variables w x, v and y occur ‘n the input arguments and so must
be input to the body calls w and z occur in output arguments 50 they must be output from

the body calls From this analysis, the compiler can deduce the mode (%,2,”) for both the
'‘plug’ and "seqplus’ calls in the body.

The ‘fibonacci” relation can be defined in terms of 'seqplus':

relation fibonacci{~)
fibonacci([1[x]) :- seqplus{[0.1|=].[1[x].x~}

Here the made of the 'seqplug call & (7,7} since the first and second arguments of the call
are non-variable and the third argument is a "~ annotated variable If the '™ were omitted,
the leftmost occurrence of x in the body would be taken as the "generator” of x and the third

argument of "seqplus’ would therefore be input

In the following definition of the 'multiples’ relation, ali calls in the body have mode (2,2,%):

relation multiples(-)

multiples(x) ;- timeslist{2,[1|x].r)},
timeslist(3.[1]x].5).
timeslist{5,[1]x].t].
amerge(r,s.rs), amerge(rs.t,x")

2.3 Back communication

It is often necessary to override the direction of communication imposed by the modss to
allow "back communication® or “incomplete messages™ [Sha B3] This is done by means of

head annotations

To indicate that an output argument of a relation contains a variable which will be
instantiated by the consumer of the argument, we annotate the variable by a ‘7 suffix on its
occurrénce in the output argument In the definition of the consumer relation, the

corresponding variable must be annotated by a '~ suffix

An interesting example of back communication is a "readlist' relation which reads terms
from the terminal in response to demands from a user process

relation readlist(?)
readlist{[u~[x]) :~ read(u) & readlist(x) .
readlist{[])

This relation has a single input argument which is incrementally instantiated to a list

“skeleton™ by a user process Each time the skeleton is extended by one element, a term is
read and bound to the variable w. This is why u must be annotated by '~ in the head

The following is a program to read a sequence of terms from the terminal and print them:
: proc(x,y), readlist(x}), print¥ist{y).

relation printlist(7}
printlist{[u[x]) :~ printni{u) & printlist{x) .
printtist{[])

relation readlist(7)
readlist{[u*|x]) :- read{u) & readlist(x) .
readlist(f])

relation proc(~,*)
proc{[u?|x].y) :- procifu.x.y)

relation preci(?,~,*)
proci(end_of _file'.[].[]) :
proci{u,x,[uly)) :- proc(x,y)

Notice that the definitions of ‘readlist’ and 'printlist’ are almost identical except that oaly
‘readlist’ does "back communication®, The sequential “and” is mecessary in both definitions due
to the side effects of the ‘read’ and 'printol calls Here, printnl{u) prints term u followed by a

new line.

In general any subterm(s) of an input argument in the bead of a clause can be annotated
by a '~ and variables occarring in thiz subterm can be marked as input by a '? annotation
Far example, Kowalski's “admissible pairs” example [Kow 79] can be programmed as follows

1y = [<1,v>[x]. adm(y), printlist(y).

relation adm(?)
adm{x) :- double(x), triple(x)

relation double(7)
double([<u.v*>]x]) := times(2.u.v) & double(x)

relation triple(?)
triple([<u,v>][<ul,vi?>|x7]"]) :- times(3,v,ul) &
triple([=<ul,vi>|x])

In this program, both *double’ and 'triple' calls have the same argument as input, and they
are both provided with an initial value [<1,v»x] for this argument The two calls then
cooperate in producing the remainder of the data structure The "double’ call waits for a list
with a head tuple whose first argument is a number, then binds the second argument of the

— 113 —

tuple. The ‘triple’ call waits for a list with a head tuple whose second argument 15 a oumber
gnd then further instantiztes the list with a new tuple whose first argument is now known

This program does not terminate. If we assume that the input to 'adm’ will be a list of
pairs of variables of a particular length, used in a query such as

t y = [<1.y1>,<x2,y2>,<x3,y3>], adm{y). printiist(y).
then 'double’ and 'triple' can be defined as

relation double(?)
double([<u,v*>|x]) :- times(2,u,v) & double(x) .

