Systems Pregramming in Cencurrent Prolog

Ehud Shapiro

Departimznt of Applied Mathematics
The Weizmenn Institute of Science
Rehovot 76100, ISRAEL

Abstract

Concurrent Proleg [28] combines the logic programming computation model

ith guarded-commaznd indeterminacy and detaflow syachronization. It will form the

o of the Kerng!l Loamname 121 of the Parntial Inforenca Machine [33], plenned by
i

Chs

Jepza's Filth CGensration Comprters Project. This papsr explores the feasibility of
vrogramming such a raschine solely in Concurrent Prolog (in the absence of a lower-level

o

cosramming laneuass), by implementing in it 2 represenbative collection of sysiems
M R— .
prograizming probiems

The procass of turning a bare von Neumann machine into a usable compuier
iz well yadersinod. One of tue morz zisgani techaigues Lo do so is fo lmplemend o
cross-compiler for a systems programming language {say C) on o usable computer. Then
imalen:ont in that lznsuase an opsrating system kerzel (say Unix), device drivers, a
fle ovolem, ond s prograinming environment. Then boot the operating system on the
te ol computer. From that stage on the computer is usable, and spplication programe,
cetapilers snd interpraters for higher-level languzges (sav Fronz Ligp and CProlez) con
be developed on it

This paper addresses the question of turping a bare compuler into 2 uzable one,
but for 2 machire of 2 different type, naoiely, a paratiel logie progremming machine. fu
particular, it explores the suitability of Coucurrent Prolog [28] as the kernel programming
langnage! of such a computer, by asking the quesiion:

a machine that implements Concurrent Prolog in herdware or Brmware bz uszble
as n general-purposze, multi-uzer, interaetive computer?
or, staicd silghuiy dilflereantly,
2. Is Concurrent Proleg expressive erough to be a kernel language of 2 general-purposz
compuier?

o
(.'-.
B
ﬁ.‘r
=]
O
—
]
(‘J

Wa invaclizate ther2 cuustions oxly from thaz Rtz bardw -'1r-"-
by tue essumy inn t-hat tkhe mzchine vill
1 v

sige. Cur eoneern i chietoner is lirmited ba b
s computers execute hiins.

" Ol
wle

exseunke o lorzi 03 many xezalips- as loday's

et ek Eais
These questicrs are far reaching. but not puroly speculative, given th: Fif
Generziion Computers Pr j* Lz p!ans to dasign and beild a paralle! logic prozremming
achizz, aed to use Concurrent Proloy as ti--?- casis for the maching’s kernel languaze
{21].

L 1l AP e - 1
500 ZIVE Some evidance LowWares orrmaiive answore i bhesa

enesiiens. To do so, we assume a computer that bahaves like o vitinal Concurrzui

Preiey rmschine, but has uo other (lover-ievel or otherwise) pregramming coustructs,

special insiructions, hardware interrupls, eie. We 2iso asswme that basie drivers for 1/C
specification and debugging system [33], and 2 LOOP5-iike {2} shisctecrinales Imo tledeo
representationlanguage [9].

T

Loy

The term Nerrel Languege deootes a hybrid bebween a machins language'and 2 éystems programmisg
langueege, implemented by hardware or Grmware. As far 2s [know it was introduced by the Fifth
Generation Project [23].

2) . . :
LIP3: Legical Infercnces Per Second. Iu the context of Concurrens Prolog, it means process reductions
per secoad,

Concurrent Preleoo
=]

Coucursent Prolog is 2 logic programming languaz., in thei a prosram is o
collection of universally quanti_‘icd Hern-eiause pxioms, and 3 compuiation is un atiem;
to prove n goal—on existeniizily guanrified conjunsvive stalement—irem Lhe axioms iz
the program. The goal statement desb.;bﬂs an m;ui._fou.,nut. relation for which the mapul
is known; a successful (constructive} proof provides a corresponding output.

The difference between Concurrent Prolog and other logic prozramining lan-
guzges (c.g. pure Prolog) is in the mechanism they provide for controlling tha construc-
tion of the proof. Proloz uvses th2 order of clzvses iz the program and the order of
gouls in a clavse to guide a sequential search for a proof, ond uses the cizt opersior Lo
p"llﬂﬁ' undssired portions of the searck space. Concurrcai Proleg searches for 2 proot

o parnllel. To contro! the sexrch. Coneneraal Prolos embedize tro {amilisr coneopts:

gnarded-commend indeterminacy, snd datadow synchropization. They are implemented
usine o constructs: Lhe coramii operator F‘ snd the reed-only aonotation *#7.

The cemmit operator is simiiar Lo L*:IJ.;...LT" s guarded ccmmand [7f, and was
firzb introduced lo logic programming oy Oleik and Gregory [4]. b allows o process
to male pi eliminary comipuialions (specifled in she guard of 2 ciauzz), before shcosing

=1
which aciion te i=be, ie. which clauze to vze for reduciicn. Resd-only sunoteilons oo

vceursonces of variahles are bhe basic {2sd enly) mechanisyy fer provers syncheonisztion,

Rougbiy speeking, o process thatl ,.v:cx.az is to instanticte 2 varinkie Lirengl 2 read-onls
ocaurrencs of il s.ux-pf.uds uatil the varizble s instonlicted by anelber preeoss, Tha other
compencuts of concurredl prosrinming nrsesss ereation, termisalivg, and commuonica-
y pirecdy available in Lwe absiract compuintion madol of o

tien, ar2 Jie ;:ﬂ-::gr-:.:"'“l ng. A
unit goal ecrress.els to a precess, and o coajnactive gonl to a syriem of processes.
Arranang i eriaied vie 5“‘[rocinetion, und lorminated by beine roducad Lo e cwepty
(trae} goul. Conjunclive goals may share vaciables, which are used os communication
chinnels belween processes.

More precisely, a Concurrent Prelog pregrem is o finite sot of guarded-clauszes.
A guerded-elause is a universally quaantified axiom of the form

A — GluG'.!J~r~|GmlBhB_;E;*--:Bn- m,naﬁ.

where the €' and the B's arc alomic formules, also called upit goals. A is called the
clause's head, the G's are called its guard, and the B's its body. YWhen the guard is emply
the coramil operater " is omifted. Cleuees may contzin variables marl'ed read-only,
sueh az “I07. The Edmbu"gh Prolcg syatactic conventions are followed: consiznts besin
wiba o lewer-case fetier, and varicbles vtk an apner-cnae ievter. The speciai vinary Lzrm
IX |17} is used to denote the lisi whose lead (car) is X and tail (edr) is ¥. The consinai

i] denctes Yhe emptly list.

Coneerping the declarative semzntics of 2 guarded ciause, the commit oparztor
reads ke 2 conjunciion: 4 is implied by the G's and the 8’s. The read-oniy cancuaiions
car be irnored fu the declarslive reading.

Procecdurslly, a gusrded-clause specifies a3 behavior similar to an alternaiive in
a guardad-command. To reduece 2 process A using 2 clause

Al — G| B,
unify A with Al, sod, il suecessful, r-::.,ur***'a]y reduce G to the emptlr syetem. and, if
succassiul, commit to ..mL ch.u;e, and, if suecessfe!, reduce A Lo 5.

Thz voifieation of a process cgainst the head of 2 ciouwse zervss severci fuze-
tions: passing parnmeters, assi gﬂ':tg values Lo varizbles, selecting 2nd constructing cate-
strecturen, ard serding 2 nd receivivg massazes. Lhe exsmple progroms below demonstrats
all these uses of unificalion.

The reduction of 2 process may svzperd or fail during rimost any of the st
deseribed above. Tie usifection of tiwe process against the head of 2 clause ‘llh'}d"_".(;.’%
if it roquires Lhe insfaniiziion of veriables cecurring as rea d-unl" in 1’1.. 1 {zils if A a0
Al are not uaifizbiz. The vomputztion of the guzrd sysiemn G suspends if any of ine

processes in it susponds, cnd [2ils if any of them fails. As in grarded-communds, at most

one of Lhe process's or-paraliel guard-systerns may commit.

Prior o comraiiment, noriial resplts computed by the frst two

i
reduction—nrilzinr the process agzinst the heod of Lhe clause and solving t
ple to cbber processes in si's system. This prevanls interference b

Bl ilOs apous
ioveay 1 -] T

brother ce-parellol computotion:, and eliminntzs the nesa for distributed backiraeling.

HS

This compleies the informal description of Concurrent Prolog. The simpliciky

of the language is an nsset when atlempting s hardware or firmware imgplemeniation of

i

3. A Mzts-Interpreter for Concurient FProiog

Ore of the simpler wavs o imrplement o progromming sovirenment for & pro-
gramuing lansvage L is avguaesting L's interpreier. Among Lhe program developimexnt
tools thal can be implemenled in this way are sophisticated <obuggers [27] , runtime-
svalistics packnges, extensions to the :angwm, ad new embodded languages., The

=
difiiculty of implementing these tools grows with the complexity of that inlerpreter.

For reasons of bootstrapping aud elegance, the preferred implezaentoiiva lan-
ge for L's prozramming environmenl is L itsell, as argued eloguenily by Seudewall[25).
f:ﬂ!-c’ the ecce in which en L intzrpreier con be implemenied in L @5 of ch.a: preeticel
imporicnce, as well as a vzefu! criteric for svsivaling ul-' ezpressivencss and complefenzes
of the language, as argued by Sussman and Steale in {37)] .

Designuzg an e*‘pressi'm lzaguaze with a simple rasta-inierprot 13 is like solving
a Sxpoint cqualiva. I the Ia,,guzge L iz ioo wezk, then L's dasa-siructusrcs may not
be rich encuagh to represenl L programs esaveniently. IT the contre! constructs of L are

Incomplete t.hhj cannol he uzad lo simuizle themsaives convenientiy.

On the other hand, if the zontrol structures of L are swlkward and unrestricted
and the data-struclures are toe barogue, thea ils interpreter becomos very large and
unintelligible (¢.g. gofo cannot bs used iz 2 simple war to simulutﬂ naresiricted gofo, but

the ensiest vway tosimulale a whiile statemen’ is using » whilc statement in the intzrpreter).
A mein interpreter for pure ssgucntic! Proizg can be wiiltea in turee Prolog
clzuses, aud, indeod, impismenting softviars tools and embedded lonsurpesivic exiending

tiis in mtm‘atnr is a common 2ctivily for Prelog progrnmmers.

met* interpratar for Cepcurrent Prolor is deseribed beleww, 1k rf-_-,l_ zes tho

c:.’isi.—e:-c& of u buill-in system predicate cleuiesfd, Ci), tact returns in Cs the list of all
claneas in the .:1‘.-*:. nrotod mregram wheose head is pstontially vailiable with ;L t The

bod
tody.

constapt irus signifles 2n emyply guard or az amoty

3Called 2 2 mela-cireular interpreter in {52).