double([])

retation triple(7?)
triple([<u,vs>,<ul* vis|x]) - times(3,v,ul) & triple{[<ul,vi>|x]}) .

triple{[<u.v>])

2.4 Lazy relation calls

An extra feature in this implementation of PARLOG is the ability to delay the evaluation
of a relation call until all other activity has ceased. If a call is prefized by the operator 'lazy’,
the call will be added to a special "larylist" instead of being evaluated. ~ When the interpreter
detects deadlock it first examines the lazylist -and if this is non-empty, all processes on it are
reactivated and the lazylist is emptied.

A major use of laxy relation calls is to implement a ‘readlist’ relation which reads terms

from the terminal only as a last resort This allows the user to observe the effect of one
input term before typing the mext This version of ‘readlist’ can be defined as follows

relation readlist(")
readlist(x) :~ lazy read(u) & readlistl{u,x)

refation readlisti(?,*)
readlistl(end_of _file',[]) i
readlistifu,[ufx]) :- readlist(x)

Mote that this relation has mode readlist{*) in contrast to the definition given earlier. This
means that both definitions can be used in the same program

3. INTERFACE TO PROLOG

All logic programming systems are provided with a set of *"built-in relations” (sometimes
called “evaluable predicates”), ie relations which are programmed not in the language itself,
but in the host language. In this section, which is specific to the PROLOG implementation of
PARLOG, we describe how to provide PARLOG relations which are programmed in the host
PROLOG system

The interface to PROLOG is provided by a special relation ‘prolog, together with a new
head amnotation ', Calls to the ‘prolog’ relation may have any oumber of arguments and
their mode is ignored. The first argument of a "prolog’ call is the name of a PROLOG
relation and subsequent arguments are arguments of that PROLOG relation call When a
‘proleg’ call is encountered, the relevant PROLOG relation is called with the given arguments.

For example, the PARLOG ‘read’ relation can be defined as follows {we shall use DEC-10
PROLOG relation names in this section but the same principle applies in any PROLOG
systemk:

relation read(*)
read{u) :- prolog{ read’,u) |

It should be pointed out that unbound PARLOG variables are not necessarily the same as
unbound PROLOG variables; if there are consumers suspended waiting for a PARLOG
variable to be instantiated, the wvariable will not be an unbound PROLOG variable It will
actwally have a value that contains a pointer to a list of suspended processes Therefore, if a
'‘prolog’ call is to bind a wariable, then that variable should not be accessible from another
PARLOG call until PROLOG has bound the variable. This is why, in the above example, the
‘prolog’ call appears in the guard

Many PROLOG relations require certain arguments to be given at the time of call. In
PROLOG programs this is ensured by evaluating conjunctions sequentially in a certain order.
Due to the parallel evaluation of PARLOG, we need a different mechanism to ensure that
arguments are known before evaluating a ‘prolog call For this purpose, we use the '"
annotation on variables in head arguments of PARLOG relations. If "' occurs on a variable,
the evaluation will suspend until that variable is instantiated (to any term).

MNote that the " annotation is not normally necessary in user programs. It is only needed
for programming up primitives in PROLOG.

The following definition provides the PARLOG 'plus’ relation in all useful modes

relation plus{(?.7.~)
plus{at,.bl.c) :- prolog(’is’,c.a+b) |

relation plus{~.7.7)
plus{a.bl.cl) :- prolog{*is",a,c-b) |

— 115 —

relation plus(?.~.7)
plus{at,b.cl) :- prolog(’is*.b,c=a) |

retation plus(?7,7.7)
plus{al,.b!,cl) :- prolog(is’,c,a+b)

Notice that all input arguments are '!-annotated to ensure that arguments are instantiated
before evaluating the 'prolog’ calls. Also all 'prolog’ calls which do output are placed in
guards Other arithmetic relations required in PARLOG can be provided in a similar manaer.

Another example is a simple definition of the "printnl relation used earlier which will print
its argument term as soon as it is instantiated:

retation printni(?)}
printni{ul) :- prolog{‘write' ,u) & prolog('nl")

This definition is inadequate for printing structured terms that are constructed
incrementally. A completely general 'printal relation is defined belows

relation printnl}(?)
printni{t) :- print(t) & prolog(’'nl"}

relation print(?)
print(tl) :- prolog(=..,t,t1) & printargs(tl)

relation printargs(?)

printargs([T]) :- prolog{ 'write',T) .

printargs([f.alas]) :- prolog(write'.T) &
prolog('write’."'("') &
printas{[ajas]) &
prolog('write’,"}")

relation printas(?)

printas([a]) :- print(a) .

printas([a]as]) :- print(a) &
prolog(‘write”,".") &
printas{as}

4. CONCRETE SYNTAX FOR PARLOG PROGRAMS

In this section we describe the concrete syntax of programs as used in the DEC-10
PROLOG and MPROLOG implementations of PARLOG.

— 116 —

4.1 Concrete syntax
Each relation definition is represented by a clause for the PROLOG relation 'relation”
RELN_DEFH = relation{RELM_DECL,RELN_BODY).

The relation declaration is the same as in the publication syntax, ie 2 term of the form
riml,...,mn) where each mi is ‘T or '~

The relation body s a Pﬁ.ﬂLDG term constructed using the operators 'par’ (which replaces
.} and "seq' (which replaces '}'). ‘par’ and 'seq’ have equal priority.

RELN_BODY = CL_GRP ‘*par® RELN_BODY |
CL_GRP ‘*seq® RELN_BODY |
CL_GRP

CL_GRP = CLAUSE |
‘(' RELN_BODY ")'

In a clause we use the operators ‘== instead of ' and %' for the guard bar '[:
CLAUSE = HEAD |
HEAD *::-' BODY |
HEAD '::-' GUARD ':' BODY
MNote that if the body is empty it must be replaced by the constant 'true:
CLAUSE = HEAD '::-" GUARD ":" “true’
HEAD = ATOM
GUARD = CONJ

BODY = CONJ

For conjunctions, '// is used for parallel "and” and '&' is used for sequential "and". Both
operators have the same priority:

CONJ = LIT_GRP "//' CONJ |
LIT_GRP &' CONJ |
LIT_GRP

LIT_GRP = LITERAL |
(CONJ *)*

— 117 -

LITERAL = ATOM |
‘' ATOM |
"lazy' ATOM

Atoms are the same as PROLOG atoms, and may be written using infix, prefix or postfix
operators if these operators are suitably defined by the user. The operators already defined by
the PARLOG system are listed below.

Within atoms, terms are the same as PROLOG terms except that variables are PROLOG
constants preceded by the prefix operator *¥. Variables may be annotatsd by the postfix
operators ‘7, *~ and 'Y, which have a higher priority (less tightly binding) than ¥, in the same
way as in the publication syntax

4,2 Operators defined

op(1200,fx,{:]).

op(760,xfy,.[par.seq]).
op(760,xfy,[s:-,:.::]).
op(740.xTy.[//.&]).
op(730,Tx,[~.1azy]).
op(500,fx,[parcomp,1ist,11stp.delete]).
op(200,xf,[7,%,17).

op(100,fx,.[*]).

op(650,xfy.[.]).

4.3 Example programs
Some of the programs given in sections 2 and 3 are repeated here in concrete syntax

relation{seqplus{7.7."),

seqplus([*u | *x].[*v | *yI.[*w | *2]) ::-
plus({®u,*v,.*w) // seqplus(*x,.*y,*z) par

seqplus([]1.[1.[1)).

relation{fibonacci(*).
fibonacei([1 | *xJ) ::=- seqplus{[0.1 | *x].[1 | *x].*x~}).

relation(muitiples(~).

multiples(®*x) ::- timeslist{2,[1 | *x].*r) //
timestist(3,[1 | *x].*s) /7
times1ist{5,[1 | *x].*t) 7/
amerge(*r.*s,*rs) // amerge(®rs,*t,*x*)).