4In our current implementation Cs is the list of 2!l clauses with the same head predicate 2s A, Belter
indexiog mechanism cau make the predicate more seiective. Another possible eplimization is lo use
the bounded-bnlfar technique of 1zkeuchi sud Purukawa [34), to generate clauzes on a demand-driven
basis.

reduce(true}.
reduce({(A,B)) —
reduceiA?), redees{B?).
E{:"ﬁ.] L
lauses{:\,Clauses) |
recolve\}'a Clausss,Body),
reduce({Body?}.

resolve(A,[[A«—Guard{Bedy){C:l,Body; «
reduce{CGuard) | frue.
esolve(A,jC|Clzuses],Body)—
resolvel A,Clzuses,Boay]) | true.
Program: X: A Mete-interprater for Concurrent Prolog

Like any other Concurrent Prd’is:; program, Prozram 1 can be read both des-
iaretivelr. ie. as & set of axioms, and onerationally, ie. 28 £ seb of rulos defining the be-
hsvior of procosses. Declaratively, reduce/4) states Laa‘L A is true {provable) with respect
to the sxiom: defined io the predicste clcuser. Opzraticnally, the process reducc/d

attemple is recuce the system of precesses A to the empty (halt;‘* sysiem irue.

-

Declzratively, the arioms of rediee read: true is {rue. The CGIIJ!1“"'_:L{)‘] AL
is frue i A '-.: true ar nd j iz tine. The goeol & is true if there are cinures Cs with thz
same hond esciving A with Cs gives B, znd B is toues The prcciczi:
reagival.t ,.“1 -.’.?.s;,’_:'j re;icl;—:. deslaratively, that resolving A *'?'Il-u .,hﬂ axioms {C|Cs] zive: &
if the elauze € har hend A guord G and | .uf.L“ B. and the qucrd G is tree, or if recursively
reselvizg A with Cs gives 13,

‘_‘\
r
-
]
L-
'J
-

-

Cperavicnaily, the clavses of reduce r"—}‘ thei the process frue holts. The procss:
(4, Blreduces iisell to the processes & and D, snd that the process A, with clouces C
&

agli be D ohe resyis of resolring A with Ts is B

The reader avk fomitist with logie-programming may be puzszied by this inber-
p:etm . 1% zeems Lc) capiure the conirof part of the compuletion, but does nob seem to
deal at zli with unifieation, the data coraponest. The answer tu the puzzle is that the
call te Um lirst clause of resolve is doing the work, by unilying the precess with the head
of L]m clzuze, Their wnificabion is achieved by calling them with the same name, A.

This interpreter assumes one global program, whose uxioms are zccessible via
the systemn predicate clouses, as in cooventional Prolog implementations.. In a real
implemeniation of Concurrent Prolog, programs would be objects that can be passed
as argumnnts, and reduce and cleuses would have 2n addilional arguinent, ihe progrom
being simulated.

This interpreter cunact execute Conmenrrent Prelog programs that use buili-
system predicates, such as itself (it uses the predieate elauses). The current lmplemumu
tion of Concurrent Prolog contains several (13) system predicates: metalogical predicntes
(eluuses and system), control predicates (cikerwice and ==), interface Lo ke underlying
prolog, /O (reed and write), and arithmetic predicates (the lazy evaluztor = and :
arithmotic test predicntesl, To handle system precicates, the inlerpreler cen be zup-
meniod with the clause |

reduce(A) —
system({A) | A

L=} |

systesn(X)is a system predicate that succeeds if X is a Concurrent Prolog sysiem
predicate, and fails otherwise. For example, the call eysiem(srsiom (¥} succcads, The
clause demenstiretos the use of the metfa-vericble, a {zeility 2lso availzble in Proieg, which
allows to pice processes to other processes os daiz-struetures. It is used exiousively in
‘L'I :‘1 '":‘ "_1'-'."' ""-'rl'r‘-q 5}‘10" L
A =T

EER I

Ope may suggest thal using the metaveriabie facility, s Cencurreal Prelog
meta-intarpreter can be implemented via the cizuse

reaucels) — A,

This elaim s Lree, excepy thot it will be rather dificuli to dmiploment the
soflvers toels wentioned carlier as an externzious to this interprater, whereas impleraeni-

iny & Concurras l’mm- single stepper by extendiug Progrom 1 is o trivizl matier.

Conrn-rapt Pralng jmnk ~"n-::f,*.tlcu Wa fuol thot it i3 r;::;:-m”:la'» S0 pEY &
‘GIG‘UCTJn n d..h!l = the program development phaze {ur 2 good prosramming enviroamank.

fefeil to Lhe enderiving f,:.-m:w teay Preleg ecn ba jnecrporaied ecsily, 2s in
Lhe case of sysiem prodicaies, so Liab in developing Targe sysiems endy the porlion of tis

eder development needs Lhe exira laver of simulation.

L]
o
[
=
o
£
o
(L
&
=
r

4, Streams

Concurrent Prolos processes communicate via shared logical-variables. Logical
variables are single-assignment: they can be either uninstantiated or instantiated, but,
once instantinted, their value canuot be destructively medified. Hence the Concurrent
Prolog computation model is indifierent to the distinction beiween the shered-memory
computation model and tke communication based model. A shared logicsl-variable ca
be viewrad 2s 2 shored memery cel! thal can aseept czly oac value, or 25 2 comimunicalion
channel that can transmit only one message.

The distinclion hotwaen the “reader” and “writer” of o shared variable {or the
“sender” and “receiver” of the message) is done vin read-ozly annotialions. /A precess
p(...X% ..) canoot instantiate X. Attempts of p to reduce itsell to other procezses using

clauses that reouire the instzntiation of X, such s

pi..fla)...) —...

suspend, until X is instapiizied by scme other process. I¥ X ic instantiated to f{3),
then the process p can unify with that clause, even though it instantinted ¥ to @, since
the scone of a read-only annotation is only the main functor of o term, but not variables
thzt occur inside the term. This properir enables a powerful pregremiming techuique
thai uses incornplets messeges (28] .

Even though logical varizbles ore single-zssigmment, two precessss cau com-
municale with ezeh other via a single shared varizble, by insiontiating a variable into
a term Lhat conteins both the message and another variable, to be used in subsequest
communications. This pregramming techniques gives the effect of streams.

The cleznest way to implement I/C functions in a Concurrent Prolog machine
is for I/O devices to gencrate nadjor consume Concurreat Prolog stresms. The curront
implereaniation of Concvrrent Preicg, which is zn interpreter writion in Prolog 28] ,
supports ooly terminal I/0 {the rest is done by the underlying Preicgl. It imploments
the stream abstraction for the user terminal wia two predicates, fmeirzam{X), which
geuerated the stream X of termes tvpad in by the user, and ouleireem(X), thut outputs to
the sereen the siream X . Ther are implumented usizg the underlying Prolog read and

write prodicales.

instroam{{4 30 —
read(X) | insbream{¥s).

oulstream(f]}.
outstrenm{[XjXs]) «
write{X}, oulstreat(Xs?).

Program 2: Implementing terminal 170 streams using read and write

Il we waut instream to allow the user to signify the end of the stream, the
program has Lo be complicated a little.

Using these programs, & “device-driver” that implements 2 stream interfaze to
the terminal can be specified:

termina!(Kevboard,Screer) «
instream(i(eyBoard), ouistream(Screen?).

In a virtual Concurrent Prolog machine in which interfaces to I/O device drivers
are implemenled 2s streams, there will be no need for specizlized I/O primitives. One
possible excention is a sereen-oulpus primitive {write or bitb#), which mav be necded for
convenience 2ud efficiency.

5. Beoting an Operating System

Assume Lhal deviee drivers for a terininal {sercen, keybouid 2nd a mouse], disk,
and 2 local nelwork have been defined for s personal worksistion. Then the {ollowing
program can ba uced to boot its operating system:®

boot -~
monitor(¥{eyDeard? Mouse? Scraen, DiskIn? Disk Out, Netln? Netout),
terminzl{i{eyBoard,Mouse,5<reen?),
disk{DiziIn,D sl{}u‘?]
nel{Netin,NetQui?) |
Lruc,
booi =
otilerwisz |
boo:.

Program 2: Booling 2u opersting system

The first clavse invokes the device drivers and the monitor. The second clzuze
avtomoiicaily reboots the system upon a soitrare crash of either ihe moniler or 1;
device drivers. elisrwise is a Concurrens Preleg system predicate that succeeds if and
wlhen all of its brebher or-parallel puzrds f2il, Declaratively, it may read as the aegniion

of the disjunction of the guards of the brother clauses®.

]

. . . . ' ;
“We are aware of the fact that eificiency considerations may prevent the use of pure streams lor devices

that generate a lob of useless data, such as a mouse, and thas some lower-icvel interface may be required.

O he predicate otherwine is nat implemeased correctly in the currens Concurrent Prolog interpreter [23].
It =y suceeed when il bas anspended brother or-parallel guards, instezd of suspending, and succceding
only when all #ecl guards fail. Tlenee programs using it are not ully debugged.

" Wete that foreground processes are executed ip the shell’'s guard. This sllows
a simple extension to shell so it will handle an abort (“controi-C” -on decert computers)
Ili.t»c"'u[}u for foreground processes. Upon the recepiion of an abeit command the cur-
rently running foreground process {if there is onej is 2bcried, and bhecontent of the input
stream pust the abort command is flushed. This is achieved by the clauses in Program
da.

(¢} sheil{He) «~

seek(abort,Xs,Ys} | sheli(Ys?).
seeld(20IY \.T{J 5.
seek(30,IY|Ks], ¥s)

X\=Y | seal(2T Xs? Y5

Frogrom 4zt Ap extension to the shell that handled 2n abosi interrupt.

S

The pregram oparates as follews. YWhen an fg/¥) commurd is received, the
wo guards, envelspe and seal are speywned in parallel, zad begin to race. The first to
cominit aborts Lhe second, so if eavelope terminates befere seck found an cbert command
in Lhe iaput sticem (most probs bl;f ecause bhe user hasn't i*‘pnd such 2 command yei)
then the cnvelope commits, ek is alior ved, and aiell proceeds norimslly with the nex
commend. On the other hand, if sesf: sureseds in finding arn short command bolore
envelope ter n*nml.eq then envelope is aborved, aud shell proceeds with the input past the
olart commmend, 2s reburned by seek

ffr

A wore pencral inlerrupt, grond_adert, that aborts all procasses spewoed by
ghell, bolh Toreground snd background, can also be implemented quite eastiy:

Lopshell(Xs) «
shell{Xs] | Lrue.
topsheli(XNs) —
seck{grand_abort,Xs,Ys) | topshell(Ys?).