~ 118 —

relation(read(~},.
read{*u)} ::- prolog(read,*u) : true }.

relation(plus(?.7.~).
plus{®al,*b!,*c) ::- prolog{is,®c,*a + *b)).

5. INTERACTING WITH THE PARLOG SYSTEM

This ssction, like the preceding one, is specific to the DEC-10 PROLOG and MPROLOG
implementations of PARLOG.

Since a PARLOG program is represented in the concrete syntax by a PROLOG program
for relation ‘relation’, a PARLOG program can be enteréd by the usual 'consult’ mechanism
and then manipulated by the PROLOG editor, if one is provided In addition, certain
commands are provided by the PARTL.OG systemm for manipulating and running programs and
these are described below.

5.1 PARLOG system commands
list F_

Lists on the terminal the PARLOG code for all relations with relation specifier . A
relation specifier is a term which matches a relation declasation ml,...,mn).

For example, to list the definition of plus(?,?,"k
Tist plus(7.7.°).

To list all definitions of plus with thres arguments
Tlist plus(A.B,C).

To list all relation definitions in the programs

Tist X.

list.

Same as "list X

— 119 —

parcomp R

Compiles all relations with relstion specifir B. Each time the compilation of a new
relation begins, the message

compiling r(mi,....mn}

appears on the terminal As each clause in the relation definition is begun, the clause oumber
is displayed:

clause 1
clause 2

When the relation definition has been successfully compiled, the message
r{ml,....mn) compiled

appears. If this message does not appear, then the compilation has been unsuccessful, and the
error has occurred in the clause whose number was last displayed In some cases an
explanatory message will be printed, beginning with "; this will help to locate the error.

If the compilation of a relation definition is successful, two new clauses will be asserted

One of these clauses is for relation *paraml and contains the PARLOG Abstract Machine
Language for the relationn The other is a clause for relation 'crelation’ and contains the

interpretable code for the relation This is the code that is direcily executed by the PARLOG
interpreter. The "paraml clauses can be viewed by the 'listp' command (see later).

parcomp.

Same as "parcomp X"

listp R

Lists on the terminal the PARLOG Abstract Machine Language for all relations with
relation specifier R This abstract machine code is in the form of a binary tree and is
displayed in an indented layout to show the structure.
listp

Same as “listp X"

delete R.

Deletes the PARLOG code for all relations with relation specifier R. MNote that only the
‘relation’ clauses are deleted, oot the ‘paraml or ‘crelation’ clauses; the latter are replaced only
when the relation is recompiled
delete.

Deletes all PARLOG, PARLOG Abstract Machine Language, and interpretable code from
the program, ie all clawses for "relation’, 'paraml and ‘crelation’,

: C
Compile and execute a query,

This command has two phases firstly the PARLOG conjunction C is compiled and the
compiled code is stored, then the PARLOG interpreter is invoked to execute the query.

When the compilation begins, the message
compiling gquery
is displayed. If the compilation is successful
query compiled
will be displayed and the interpreter will be started.

The action of the interpreter will be explained later.

T:C
Compile and execute the query C, then print the term C. Defined by the clause

(T : C) := (: C & prolog{untrace) & printn1(T)).

list T: C

Compile and execute the query C, then print the list T as a saquence of terms with one

— 121 —

term printed on each line Defined by the clause

{1ist T : C) := {: C & prolog{untrace) & printlist(T)).

T=0C

Compile and execute the query C in parallel with printing the term T. Defined by the

clause

(T :: c] = [z C 4/ printni(T)})).

-list T C

Compile and execute the query C in parallel with printing the list T as a sequence of
terms. Defined by the clause

(11st T 3: €) :- (: C // printilist(T)).

partrace.