The distinetien the shell in Program 4 makes between background ond fore-
ground processing is not of much uge, however, since foreground -processes 2re nob
interactive, i.c. they do not have access to the shell’s input stream. One problem with the
shell giving a user program its input stream is that upon vermination the user program
kas Lo return the remaining stream back, so that the shell can proceed. Since we cannot
expect every interaclive user program to obey 2 certain convenlion for halling (cf. quLt
exit, hall, stop, bye, ctc.] the shell has to implement a wniform command, sz2y ez to
“snit.l}-” terminate 2n inleractive session with a user program (in contrast to aboriing

it). A filter, ealled sweich monitors the input siream to the program. Upon the reception
of an ezit commmand it closes the ouiput siream to the pregram, returns the rest of the
icput siream to the shell, and terminates. A reasonable intaractive user program should
terminzte upon encountering the end cf the input stream. If it is not reasonable, an ebors

6. A Unix-like Shell

A shell is a process thuy receives a siream of commarde from the terminnl apd
execuics them. In our contexi the commeands are processes, and exesuling Lhem means
invokivg them. A simple shell can be inplemenied using the metzvarinbie faailiiy,

sh.n‘,‘l][[u'}L u
- X, shell(Xs?).

shell([}).

This shell is batch-oriented. It behaves like a Unix-shell that execules sl
commands in “background” mode, in the sense that il does not wait for the comp!aticn
of the nrevious process before accepting the next command. As is, it achieves the elfect of
Unix-like pipes, using conjunctive goais with shared varizbles as commands. For example,

the Unix command
|
Piajr
ean be sinuleted wilh the conjunctive sysiem
p(X), g(X%,Y], r(Y2).
provided that Lhe Unix command p does net read from ils primary inpul and q doas not
write to ils primary output. Bxiernai I/O by user programs is handied below.

the that since tae process’s IfQ strecms have explicii nornes, we zie nol
= lizear pipeliniog, and spy desired /G -:onﬂgt,...u.on of Lhe procezses con

One of this shell's drawbaels is that iv wiil eragh if the user process X ernches,
since 20 and sheli(Xs) arce pard of the same coujunctive system, which fails if one of 1is

members faile, This can be remedivd by caliing enveleneST) instazd of X.

- &

em‘ehpv{h} - X f veritel halted|

[
srvelopd 70— oiherwise ¢ writa(

L]

Iis ensy Lo anugment Lhe eheil Lo distingnish baiween backsround nnd foregrennd
procosses, assiuming LE:.,L every command X is lagged &3(Xj or fg(X), vs done in Frogramwm 4.

i
L '.f

LE { T .
(Fs(is]) —

evvelopeiX) | shell3ls?).
(3} shell({bg{X)iNs]) —

envelope(x]), shell(X

rogran: 21 A shell thet bandles forezround and background processas

{1} shell
1

f|
i~) shell

\?"}

interrupt will always do the job. The following code implements this idea. Commands
to interaciive foreground processes are of the form fofP, Pi), where P is the precess and
Pi is its inpul stream. For example, 2 commmand to run the process foofXj with input
stream X will be given as fofos(X?),X).
(5) shell{[fg(X Xi}iXs]) —
envelope{X), switeh(Xs? X, Ys) |

shell(Ys?).

switeh{exit]|Xe], [}, Xs}.
r]tﬂh([}{l:{a.\],[ﬂi "'i f:S —
X\ =exil | u‘.’:ﬂ.c"” "‘_""%,33},

Prozrom £4bk: An extension to the sheil tha

hapdles interzetive voar programs.

&

The shell deseribed above can handiz only one interaclive process ot z time,
|11 n [hn ll-'illi'ﬁI c‘-l:r.n”nf} T{'_}T'-"q-:-': Ej@“ T‘._:' :’,i 1,:"'“‘.11!‘}]JI_LJ' i'ﬂ[‘ 1“,"'] ir- n; "'}“j‘:r D":l.r"h_

..... N
¥

2 program, developed at Yaie university {6), which overcomes thiz ilmnauo..l It can

Lzndle muitinie inlersciive nronsssas, and hes o mechoaniss for essy conlext swwitehing.

it couaot compels, of course, with LLe convenience of o system with = bi itmay disploy
and o poinding doviea,
MU' nssociales pames wilh precesses. [t has commands [or ereating 2 new

proeess, {reesing or kiliing a process, resuming a frozen process, and others. Program 3

achieves sowe of Lhis functionality.

(0) muf{X) «
muf(X,[)).)

(1) muf(fcreate(Pname,Process,Pin,Pout)|Input],Ps) +
Process,
tag(Pname,Pout),
muf([resume(Pname)|Input?},[(Pname,Pin)|Ps]).

(2) muf([resume(Pname)]Input],Ps) «—
find—process(Pname,Ps,Pin,Psl]|
distribute(Input?,Pin,Inputl,Pinl},
muf(Inputi?,[(Prame,Pinl){Psl]).

(8) muf{lexit|Input][[(Pazme,])|Ps]) ~
muf(Input?,Ps).

(4) muf([),Ps)
‘close_input(Ps).

(1) find_ process(Pname,[(Pnime,Pin)|Ps},Pin,Ps}.

(2) find_ process(Pname,[Pr[Ps],Pin,[Pr{Psi]}+
otherwise | y
find_process(Pname,Ps,Pin,Psl).

(1) distribute([],Pin,{],Pin). ‘

(2) distribute{[X|Input],Pin,{X| Input],Pin)«
muf_command(X)| true.

(3) distribute([X|Input],[X|Pin],Inputl,Pinl)«
otherwise |
distribute(Input?,Pin,Inputl,Pinl).

(1) close—input([]).
(2) close_input([(Pname,[])|Ps])+
close_input(Ps).

(1) muf—command(create(—,—,—,)).
{2) muf_command(resume{_)}.
(3) muf_command(exit).

Program 5: mini-MUF

The muf process is invoked with the call muf{X?) where X is its input stream. It
first initializes itself with the empty process list, using Clause (0),.then iterates, serving
uzer commands,

On the command create{Prame,Process, Pi,Po} it creates a process Process,
end a process tag(Prame,Po), that tags the process’s output stream elements with the
process’s name, and displays them on t}ae screen. It also adds a record with the process’s
name, Pneme, and input stream, Pf,0n its process list, and sends itself the command
resume(Pname).

On the command resume(Pname), muf uses Clause (3). It searches its process
list for the input stream of the process Pname, and puts this process record first on the
list. This is done by find_ process. If successful, it invokes distribute(Input?, Pin Jnputl, Pinl),
which copies the elements of the stream Jnput to the stream Pi (Clause 3) until it reaches
the end of the stream (Clause 1), or encounters & command to muf (Clause 2). In that
event it terminatos, returning the updated sirezms in Pif and Inputl. muf itself is
suspended on fnpuil.

On the command ezif, muf closes the input stream of the current process, and
removes it from the process list (Clause 3).

When encountering the end of its input stream, muf closes the input streams
of 2ll the processes in its list, and terminates (Clause 4).

Some of the frills of the real MUF czan be ezasily incorporated in our mini-

implementation. For example, the freeze command resumes the previously resumed
process, without having to name it explicitly. This is implemented by the following
clause:

muf([freeze|Input],[Pr,(Pname,Pi)|Ps|)«
muf{{resume(Pname){Inpui?},[(Pname,Pi),Pr|Ps]).

which reverses the order of the first two process records on the process list, and sends
itsell a resume command with the name of the previously resumed process. A similar
default for ezit can be added likewise.

Note that if the length of the process list is less then two, this clause would
not apply, since its head would not unify with the muf process. Similarly, if 8 resume
command is given with a wrong argument, Clause (2) wouldn't apply, since the guard,
find_process, would fail.

muf, as defined in Program 5, would crash upon receiving such erroneous
commands. Adding toe following clause wouid cause it to default, in such cases, fo
au error-message routine:

muf([X|Input],Ps) «
otherwise |
muf_error(X,Ps),
muf(Input?,Ps).

muf_error analyses the command with respect to the preeess list, and reports to the user
the type of error-it’s made.

Similarly easy to implement are queries concerning the names of the processes
in the process list, and the identity of the currently resumed process.

8. Merging streams

A Concuwrrent Prolog process can have several input snd/or output streams,
and use them to communicate with several other processes; but the number of these
streamns is fixed for any given process. It is sometimes convepient to determine or change
at runtime the number of processes communicaiing with another process; this can be
achicved by merging communication streams.

In some functional and dataflow languages merge is a built in operator [1,11}.
Logic programs, on the other hand, can express it directly, as shown by Clark sud
Gregory [4]. Program 6 adapts their implementation to Concurrent Prolog. It imple-

— 66 —

ments the process merge(X?, Y7, Z,i, which computes the relation “Z is the interleaving
of X and Y.

merge{[X|Xs], Ys, {X|Zs])«~ merge(Xs?, Ys, Zs).
, [Y]Zs|)«— merge(Xs, Ys?, Zs).

merge(Xs,[], Xs).
merge([], Ys, Ys).

Pregram 6: Merging two streams

Usiag stream-merge as the basic method of many-to-one communication poses
three major problems:

1. How to provide a fair access to the shared process?
2, How to minimize communication delay?
3. How to route a response back to the sender?

The buiiding-block of a fair communication network is a fair merge operator. The
abstract compuiation mcdel of Concurrent Prolog is under-specified, and does not deter-
mine which of the first two clauses of Program 8 would be chosen for reduction if both
input streams hzve elements ready. Dijkstre ([7], p. 204) has considered this under-
specification a desirable property of the guarded-command, and recommended simulating
2 totally erratic demon when choosing between two applicable guards. Nevertheless, for
reasons of efficiency and expressiveness, we prefer to work in 2 more stable environment,
and allow the programmer to control the chosen clause in the special case in which there
are applicable clauses with empty guards.

A stable Concurrent Prolog machine always reduces a process using the first
unifiatle clause with an empty guard, if such a clause exists.

A stable implementation is a natural consequence of having 2 sequential dis-
patcher for the guards of a process. Such a dispatcher would perforia the unification of
the process against the clauses’ heads sequentially, and dispateh the guard of 2 clause if
the unification with its head sticeceds. It would commit as soon as it succeeds in unifying
the process with the head of a clause whose guard is empiy.

The definition of 2 stable machine assumes that some order (say, text order) is
imposed on the clauses of each procedure in the program. Note that a stable implemen-
tation guarantees nothing about.the selection of clauses with non-empty guards.

On a stable machine, Program 8 above will always prefer the first siream over
the second, if both streams have elements ready. Hence it does not gusrantee bounded
waiting (however, it may be used to implement 2 notion of interrupts with different
relative priorities).

To achieve [airness, this program is modified slightly, so it switches the positions
of the two streams on each reduction, as specified in Program 7. On a stsble msching,
this would ensure 2-bounded-waiting.

fargwr 1

merge([[2{Xs], Vs, [X{Zs])+ merge(Ys, Xs?, Is).
merge(Xs, [Y{Ys], {Y|Zs])«~ merge(Ys?, Xs, Zs).
merge(Xs,[], Xs).
merge([], Ys, Ysj.

Program 7: Fairly merging two streams

This program is a satisfactory soluiion to the problem-of merging two streams.
More than two streams can be merged by constructing a tree of merge operators. It is
not difficult to see (ef. [29])that a balanced merge free composed of fair binary merge
operators ensures linear bounded-waiting, and has a logarithmic communication delay.

The construction of a.static balanced merge tree is easy. To allow 2 dynami-
cally changing set of processes a fair and efficient access to a shared resource, 2 more
innovalive solution is required. In [29]|we define self-balancing binary and ternary merge
operators. These operators compose dynamically into a balanced merge-tree, using algo-
rithms similar to 2-3-tree insertion and deietion. The algorithms require sending messages
that.contaih communication channels, in order to reshape the tree. In other words, the
algorithm uses incomplete messages. 2-3 merge trees also ensure linear bounded-waiting
and logarithmic communication delay, hence we believe they provide an acceptable solu-
tion to the problem of dynamic many-to-one communication.

The probiem of routing back the respcnse to a message is solved, at the pro-
gramming level, using incomplete messages. A message vhat requires a response typically
contains an uninstantiated variable; the sender of the message suspends, looking at the
variable in read-only mode. The recipient of Lhe message respoads to it by instantiating
that variable. This technique is used in the monitor, queue, and disk scheduling progrems
beiow.

8.1 A notc on abstract stream operations

A more abstract {but alsc longer 2nd less eficient) implementation of merge
can be oblained using the send/X,5,51) and recesve(X,5,51) operatious on streams. They

— 68 —

define the relation “the result of sending (receiving) X on stream S is the stream S1” as
follows:

send(X, [X|Xs], Xs).
receive(X,[X|Xs],Xs?).

Such a2n implementation hides the internal representation of the stream, and eliminates
the neced to use the read-only annotation almost entirelv in the calling program, since
the resulting stream of receive is already annotated as read-only. We find the use of send
and recerve explicitly, instead of achieving this effect implicitly via unification, essential
for the readability of programs with complex communication patterns, such as the ones
described in [15,26]. '

The send and receive calls can be élim_in_al‘.ed for Lhe sake of efficiency using
standard partial-evaluation and program-transformation techniques (20,35].

8. Monitors and the readers-and-writers problem

The Concurrent Prolog soluiion to the readers and writers problem uses this
method of many-to-ore communication. It is very similar, in spirit, to the idea of
monitors [16]. A designated process {a ‘monitor’) nolds the shared data in a local
argument, and serves the merged input stream of ‘read’ and ‘write’ requests (‘monitor
calls’). It responds to a ‘read’ request through the uninstantiated response variable in it
(‘result argument’).

A schematic implementation of a monitor is shown in Program 8. Note that it
serves a sequence of read requests in parallel, since the recursive invozation of menitor
in Clause (2) is not suspended on the result of serve, in contrast to Clause (1).

(1) monitor{[write{Args)|Si, Date)

serve(write(Args), Data, NewData), monitor(S?, NewData?).
(2) monitor{[read(Args)|S], Data) «—

serve(read(Args), Data, _}, monitor{S?, Data).

(3) monitor([},—).

Program 8: A schemaiic implementation of a monitor
In monitor-based programming languages, a procedure call and 2 monitor call
are two basic, mutually irreducible operztions. In Coneurrent Prolog, on the other hand,

there is ome basic construct, a process invocation, wherees 2 monitor call is a secondary
concept, or, ratlier, a programming techaique.

Concurrent Prolog monitors and merge operators can implement operating
systems in a functional style without side-effects, using techniques similar to Henderson’s
(11].

10. Queues

Merged streams allow many client processes to share one resource; but when
several client processes want to share several resources effectively, 2 more complex buffering
strategy is needed. Such buffering can be obtained with a simple FIFO queue: 2 client
who requires Lhe serviee of a resource enqueues its requesi. When a resource becomes
available it dequeues the next request from ibe queue and serves it. '

The following implementation of shared queues is a canonical example b_f Con-
current Prolog programming style. It exploits two powerful logic programming tech-
niques: incomplete messages, and difference-lists.

A shared queue manager is an instance -of a monitor. "enqueue is a “write’
operation, and “degueue” involves both “read” and “write”. An abstract implementation
of a quene monitor is shown in Pregram 9.

(0) quene_mouitor(S) «—create_ quene{Q),
queue_monitor(S,Q).

(1) queue_monitor{[Request|5],Q) «
serve(Request,Q,Q1).
queue_monitor(S?,Q1?).

(2) queue_moniter([],Q).

Program 9: A queue monifor

Clause (0) creztes an empty queue; Clause (1) iterates, sefvi.ng queune requests;
and Clause (2) halls the queue monitor upen reaching the end of the requests stream.

The implementation of the queue operations employs difference-lists [3]. A
difference-list represents 2 lis{ of elements {in this context, the queue’s content) 2s the
difference between two lists, or streams. For example, the difference between [1,2,3,4]X]
and X is the list [1,2,3,4]. As 2 notational convention, we use the binary term X\Y (read
“the difierence between X 2nd Y"), to denote the list that is the dilference between the
list X 2nd the list Y. Note that this term has no special properties predefiend, 2nd any
binary term will do, as long as it.is used consistently.

create_queue(X\X).

serve{enqueue(X) I-]ead\E{INeﬂmﬂ Head\NewTaii).
serve{dequeue(X), [X]Neanacﬂ\"“nn NewHead\ Tail}.

Progrem 9a: Queue operations

create_ queue{Q) states that Q is an empty difference-list. The clauses for serve
define tb.e relation belween the operation, the old queue, and the new queue. On 2n
engueus(X) message, X is unified with the first element of the Tail stream, and in the
new queue NewTail is Lhe rest of the stream. Ou a dequeue(X) message, X is unified with
the first element of the Head stream, and in the new queue NewHead is the rest of.the
old Head stream.

Operatiopally, the program mimiecs the pointer twiddling of a cpn?entiﬂﬂal
queue program. One diference is the simplicity and uniformity of the way in which
variables are transmilted into and from the queue, using unification, compared lo any
other method of parameter passing and message routing.

Another is the behavior of the program when more degueue messages have
arrived then enqueue messages. In this case the content of the difference-list becomes
“negative”. The Head runs ahead of the Tail, and the negative difference between them
is a list of uninstzntiated variables, each for an excessive dequeune message. Presumably,
a process who sends such a message then suspends on iis variables in a read-only mode.
Oze consequence is that excessive dequeue requests are served exactly in the order in
which they arrived.

_ The program can be condensed and simplified, using program transformation
techniques [20,35]. The resulting program is more efficient, and reveals more clearly the
declarative semantics of the queue monitor. Its operational semantics, however, seems
to become a bit more obscure, and its does not hide the internal representation of the
queue, as Program 10 does.

(1) queve_monitor(S) +
queue—monitor(S?, X\X).

(1) queus_monitor([dequeue(X)|S] , [X{NewHeaaj\TaiI} =
queue_monitor(S?, NewHead\ Tail}.

(2) queue_monitor(fenquene(X)[S], Head\[X|NewTail]) «
queve_. monitor(S?, Head' NewTaii).

(3) queue—.monitor{[],—).

Program 106: A simplified queue moniior

Declaratively, the queue_monitor program computes the relation gueue(s),
which says that S is 2 legal stream. of queue operations. It uses an duxiliary relation
queue_monttor(S,Dequeue\ Engueune), which says that Degueue is the list of all elemunts
X such that dequeue(X)occurs in 8 {Clause 1}, 2nd that Engueue is ihe list of all elements
A such that engueue(Xjoc-urs in S (Clause 2). The interface between these two relations
(Clzuse 0}, constrains the list of enqueuned elements to be ideniical to the list of dequeued
elemeuts, by calling them with the same name.

11. Bournded-buffer communication

Bounded buflers were introduced inte logic programming by Clark and Gregory
[4]as a primitive construct. Their principal usé in logic-programining is not to utilize
a fixed memory-area for communication, but rather to enforee tighter synchronization
between the producer and the consumer of a stream.

Takeuchi and Furukawa [34fhave shown how to implement bounded-buffers
Concurrent Prolog, hence it need not be considered 2 primitive. Their implementation
represents the buffer using 2 dilference-list, and uses inccmplete messages to synchronize
the producer and the consumer of the stream.

12. An implementation of the SCAN disk-arm scheduliug algorithm

The goal of a disk-arm scheduler is to satisfy disk I/O requesis with minimal
arm movements. The simplest algorithm is so serve the next I/O request which refers to
the track closest to Lhe current arm position. This algorithm may result in unbounded
waiting—a disk I/O request may be postponed indefinitely. The SCAN zlgorithm tries
to minimize the arm movement, while guaranteeing bounded waiting. The algorithm
reads as follows:

“while there remsin requests in the current direction, the disk arm continues
to move in that direction, serving the requesi(s) at the nearest cylinder; if there are no
pending requests in that direction {possibly because an edge of the disk surface has been
encountered), the arm direction changes, and the disk arm begins ils sweep across iie
surface in the opposite direction” (from [17/p.94).

(0) disk—scheduler(DiskS, UserS) «—
disk_scheduler(DiskS?, UserS?, (I}, {1}, {0, up)).

(1) diskscheduler([IRequest|Digk 3], User§, Queues, ArmState) «—
dequeue(Request, Queues, Queussl, ArmState, ArmStatel) |
disk—scheduler(DiskS?, User§, Queuesl, ArmStatel).

(2) disk_scheduler(DiskS,[Request|{UserS], Queues, ArmState) —
enqueue(Request, Queues, Queuesi, ArmStale] |
disk _scheduler(DiskS, UserS?, Queuesi, ArmState).
(3) disk_sciedaler{[iof0, halt)] _, I, {[L1), -5

(1) dequeue(io(7",X), ([iol T,XNUpQLI, (UpQuH), - (T,up)).

(2) dequeue(ioT,X), ([iof T.X)UpQ] DnunQ}. {UpQ.DownQ), {~,up), (T),up)).

(3) dequene{io{T,X), (], {ie(T,X)} DownQ), {jj,DownQ), -, {T,down)). .