Switches on the PARLOG level trace. This will cause the PARLOG interpreter to print
trace information.
untrace,

Switches off the PARLOG level trace

5.1 The PARLOG interpreter

The PARLOG interpreter executes the most recently compiled query using the currently
compiled program. Provided deadlock does not occur, the result of the evaluation will be

displayed in the form
%% answer: A

where A is the result true, false or error{E)l. The latter reports a run time error. The only
run time error currently detected is

nodefinition(RN,MK)

122 —

where RN and MN are the relation name and mode pame respectively. For example, if
plus(?,?,~) is called but not defined, we would see the result

see* answer: nodefinition{plus,?77+)
The interpreter gathers certain statistics and displays these at the end of the evaluation:

sss cycles: C

**+ reductions: TR
*** aye rfc: AR
*** max rfc: MR
*** calls: N

C is the number of cycles, ie the pumber of times that the process list has been rotated
during the evaluation This figure is proportional to the execution time on a hypothetical

parallel architecture with a sufficient number of processors

TR is the number of process reductions at the PARLOG abstract machine level As an
approximate guide, there are usually about 20 process reductions for each PARLOG call

AR and MR are the average and maximum number of reductions per cycle. AR gives a
measure of the amount of parallelism in a program, while ME indicates how many processors
would be necessary to achieve the execution time given by C.

Finally, N is the number of PARLOG calls reduced in the evaluation This figure can be
divided by the PROLOG execution time to compute the speed of the interpreter in LIPS
5.3 Tracing

If PARLOG tracing is switched on, a trace message is printed at certain points

=== call: L

traces a call to atom L. This message indicates that the interpreter is beginning to search for
a candidate clause to solve the call L. If a candidate clause is eventually found, the call will

be reduced and the message

--- reduce(N}): L

will be displayed This means that L has been reduced by using the Nth clause for the
relation of call L. If no candidate clause is found, a fail message will be displayed:

--=- fail: L

— 12:3_

Similar trace messages will be displayed for "prolog’ calls, except that a "prolog’ call will
either succeed or fail:

=== prolog: L
=== succeed: L
=== fafl: L

All variables in trace messages are displayed using a special routine. "V is displayed for
each variable except those on which some consumer processss are waiting, which are displayed
as 'S (for “suspension”).

3.4 Example traced PARLOG evalvation

| 7- 1ist *t : amerge([1.2.47.[2.37.°t).
compiling gquery
query compiled

=== call: amerge(77~,.(1.,.(2..(4.{1)))..(2.,.(3.[1)).V)
--- call: less{?77.1,2)

=== call: less(?7.2,1)

--- reduce(1): less(?7,1,2)

=== reduce{l): Tess(?7.2,1)

=== prolog: <(1.2)

--- succeed: <(1,2)

--- reduce(2): amerge(77~..(1..(2..(4.[3)))..(2..(3,[1).V)
=== prolog: <(2,1})

--- fail: <(2,1)

--- call: amerge(?7~,.(2..(4.[1)).-(2..(3.[1)).V)

--- reduce(1): amerge(?7~,.(2,.(4.[1))..{2..(3.[])).V)
=== ¢call: less{?7.2.2)

=== call: less(77.2,2)

=== reduce(1): Jess(77.2,2)

--= ¢all: amerge(?7~,.(4,[1),.(3.[1).V)

--- reduce{1): less(?7.2.2)

--- prolog: <(2.2)

-== fail: «<(2.2}

=== prolog: <{2.2)

--- fail: <(2,2)

--- call: less(7?.4,3)

--- call: less(?7,3,4)

=== reduce{1): less(77,4,3)

=== reduce{l): Tess(77,3.4)

-== prolog: <(4,3)

-== fatl: <(4.3)

--- prolog: <(3.4)

=== succeed: <(3.4)

=== reduce(3): amerge(77-..(4.11)..(2.[1).V)
~== ¢call: amerge(?7~..(4.[]).[1.V)

=== reduce(5): amerge(?7~..{4.[1).[].V)

=== prolog: untrace

**%* answer: true
**® cycles: 175
s¢¢ rgductions: 272
w*% ave rfc: 1

*** max r/c: 5

#a® callis: 23

6. ACCESSING THE PARLOG SYSTEM

To access the PARLOG system on the ICOT DEC-20, 'run’ the file PARLOG.EXE
in directory USE<PARLOGY.