(4) dequeuc{ie(T,X), (UpQ,iio(T.X)|Downqj;, (UpQ, Duan‘-, (—.down), (T,down}).

(1) enqueue(io(T, Args), (UpQ, DownQ). {lio{T, Arzs)|UpQ], DownQ), (T, dowx)).
(2) enqueuc(io(T, Args), (UpQ, DownQ), (UpQ,lio{T, Args)DownQ]), (T, up)).
(3) enqueue(io(T, Args), (UpQ, DownQ), (UpQ1, Down@Q), (T1, Dir)) —
' T>T1 | insertio{ T, Args), UpQ, UpQL, up).
(4) enqueuce(in('T, Args), (UpQ, Down@), (UpQ, DownQ1}, [T1, Dir)) ~
T<T1 | insert(io(T, Args), DownQ, DownQ1, down).
(1) insert(io{T, X), [, lie(T.X)],—)-
(2) insert(io('T, X), [io{T1, X1)|Q], {io(T, X), io(T1, X1)iQ], up)—
T<T1 | true.
(3) ingert(io{ T, X), lio(T1, X1)IQ), [io{T, X, io{T1, X1)IQ], down)«~
T>T1 | true.
(4) insert{io(T, X), [ic{T1, XI,IQ], lio{T1, Xl}[QI up) —
T>=T1 | isseri(io{T, X), Q, QL, up).
(5) insert(io(T, X), [io{T1, X1)IQ], [io{T1, X1}|Q1], down) +
T=<T1 | insert(io(T, X}, Q, Q1, down).

FProgram *: The SCAN disk-arm scheduler

The dick scheduler has two input streams—a stream of I/O reguests from the
user(s) of the disk, and a stream of incomplete messages from the disk itself. The
scheduler has two priority queues, represented as lists: one for requests to be served at
the upsweep of the arm, and onec for the requests to be served at the downsweep. It
represents tie arm state with the pair (Track, Direction), where Track is the current
tracl: number, and Direction is up or. down.

The disk scheduler is invoked with the gozl:
diskscheduler(DiskS?,. UserS?)

where UserSis a stream of I/O requests from the user(s) of the disk, and DickSis a stream
of partially determined {mcompl.t.ej messages from the disk controller. /O requests are
of the form fo(Track, Args), where Trackis the track number and Args coniain all other
necessary information.

The first step of the scheduler is to initizlize itself with two empty queunes and
the arm positicned on track 0, ready for an upsweep; this is dene by Clause (0). Following
the inilialization, the scheduler proceeds using three clauses:

¥ Clause (1) handles requests from the disk. If such a request is ready in the disk stream,
the scheduler trics to dequeue the next request from one of the queues. If successful,
that request is unified with the disk request, and the scheduler iterates with the resl‘.
of the disk stream the new queues, and the new arm state. The dequeue operation
fails if both queues are empty.

» Clause (2) handles requesis from the user. If an [/O request is s received from the user
it is enqueued in onc of the queues, and the scheduler iterates with the rest of the user
stream and the new queues.

b Clause {(3) terminates the scheduler, if the end of the user stream is reached and if
both queues are empty. Upon termination, the scheduler sends a ‘halt’ message to the
disk controller.

The dequeve procedure has clauses for each of the following four cases:

> Clause (1): If Down@ is empty then it dequeues the first request in Up@), and changes
the new state to be upsweep, where the track number is the track of the I/O request.

» Clause (2): If the arm is on the upsweep and Up@Q is nonempty then it dequeues the
first request in UpQ. The new state is as in Clause (1).

b Clauses (3) and (4): Are the symmetric clauses for Down@.

Note that no clauvse applies if both queunes are empty, hence in such a case the degqueue
procedure fails. Since the disl scheduler invokes dequeus as a guard, it must wait in
ilis case for the next user request, and use Clausa {3) to enqueue it. If such a request is
received 2nd enqueued then in the next iteration the disk request can be served.

The engueue procedure also handles four cases. If the I/O request refers to the
current arm frack, than according to the SCAN zlgorithm it must be postponed to the
next sweep. Clauses (1) and (2) handle this situation for the upsweep and downsweep
cases. If the request refers to a’track number larger than the current track, then it is
inserted to UpQ by Clause {3), otherwise it is inserted to Down@, by Clause (4).

The insertion operation is a straightforward ordered-list insertion. More efficient
data-structuras, such as 2-3-trees, can be used if necessary.

To test the disk scheduler, we have implemented a simulator for a 10-track disk
controller. The controller sends a stream of partially determined I/O requests, and, when
the arguments of the previous request become determined, it serves it and sends the next
request.

(0} disk_controller{[io{ Track, Args)i§]) ~
disk—controller(Track?, Args?, 8, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]).
(1) disk—controller(Track, Args,[io{Trackl, Args1) [S],D) —
disk{Track, Args, D, D1} ! disk_controller{Trackl?, Azrgsi?, S, D1).
{2) disk—controlier{—, halt,{], -).
(1) disk{-, (-, ralse),[L[]).
(2) disk(0, (read(X), true), [X{D], [X[D]).
(3) disk(0, (write(X), true), [-[D], [X|D]).
(4) disk(N, 10, [X[D], (X|D1)) —
N>0 | NI1:=N-1, disk(N1?, 10, D, D1).

Program *: A simulator of a 10-track disk contreller

When invoked with 2 stream S, the controller initializes the disk content znd
sends the first request using Clause (0). It then iterates with Clause (1), serving the
previous I/O request and sending the next partizlly determined request, until a kolt
message is reccived, upon which it cioses its output stream and terminates, using Clause
(2).

- The disk simulator assumes that the arguments of an- I/O request are pairs
{Operation, ResultCodc), where the operations are read(X) and write(X). On read(X)
Clause (2) unifies X with the content of the requested track number. On write(X) Ciause
(2) replaces the requested track content with (. The ResuliCode is unified with frus if the
operation completed successfully (Clauses (2) and (3)), and with felse otherwise (Clause

(1)). An example of an unsuccessful completion is when the requested track number
exceeds the size of the disk. '

13. Conclusion

We have provided some evidence that a machine thet implements Concurrent
Prolog in hardware or firmware will be self-contained, usable, and useful, without mnuch
need Lo resert to reactionary concepts and lechniques.

The next logical step is to build it.

Acknowledgements

This research is supported in part by IBM Poughkeepsie, Data Systems Divi-
sion. Pert of it was carried while the author was visiting ICOT, the Institute for Neww
Generation Computer Technology, Tokyo.

The paper bewefited from a critical survey of an earlier paper of mine, writien
by David Gelenter [10].

1]

[2]

[2]

4]

(5]

[6]

(8]

9

(10}

Refarences

Arvind and J. Dean Brock,

Streaias and Managers,

in Semantics of Concurrent Computctions, G. Kahn (ed.) pp.452-465, LNCS 70,
Springer-Verlag, 1979.

Daniel G. Bobrow and Mark Stefik
The LOOPS Maaucl (preliminary version),
Memo KB-VLSI-81-13, xervx PARC. 1983.

Keith L. Clark and Stanﬁ.ke Tarnlund,
A first-order theory of dat.'g. and programs,
in Information Processing 77, B. Gilechrist (ed.), pp.939-944, North-Holland, 1977.

Keith L. Clerk and Steve Gregory

A relational language for parallel programming, .

in Proceedings of the the ACM Conference on Functiona! Languages and Computer
Architecture, QOctober, 1981.

Keith L. Clark and Steve Gregory

PARLOG: A Peraliel Logic Programming Language

Research report DOC 83/5, Department of Computing, Imperial College of Science
and Technology, May 1982.

J.R. Ellis, N. Mishkin, and S.R. Wood
Tools: an Environment for Timeshared Computing end Progremming,
Research Report 222, Department of Computer Science, Yale University, 1982.

E.W, Dijkstra,
A Discipline of Progremming,
Prentice-Hall, 19786.

Daniel P. Friedman and David S. Wise

An Tndeterminate Constructor for Applicative Programming
in Conference Record of the Seventh Annual ACM Symposium on Principle of

Programming Languages, pp. 245-250, 1980.

K. Furukawa, A, Takeuchi, and S. Kunifuji
AMendela: 4 Knowledge Programming Lenguage on Concurrent Prolog,
ICOT Technical Memorandum TM-0028 (in Japanese), 1983.

David Gelenter
A Nute on Systems Programming in Concurrent Prolog,
Unpublished manuscript, Yale University, 1983.

[14]

[15]

[16]

Peter Henderson

Purely Functional Operating Systems

in Functional Progremming and s Applications, P. Henderson and D.A. Turner
(eds.), Cambridge University Press, 1982.

Hideki Hirakawa

Chert Persing in Concurrent Prolog,

ICOT Technical Report TR-008, 1983.

Hideki Hirakawa et al.

Implementiing an Or-Parallel Optimizing Prolog System (POPS) in Concurrent

Prolog,
ICOT Technical Report TR-020, 1983.

Carl C. Hewitt

A universal modular Actor formalism for artificial intelligence.

In Proceedings of the Third Iniernaiional Joini Conference on Artificiel Intel-
ligence, IJCAI, 1973.

Lisa Hellerstein and Ehud Shapiro _

Algorithmic Programming in Concurrent Prolog: the MAXFLOW ezperience.
Technical Report CS583-12, Department of Applied hMathematics, The Weizmann
Institute of of Science, 1983.

C.AIR. Hoare
Mouitors: an operating systems structuring concept
Communications of the ACM, 17(10), pp.4549-557, 1974.

R.C. Ilolt, G.S. Graham, E.D. Lazowska, and M.A. Scott
Structured Programming wilk Operating Systems Applications
Addison Wesley, 1978.

Daniel H. Ingalls

The SmallTalk-76 programming system: design and implementation.
In Conference records of the Fifth Annual ACM Symposium on Principles of Pro-
gremming Languages, pages 9-16, ACM, January 1976.

Reobert M. Keller, Gary Lindstrom, and Elliot 1. Organie

Rediflow: a multiprocessing architecture combining reduction with data-flow.
Unpublished manuscript, Department of Computer Science, University of Utah,
1983.

(20

(21]

[22]

(23]

[24]

(28]

[26]

(27]

(28]

. H.J. Komorowski
Pariial evaluation as a means for inferencing data-structures in an applicative
language: a theory and implementation in the case of Prolog.
In Conference Record of the Ninth Annual ACM Symposium or Principles of Pro-
gramming Langueges, pp.253-268, ACM, 1982.

S. Kunifuji et al.

Conceptual Specification of the Fifih Generation [erne! Languege Version 1 {pre-
l{minary draft) '

ICOT Technical Memorandum TM-0028, 1983.

H.T. Kung

Let’s Design Algorithms for VLSI Systems,

Technical Report CMU-CS-79-151, Department of Computer Science, Carnegie-
Mellon University, 1979,

T. Moto-Oka ef al.

Challenge for knowiedge information processing systems (preliminary report on
fifth generation computer systems)

In Proceedings of Internationai Conference on Fifth Generaticn Computer Systems,
pages 1-85, JIPDEC, 1981.

Danny Dolev, Maria Klawe and Michael Rodeh
An O{nlogn} Uni-directional distributed algorithm for extrema finding in a circle,
Journe! of Algorithm 3, pages 245-260, 1982.

Erik Sandewall
Programming in 2n interactive environment: the Lisp experience.
-Computing Surveys, ACM, March 1978.

Avner Shafrir and Ehud Shapiro _

Distributed Programming in Concurrent Prolog,

Technical Report CS83-12, Department of Applied Mathematics, The Weizmann
Institute of of Science, 1983.

Ehud Shapiro
-Algorithmic Program Debugging,
ACM Distinguished Dissertation Series, MIT Press, 1983.

Ehud Shapiro

A Subset of Concurrent Prolog and its Interpreter,

Technical Report TR-003, ICOT—Institute for New Generation Computer Tech-
nology, 1983. Also availabie as Technical Report CS83-06, Department of Ap-
plied-Mathematics, The Weizmann Institute of of Science.

[29]

30]

[34]

[32]

[33]

(34]

35

[26]

Ehud Shapiie,

Fair, Binsed, and Self-Balancing Merge Operators: Their Specification aend Im-
plementetion in Concurrent Prolog,

Technical Repart CS83-12, Department of Applied Mathematics, The Weizmann
Institute of of Science, 1983.

Ebud Shapiro and Akikazu Takeuchi
Object Oriented Programming In Concurrent Prolog,
Journal of New Generation. Compuiing Volume 1, Number 1, 1983.

Yossi Shiioach and Uszi Vishkin
An O(n2logn) parallel MAX-FLOW algorithm,
J. of Algorithms, Vol. 3, #2, June 1982, pp. 128-147.

Guy L. Steele Jr. and Gerald J. Sussman
The Art of the Interpreter or, The Modularity, Comnplez
Technical Memorandumn AIM-453, Artificial Intelligence Laboratory, MIT, May

1978.

Nohirisa Suzuki
Experience with specification and verification of complex computer using Con-

current Prolos
in Logic Programming and its Applications, D.H.D. Warren and M. van Caneghem

{eds), Lawrence Erlbaum Press, To appear.

A. Takeuchi and K. Furukawa

Interprocess Communication in Concurrent Prolog,

in Proc. Logic Programmming Workshop 83, pp. 171-185, Albufeira, Portugal, June
1983: Also [COT Technical Report TR-006, 1983.

Hisao Tamaki and Taisuke Saio
A Transformation System for Logic Programs which Preserves Equivalence,

ICOT Technical Report TR-018, 1983,

Sunichi Uchida

Infercnce machine: from sequential tc parallel.

In Proceedings of the 10" Annual International Symposium on Computer Ar-
chitecture, pages 410-416, Stockholm, 1983. Also ICOT Technical Report TR-011.

The Bagel: A Systelic Comeurrcnt Prolog tiachine
(Lecture Hotes)

Abstract

It is argved that explicit cepping of processes to processors is
ezsentiai te effectively progren a general-purpose parzllel coaputer,
and, &5 a consequence, thet the kernel lancuage of such a copputer
should inelude a process-to-processor mapping notation.

The Bagel is a parallel architecture that combines the concepts of
detaflow, gpraph-reduction, and systolie srrays. The Bagel's kerpel
lanzuage is Concurrent Prolog, augmented with Turtle prograns as 2
pepping notation.

Copeurrent Prolep, coabined witk Turtle progranms, can easily inplenent
systclic systems on the Bagel. Several systelie process structures

are sxplored wia prograccins exaaples, iecluding linser pipes {sieve

of erasthotenes, merge sort, nztural-language interface to a database),
rectzngular arrays {(rectzngular matrix oultiplieation, band-matrix
oultiplication, ¢ynamic progremming, array relaxation), static and
dynanic H-trees (divide-and-conquer, distributed database), and chaotic
structures (a2 herd of Turtles).

#11 programs shown have been debugged using the Turtle grephics Bagel
sipnlator, which is ioplemented in Proleg,

RKeywords: parallel processing, Concurrent Prolog,
lopic progremming, graph reduction, dataflow,
systolic azlgorithos, Turtle geooetry.

Now to evaluzte proposed architectures?
One eriteris [Arvind]: Secalability
- For twice the money, get twice the computer,
or

- The architecture should repain feasible
as the nupber of processors [poes to infinity.

Inplicztion of sezlability:
l'op-unifern connunicction/memory-reference costs -
{Crossbar switches znd their approximztions
are not sczlable).

JImplication of ror-uniler: commupicztion costs:

Creuring tke leezlity of conounication zrd
nezery-references iz erveizl for efficient

parallel processing.

The Basic Juestion:
= How to control cooounicetion?
or

- How to ensure logality of conrcunication?

Several answers:
(1} "Smart" lozd-balancing alporithes.
{2} "Spart" coppilers.

(3) Scart progra=iers and algorithn desipners.

Statereni:
Answer {1) is not feessible.

A notation for specifring process-to-processor
nepping; is required by answers {2) and (3).

Statenent:
Desipgning effiecient process structures (which
loezlize coomunication) For parazllel progrec is
as diffiecult as designing efficient
czta-structures for 2 seqguential progreo
(ef. systclie alporithos).

Statenent:

i'o practiczl systen for selecting
dzte-structures is aveilable,

Concluzion:
Arswer {2) iz not feasible {in the forsecable

futurs).

Systeliec Elrorithns
=~ Developed by Hung chnd ecollesgues 2t CLI,
for direct implementiiion in VLII.

- Cocbire pipilining and nultiprocessing
in ¢ zintle frorevor..

- Achieve massive parallelism

- Applied so far wostly teo pumerie problems.

Exanple: A systclic alporitho
for band-petrix pultiplication

(See fipure).

Etatement:
Heltiprocessing 2dds 2 new dimenszion of
progrecoing,
*To run efficiently on & sequential computer, programs
pust control the usage of
= Bpace and

~ Tine.

To run efficiently on a2 perallel computer, prograns
oust contrel the usare of

- Spaece,
= Tipe, and

- Copounieztion.

—————

Inplicetion:
Algorithn desigrers end propgrammers should
have control over the papping of processes to
Processors.

Juplicztion:

A progrzonins language for 2 parallel conoputer
chould include & papping notation.

Inplication:
The oultiprocessor's interconmection schone

st 9e siople, intuitive, end of femercl porpose,
for profreouers te wse it efleciively.

Programcing is difficult as is. Incorporating
explicit control of process-to-processor papping
would make 1t horrendous.

Answer:
Progreeming in higher-level languzpes is ezsier.

There seens to be a2 btradeofl between the cooplexity
of data-structures in sequentizl progreos and
conounication-structures in perzllel progress, so
overazll program cooplexity is preserved,

Our ezperience shows that the napping cospenent ef 2 prograo is
relatively snall, is rot difficult to specify (children's
prograsming...), a2nd can be debugped independently of the main

zlporitho.

e

Cbjection:

Explicit mapping by user iz too sicple-cinded
and rigid. tore sophisticzted and flexible
mapping strategies eare essontial for many
epplications.

Ansvers:
= Simple is bezutiful.

- Qur ezauple prograns provide evidence to
the contrary.

=~ Lozd=-bzlancing alporithos cay be reguired in
2 pulti-uszer environcent. However, they
snould be implemerted by the systems hecler,
not the hzrdware zrchitect. Hence the
kernel propreouine languege needs & mapping
notation, 2.E.D.

& Concurrent Prolep Ad

Corcvrrent Prolop combines the loric propresnins
couputation nodel with guarded-comoznd
indetercinaey znd datafllow synchronization.

It is sipple. It adds tec pure logic progress only
tuo control prioitives:

~ The connit operzter (for indctercinzey).
~ Read-onky ennotations (for synckrenization).

Tt is exprecsive. Applicd so far to:

Systems procramoing
{ICOT TR-003; POPL-BY; LPS-84;
A, Takeuchi and K.Furukawa, LPU-83).

Systolic slporithms (this talk).

Distributed alporithns
{A.Shafrir, Weiznann TR C583-12; L.Hellerstein, LPS-84}.

Chject-oriented progremning and constrzint systems

{A.Takeuchi, J. llew Generation Computing 1(3}).

Parallel parzing
{H.Yiral:iawa, ICOT TR-008).

Herdware specificztion and debugcing
(II.8uzuki, in Logie Prograpning znd its
tpplications, Yarren & van Cznegher {eds}, 1388).

Inplenentation of ecbedded langusges:
Or-parallel Proleg (Firekesws et &l., ICOT TR-020).
'endela: A knowledpe-progremaing latguzge
{%.Ferukawa, A.Takeuchi, and S.Wunifuji, ICCT TR-029).

It is amenable to efficient ioplementation (we hope...).
%o far has only an interpreter ioplegented in
Prolog {ICOT TR-003).

The Dzgel: A Systolie Concurrent Prolog liachine

I

Architecture:
rectangular grid of transpoters with
rogresb-neishber and shifted end-round
torroidal interconnections.

Prograrmming language:
Concurrent Prolog, aummented with Turtle
Prosrens as & napping notation.

Ilzjor applicztion pethod:
Eystelie zlporithos.
Izoplemcntation state:
Seftuare zioulators written in Prelog
{with Turtle grephics) and Concurrent Prolog
(very =low) exist.

Prograns bslow were debugpped weins the
Turtle srephics siculator.

Coercorveting trne Zopel: Step o

{Sey Tipure).

.Construeting the Bagel: Step 2

(See figure).

The Bagel
(See figure).

hspeets of the Sagel's interconnection scheoe

= Viptuzl infinite tiwo dipensional grid
{procrams need not know the dimensions of the
Bagell.
{eoenvenient comnunicztion siructure for oany
applications)

- A path In any direction will visit every
processor once, before returning to its erigin.
{zupports even capping).

= Sipple to inplement in evrrent and fortheconing
technologies.

- Sealable.

Azpects of the Barel's corputztion model

- Breic computation step:
Process reduction.
- Synchronization:
Data-Clew (read-enly variables),
- Interprocessor comnmunication:
Pacliets cunLaining:
instantiations of shared vericzbles.
% processes and their associcted prograns.
® procests control pesseres (suceess, failurel.

Aupests of the lerel's trenzputer

Ezch trensputer consists of;
- Reduction processor (pipelined?}
- Randoo access penory
- Copmunicatlon processor.