Some built-in relations are provided in three files in directory USI¢PARLOG»
ARITH.PAR contains some arithmetic relations,
READ.PAR cootains input relations,

PRINT.PAR contains output relations.

These files are listed with comments in the appendix

ACKNOWLEDGEMENTS

Research on the PARLOG language and its implamentation is supported by the UK Science
and Engineering Research Council

The PARLOG system was further improved while the author was a visiting scisntist at

ICOT - the Institute for New Generation Computer Technology in Tokvo, where this
document was written

— 125 —

REFERENCES
[CIG 83] EK.L. Clark and 8 Gregory,
PARLOG: a paralle]l logic programming language.
Research report DOC 83/5, Imperial College, London, May 83.
ICIG 84] E.L. Clark and 5 Gregory,
Title to be decided.
In preparation.
[Kow 79] R A Kowalski,

Logic for problem solving
North Holland, 1979,

Sha 83] E Y. Shapiro,

A subset of Concurrent Prolog and its interpreter.
Technical report TR-003, ICOT, Tokyo, January 83,

APPENDIX: SOME PRIMITIVE RELATIONS

Flle USL:<PARLOG>ARITH.PAR

X arfthmetic relatfons: 1less, lesseq, divides, plus, times

relation{less(?.7).
Tess{*ul,*vl)} ::- prolog(<.%u,*v)).

relation(lesseq(7,7).
lesseq{*ul.*vl) ::- prolog(=<,%u,"v)).

relation(divides(7.7}.
divides(*ul,*vl) ::- prolog(is.0,*v mod *u)

relation({plus(7.7.*).
plus(*u!.*vl,*w) ::- prolog(is.*w.*u + *v) : true

relation(plus(~.7.7).
plus(*u,*v!,*wl) ::- prolog{is,*u,*w - *v) : true

relatfon(plus(7,~.7).
plus{*u!,*v,*w!) ::- prolog{is,*v,*w - *u) : true

— 12.6 .

relation{times(?.7.+),
times({®ul,*v!,*w) ::- prolog(is.*w,*u * *v) : true)

relation(times{~,?7.7).
times(*u,*vl,*wl) ::- prolog{ts.*u.*w /7 *v) : true).

relation{times(?.~.7).
times(®*u!,*v,*wl) ::- prolog(is,*v,*w / ®*u} : true |

File USL:<PARLOG>READ.PAR

% readlist(x7): x is an input list of varfables, each variable is bound

X to the next term read from the terminal
relation(readlist(?),
readlist([*v* | *x]) ::= read{*u) & readlist(*x) par
readlist([])).

% readlist{x*): x 1s an output 1ist of terms read from the terminal

relation({readlist(~).
readlist(*x) ::~ lazy read(*u) & readlisti{®u,*x)).

relation(readlisti(7?.~).
readlisti(end_of _file,[]) seq
readlisti(*u,[*u | *x]) ::~ readlist{*x) Ye

% read({x*): x 1is the next term read from the terminal
relatfon(read{*).
read(*u) ::- prolog{read,*u) : true).

File USI: <PARLOG>FRINT.FAR

X printlist(x?): prints a Tist of terms as a sequence of terms on the
% terminal
retation(printlist(?),
printTist{[*v | *x]) ::- printni{*u) &
printlist{*x) par
printlist([]) }.

L printni(t?): prints term t on the terminal followed by a new line

relation(printni(?).
printni(®*t) ::- print(*t) & prolog(nl)).

% print(t?): prints term L on the terminal
relation{print(?),
print{®*tl) ::- prolog(=..,*t,*t1) &
printargs(*t1)

relation(printargs(?),
printargs([*f]) ::- prolog(write,*T) par
printargs([*f.*a | *as]) ::- prolog(write,*f) &
: prolog(write, (') &
printas([®*a | *as]) &
. prolog(write,"}")

relation{printas(v).
printas([*a]) ::- print(*a) par
printas([®*a | *as]) ::- print(*a) &
prolog(write,"”,") &
printas{®as)

- 128 —