Ezsociztive memory

Interface to erxterrzl L/0.
Possible optinizations:
=~ Cache
= Two=port oenory.
Porsible approzimetions (herdwarc =ipulateors):

- Reduction proecessor end comnunicztion
procassor are off-the-shelfl chips.

- tszspciative mepmory sioulzted by a hash teble.

-

Schecatic design of the Bzpel's transputer

(See Fipurc)

The Bagel's kerrel langusge

Conzuerrent Prolog sugmented with fixed-instruetion
Turtle programs as nobation for mepping processes
to processors.

Cozls {processes) can be of the form GozlOTP
meanins, selve the gpoal (erxecute the proecess) Cozl at

the proceszsor specified by the Turtle prograzo TP.

Ezoh proceas, like 2 Turtle, has a2 -position and =
heeding. The initizl position and hesding of 2
tild process ic inkerited from its parent.

Firgd-ingirvetion Turtle procrams are & ssguence of
inztruetions of the form:

forverd{Distance), baek{Distanece), left(Anzle}, right{Ancle),
turn{Degree} {where Dogree is absolute hesding) [4,i] (wherc [i,]]
is an absclute pesition), stay (ne-opl.

{aurrently uply intecer Distonces end 20 degree
Eerles zre inplewvenced).

onimples ¢f proecar confipurction sohemes

Linear pipes:

= Sieve of Erasthotenes.

- Bubble sort.

= lerge sort.

-~ Retural languege interface to 2 DS (scheoe).

Rectangular arrays:

- Rectangular patrix pultiplication.
= Band-zatrix oultiplieztion.
Dynanie programcing.

Array relaxation.

Statiec KH-trees:
- Divide-and-concuer {towerz of Hanoi).

Dynsciie H-trees:

- Distributed database (scheme).

Linear pipe: Sieve of Erasthotenes
Abzirzot process ctructure:

prices :- integers, siftéforward.
sift ;- filter, siftfforwvard.
filter := filter.

integers :- integers.

Concurrent Prolog Code:
primes{J} :- integers(2,I), sirft(I?,J)}8forvard.
eift([PIX],[FIR12]) :~ Tilter(I,P,R), sift({R?,R1)2forvard.

filter{[I"'/Z1,P, R} = O=:=ll pod P | filter(ZI,P,R).
Cilter(iF{I),P, [FiR?]) - O=\=l mod P |} filter(Z,P,R).
intcgers(, [I71I?7]) := MM:=l1, integers(il,I).

Linear pipe: Bubble-sort

iLinser time znd process compleslity!

nbzirect process sireciure:

bsort i-
pfilter,
bsort&forvard.
baort.

bfilter :-
bfilter.
bfilter.

Concurrent Proleg Code:

bsort{[XiXs], [¥!¥s]) :-
bfilter(X, ¥s?, Xs1, Y,
bsort(Xs1?, ¥s)fforward.
bsort((], [1).

pfilter(1, [%2l¥s], [X2i¥s], Y} :-
¥1<¢%2 | brilter(X1, Xs?, Ys, ¥},
bfilter(X1, [X2ixs], [¥1{¥s], ¥) :-
X1»s¥2 | brilter(¥2, Xs?, Ys, ¥).
bfilter{Xx, [], [], X}.

Linear pipe: merge-sort

(Linear time znd logarithnic process complexity)
Abstrezcot process structurs:

nsort.

n=ort -
merge_all,
psortéforvard.

nerge_all.

merge_all :-
perne2,
mperpe_z11.

Loree2.
nerpe2 1-
RErEE2.

Linecr pipe: merpe-sort

Conecurrent Prolog Code:
(I'ote: input is z list of zorted lists).

azert(l], [1).

wveort([X1, %),

poorilis, 2s) :-
ishe=[], ea=il] |
uerse_gli{is, ¥z},
meorbf¥s?, Lz} Tlorvard.

pmerge_211([1, [1)}.

merge_all([X], [X]).

nerge_sl1{[X1,K21Xs], [Y?1¥s?]) :-
nerpe2(X1?, X27, ¥),
perpe_all{Xs, Ys).

nerge2([1, ¥, X).

gerge2(X, [1, X).

merge2([Xi¥s], [Yl¥s], [X!Zs%)) :-
X=<Y | merge2(Xs, [Y|¥s], Is).

perge2([xiXs], [Yi¥s]), [¥Yi2s?]) :-
Y | merge2([XiXs), ¥s, EZs).

Linezr pipe: MNatural languwage interflace to 2
dctzbase (schene).

Abztrect process structure:

progess -
norphologiecal,
syntaxfforward(1},
sepanticsOferward(2),
pregoatiesfforvaré(3),
planningfforvard(y).

Concurrent Prolog cods (scheme):
process{String, Tusry) :-
sorphological (String?, Tokens),
syntax(Tokens, SyntaxTree}fforward(1),
sepanties(SyntzxTree?, Formulal)lfervard(2),
pregmatics{Foroule?, Foermulal)ffortrard(3),
plarning(Forrulal?, Juery)fforwzrd(4).

tdvantares:

- Czn pipelined pultiple gueries.
- Code for each stage resides only in one processor.

i

Nectancular errey: patrix pultiplication (1)

(Linezr time and quedritic process cooplexity)

Abstrzct process structure:

o= :~ voiright, mnlforward.

vo.

v := ip, v=licrverd.
ip 1= in.

ip.

Concurrent Prolog codes

ma{{], s []).
ﬂﬁt[x:xﬂlu Ys: [Eizs]} =
va(X, ¥s?, Z)Bright, mo(Xs?, s, Zs)ilorvard.

wal_, {1, []).
v{Xs, [Ti¥s], [2]2s1) :-
ip(¥s?, ¥7, 2}, wvol(Xs, ¥Ys?, Zs)fforward.

ip(xsi Is: Z} -
in{Xs, Ya, 0, Z).

ip([xixsl, {¥!i¥=], Z0, Z) :-
_ Z1:={% ® Y)+Z0, ip(Xs?, ¥s?, Z1, Z).
ip(f1, L1, 2,).

Pectangular zrray: netrix oultiplieation {(2)

A variant of the previeous progrem, that pipeliness
the vectora, instead of =zending them as & whole.

mo{[], ., []).
oo{[¥!¥s], Y=, [2lis]) :-
ve{¥, ¥s%, ¥s1, Z)Iright, oo(fs?, ¥s17, Zs)0fcruard.

wo{_, (1, {1, L1).
voiXs, [7i¥s], [¥11¥31], [ZiZs]) :-
ip(xs?, ¥=1, Y7, ¥1, Z), wel¥s1?, ¥s?, ¥s1, Zs)&forward.

ip{¥z, ¥s1, ¥s, Y¥Ys1, Z) :-
ip(Xs, X¥s1, ¥s, ¥s1, 0, Z).

ip((xi¥a], (Xixs1), [Yi¥el, (¥11=1], 20, 2) :-
Z1:=(¥ % Y)+Z0, dip(ZXs?, ¥=1, T¥s%, ¥s1, Z1, E}.
ip{(}, (), [}, 1), 2, Z).

Rectengular srrey: dynaoic prograoming

{The systclie ziforithn of Hung, Guibzs, eand Thonmpson)
Abstraet proccss structuro:

ta2ble.

tzble =
rouiiright,
tableervard.,

rou.
oL ie
antry,

et o orhi o

BNLiry.

Rlectenpular array: dynanic progracoing

Concurrent Prolog code:

Input: a list of triples (0,D01,02), where the O's

are patrix dioensions.

Output: {¥,D1,D2), where ¥ is the nuamber of
multiplications in optinal parenthesization.

table([17],17).
tzble(ls,liin) :-
Ushs[_] |
row(ls,¥s13%right,
table(¥s17,/in)forvard.

rev({_J,01).
row((¥1,12 1], [Vis17]) ==
entry{11,02,1),
row{ {2 =], ¥s1)8 arward.,

entey{(¥1,L1,R1),(u2,L2,r2),(V,L1,R2)) :-
Wisnin(Wi<L1%¥R149R2, U2+L18L2TR2).

llote how diagonal copmuniecation chznnels
between tzble eniries are crested by the row
procedure.

B-trees: A schene for divide-znd-conguer

l.bstrect process structure:

htree.

htree -
htreel(lefi, forverd),
htreel{right,forverd) .

Concurrent Proleg code:
htree(0}.
ntree{i++) -
htree(D)2{left, Ferverd{2™(D/2))},
htree(D}{right, forvard(27(D/2))),
Joter pl¥at,ena) 1= L.,

I

2 shorthend for: pill, ..} 1= X106 | ¥:=l1-1, ...

H-trees: The Towers of Hanol

Abastrzct progess strecture:

hanei.

hanei :-
free,
hanoif{left, forward),
hanoif{right, foruard).

free.

Concurrant Prclog code:

hznci{(,Fron,To,{Froz,To}).

harci(Ve, Froa, To,{Eefore, (Froz,To) , After)): -
free(Fron,To,Freel,
nznoi(l;,Fron,Free, Pefore)C{ left, formvard{2"(1:/2}}),
nanoi{l,Free,To,After)O{right, farward(27(2/2))}.

free{a,b,c).
free(a,o,b).
free(b,a, o).
free{b,c,2).
free{e,&,b).
free(e,b,2).

Rectangsular arrzy: band-matriz zultipliestion

(The systolic zlgorithz of Hung znd Leisersen,
linezr time =nd quadratie process complenity)

dbstrzet process structure:
cpawn_isp,
2rocTorwerd,;
ermdrirht,
an?{ forvard, right, forvard, left).
(oW

[=-pe Y

EVE o=
spawn_isp,
arplforuard.

spawn_isp -
icp.

spauvn_isp =
foruerd,
is=p.

foriard.

Jervard -
femzrd.

isp :-
i=p.
isp.

Concurrent Proleg code:

oof{D, [Binfasin] ,[Bini8sin],e(Clout,Cout,Crout}) :-
spewrn_isp(D,0,Cin?,Cout,Ain?, Aout,Bin?,Bout),
erc(D, Asin?, Asout,Clin,Clout,Bout)fforvard,
arz(D,B8sin?, Bsout,Crin, Crout, Aout)}fright,
nn[Bu1,Asnut?,ﬂsoutT ef{Clin,Cin,Crin))@{forvard, right, furward,left}

=e(D,[1.0],e([1,01,010).

% D iz the ciagonzl disteance from the center-point .
T ¥V is the verticazl (horizontal) distance from x's diaponal,
erc(D, Asin, Azovt,Cin, Cout,Bin) :-

arz{D,1,434in, Asout,Cin, Cout,Bin).

'3r:::|".l[]1[::[21:[}]I-11

ero(D,V,[Ainii=in],[Aout Jhsout],[Cin{Csin],[Cout {Csout],Bin) :-
spawr_isp({D,V,Cin?,Cout, Ain?, Aout,Bin?,Bout),
V=W,
ar=(D,¥1,A24in?, Azout,Csin, Csout , Bout) @forvard.

spawn_isp(0,¥,Cin,Cout,Ain, Aout,Bin,Bout) :-
% we are in the 0'=s zrea...
isp(Cin,Cout, Ain, Aout,Bin,Bout).

spawn_isp({D,¥,Cin,Cout, Ain, Aout,Bin,Bout) -
D0 ! % we are in the A {or B) arez...
forward{oin{D,V),&in, int, dout,Aout1),
isp(Cin,Cout,Ain1?,Aoutt,Bin,Bout).

spawn_isp(D,V,Cir,Cout,Ain, fout,Bin,Bout) :-
<o | S we are in the C area... |
forward(-l,Cin?,Cin1, Cout ,Cout1),
isp(Cin1?,Cout1,Ain, Acut,Bin,Bout}.

forverdl(d,Cin,Cin,Cout ,Cout).

rorvard(!'++,0in, Cin2, Cout,Cout2) :=-
get_e(C,Cin,Cin1), send{C,Cout,Cout1),
forward(l:, Cin1?,Cin2 ,Coutl1,Cout2).

pet_e{0,[1,L1).
ret_cf{C,[ClC=],Ce).

ign{Cin,[C1{Cout],[nlnin],[&]Aout],[BiBin],[EiDout]} :-
ret_e{C,Cin,Cinl),
Cl:=C+{A 2 D) !}
isp(Cin1?,Cout, Ain?, fout,Rin?, Bout).

isp{Cs,Cs, 0z, 83,[1,0]).

iapl(Cs,Cs,[1,01,B5,8s).

——————

lieetancular srrey: &arrey relaxotion

fbzilrset provess structure (zimplified):

relax i-—
conitor,
patriz@forvard.

metrix -
vectorfright,
natrixflforward,
perge_nonitor,

veotor 1=
spawn_cell,
vectorfforyard,
oerge_poniteor.

spavn_ocell -

cell_ponitor,
cell.
pell -
eell.
eell_ronitor i=-
cell _conitor.

nerge_monitor ;-
nerge_rconitor.

ponitor :=
ponitor.

Rectansular zrray: array relaxation

Concurrent Prolog code:

relax(¥,I) =
ceniter(lonitor?,Halt),
matrix((1,1),%,Botton,Top,Honitor, Halt?)0fervard,
tie vector(Bottom?),
tie_wvector(Top?}.

fmetriz(Coordinetes,Matrix,Nextrow channels,Final channels).

umatriz(_,[]:Top,Top,[]:.)-

patrix((I,J),[X}Zs],Botton, Top,llonitor, Halt) :-
vector((I,J),%,Potton, Bottonl ,Veonitor, Helt) @right,
netrin{(i+1,J),¥%s,Bottent, Top, Feonitor, Halt) 0formiard,
nerre_uonitor{lmonitor?,Veenitor?,llonitor}.

tie_wector([]).
tie_vector([X1Xs]) -
tie cell(X), tie_vector{Xs?).

vector(IJd,¥s,Botton, Top,'oniteor,Halt) -
veetor{IJ, Xz, Left, Bicht, Potter, Top,llonitor,dalt),
tie_cell(Left),
tic_ecell{rfight).

svecter{Coord,Leftehannsl, Tiphtanennel, Bottonechannels, Topehrls) .
vecter ZJd, [Y, Ripns, Figh o (1,00 D 000,
veptop! {Z, 00 [ntned Lels ik, fhette 1023, Ten iTe) JHlont tor, e 1 3 -

spewn_cell((I,J},X,Lelt,Left1,Botton, Top,Coonitor, H21t),
vector((I,J+1),Xs,Lelft1, ight,P=, Ts,Voonitor, Halt)0forvard,
nerge_nonitor(Vmonitor?,Coonitor?,Honitor).

tie_eell(e(X,X)).

spawn_cell(IF,X,c{lin,Out),c(Out,Rin),el{Bin, Out),c{0ut,Tin},Honitor,Balt) :-
send(X,0ut,0utl1) |
eell _monitor(X,0ut1?,lonitor),
cell(1J,Halt, Out1,Lin?, Rin?, Bin?, Tin?).

eall{LJ, halt,[], s_s_.)-

eell{XJ,Halt ,Out,[X1!L],[X2}8),[x318],[x8(T]) :-
T orc ((X1+X2+4X34X4) /7 H) |
send(X,0ut,0utl),
eell(IJ,H=1t,0ut1,L?,R?,27,T?).

esll_noniter{X1,[X21¥s],[nalti{¥s]) :-
Z1=:=2X? | cell_nonitor(X2,%¥s?,Ys).
cel) woniter{X1,[X2)%s],[continue|¥s]) :-
X1\=X2 | cell _ronitor(X2,Xs?,Ys).
eell _moniter(_,[1,[]1).

oerge_noniter{Xs, ¥s,Zs,Halt) ;-
merpe_popitor(Felt, continue,Xs, ¥Ys,Is),

nerge_monitor(kalt, ,_,_,[1).
nerge_ponitor(lonitor,State,[X|X=],[Y!¥s]},23) i-
nerge_messages(State,X,Y,2s,5tate?,Zz21),
merge_nonitor{lionitor,State1,Xs?,¥s5%,251).
oerge_conitor(lionitor,State,is,[],Xs).
perge_nonitor(llonitor,State,[],¥s,¥s).

merge_nessages(halt,continue, Y, [continue |Zs],continue,Zs).
nerpe_pessages(halt, X, continue, [continue }Zs],continue,Zs).
merge_pessages{¥,balt,hzlt,[balt|Zs],halt,Zs).

nerge _messages(continue,X, continue,Zs,continue,Zs).,
merge_pessazes{continue,continue,¥,Zs,continue,Zs).

nonitor{{halt{is], halt).
monitor{[econtinue [¥s],lionitor) :-
ronitor(ias?,lionitor).

Cheotic procesz: A Turtle.

Concurrent Prolop code:

turtle :-
inztrean(y), turtle(i?).

turtlel[]).
turtle([X18s]) :- turtle(Xs?)97,

————

Dynamic FE-trees; a scheme for 2 distributed dztabase

- Relations are stored in the leaves.
- Tree nodes route queries and merge responses.
- Database prows dynamically.

Abstract process structure:

root i-=
root.,
leaf.

root -
root.

tree (-
odd |
treelTP.
tree:=
even |
treefTF.
Lree,

leaf := leaf_splitf£TP.
lezf.

legf_split :-
tree,
leafE({right,forvard),
leafC(ripght,forvard).

Concurrent Prolog code:

root(Xs) :-
root{C,¥s%,Ys),
leaf{¥s?).

root(D,[zpliti¥s],[split{D1,stay)|¥s?]) :-
D1 :=D+1,;
root(D1,%a7,¥s).

reot(D,[1,[1).

tree{[split{D++,TP) |Xs],
f=plit(D,(right,TP,left)) L7,
[zplit(D,{left, TP, richt})IR?]) :-
odd(D} |
tree(Xs?,L,RIETP.

tree([split{D++,TP}iXs],
[split(D,{richt,TP,lelt, forward(D1))) IL2],
[split{D,{left, TP, right,lorward(D1}})} IRT]} :-
even(D), Di:=(2"(D/2-1)) |
tree(Xs?,L,R)ZTP.

tree([],{1,[1).

leaf({=plit{_,TP)!¥s]) := leaf_split{Xs?)ITP.
lezf([]}.

tree{Xs,L,R),
lezaf(L?)0(1left, forward),
leaf (R?)C(right, forward) .

odd(X) := X=\=(X/s2)%2,
even(X) := X=:={X/2)%2.

Ehud ¥. Shapiro

Qffice: Home:

Dept. of Applied Mathematics 36 Hanassi St. Apt.#18
Weizmann Institute of Science Rehovot, Israel
Rehovot, - Israel 76100 {not a mailing address)
(972) 54-B3434 {972) 54-73040

Personal Data

Born February 28, 1955, in Jerusalem, Israel; single; Israeli
citizen.

Education

Ph.D. in computer science, May 1982, Yale University.
M.Phil. in computer science, December 1981, Yale University.
M.S. in computer science, December 1980, Yale University.

B.A./B.S. in mathematics and philosophy, with distinction, June 1979,
Tel Aviv University.’

Current Research Interests

Theory of logic programming and applications of the programming lang-
uage Prolog; algorithms for prng;am=dehugging; programming environments;
concurrent computing and operating systems; computational complexity; induc-
tive inference.

Exeerience

June 1982-present
Research Fellow, Department of Applied Mathematics, Weizmann Institute
of Science.

June 1982-present
Consultant to the Distributed AT Project, SRI International.

November 1981l-June 1282
Consultant to the ¥nowledge Based Programmer's Assistant Project,
Department of Computer Science, University of Illinois at Urbana-
Champaign.

June 15%80-June
Research assistant, Department of Computer Science, Yale University.

January 1980-June 1981
Teaching assistant, Department of Computer Science, Yale University.

October 1977-May 1979
Programmer and systems analyst, at Dagesh-Consulting and Data Proces-
sing, Tel Aviv.

October 1973-April 1977

Service in the Israeli Defense Forces. Terminal rank and position:
lieutenant, company commander.

Conference and Workshop Presentations

First International Logic Programming Conference, Marseille, France,
September 1982,

Prolog Programming Envircmments Workshop, Linkoping, Sweden, March 1982,

The Ninth ACM Symposium on Principles of Programming Languages, Albuquerdque,
Hew Mexico, January 1982.

Machine Intelligence 10, Clewveland, Ohio, NHovember 1981.

NATO ASI Summer Scheool on Program Construction, Chateau de Bonas, France,
September 1981.

Seventh International Joint Conference on Artificial Intelligence, Vancouver,
B.C., Canada, August 1981.

Workshop on Logic Programming and Intelligent Systems, EMS Queen Mary,
Long Beach, California, August 1981.

Logic Programming Workshop, Syracuse, New York, March 1981.

Seminars

Bar Ilan University; Edinburgh University; The Hebrew University at
Jerusalem; Imperial College of Science and Technology; Purdue University;
Technion - Israeli Institute of Technology; Tel Aviv University; University
of Illinois at Urbana-Champagne; University of Texas at Austin; Weizmann
Institute of Science; ¥EROX-PARC, Hewlett-Packard, Palo Alto; IEM San Jose;
SRI Internmational; Stanford University.

Thesis

"Algorithmic Program Debugging”, Ph.D. Thesis, May 1982. Thesis
advisor:; Dana C. Angluin.

