TOWARDS & HIGH PERFORMANCE FROLDE PROCESSOR

PDavid Warren, February 1983

‘ABSTRACT

In this note we consider how on2 might design a high
zerformence Proleg processor, by exploiting low-level
parallelism in Prolog sxecuticn. e focus chiefly on
potential parallelism in the implementation of unification.

H.B. The ideas expressed here ares very teoentative, and this
account aof them is very sketchy.

INTRODUCTION

Many tasks ¥or which Prclog seems highly suited are not
“raklly practical on current mechines because they can be
:ﬁgacmunted mere eff giently in leawzr--level la=nguages;
sxamples include *text editers, document faormatters, and key
parts of operating systems. This limitation of Proleg would
completely diseppear, however, if one logical infers=nce
{i.e. resglution) took thes same oreoe- of Trike a5 a
corventigna’ machine instructien. Is it possible to design
speciel Prolog hardware that can perform resclutions as fast
as & conventional processor execvies instructions, and that
hes & c28t comperablie with o conventblonel proccssor? Te

put it more concretely, can we build 2 one megalips C(i.e.
one million logical inferences per second) Proleg machine
for the same kind of cost as a ane mips URAX, for example?
This note presenis some initial idexs towards Lthis geoai.

We wish to exploit certain low~level paraellelism in Preleg,
by analogy with the way a conventional NLU expicits
parallelism in arithmetic operations. By "low-level"
parallelism, we mean parallelism that is invisible to the
2gnlicg pragrammer. Of course logic programs seem to offer
; t potential for large-scale parallelism, but this kind
of parallelism cannot he exploited without the programmer
being concerned. It will require a fundamentally new
approach to legic programming. FPreleg’'s control mechanisms
{including cut) and use of side effects will have to be
replaced by something new. Since expiciting large-scale
parallelism regquires major advances in both programming
methodulogy and computer architectures, it i8 clearly =&
subject for longer term research. What we prapose hesre is
less radical, and hoepefully can be reelised sooner.

Qur goal is to take a conventional Prolog suystem on a won
NHeumann machine, and speed up its innermost mechanisms.
Briefly, this means replacing the central precessor, but
leaving the organisation of main memory essentially
unchanged.

If we look at a typical resolution, such as the
‘concatenate’ loop, We see that it regquires of the order of
188 basic operations. On the DEC-18, far instance, the
"concatenate® Jloop compiles into 5@ machine instructions
(eee Appendix IT), and rung at around 38,002 lips on a KL-18
processor. For The Psi machine being designed at ICOT, the
performance is expected to be similar, in the region of

J@.888 lips (er perhaps a bit morel. This machine is
esssentially a state-of-the—art Frolog interpreter,
implemented in Firmware rather than software. The
microinstructions themselves are rejatively primifive
eperations, not particularly specialiged towards Frelog
execution. The micoinstruction cycle time is estimated at
288 nancseconds, from which one can infer that one
regplution will take about 158 ricroinarructions.

All work to date on improving th= performance of Prolog,
including the degign of Psi, hes been concerned with making
rthe basic operations run fastsr, The ocperations themselves
are performed in a strictly seqguentie]l manner. The
processor dovs gonlly one thing at a time, and that thing is
painfully primitive. Ee long as the beagic opevrations are
peErformed strictly secguentially, there iz a4 limit to the
performance that can be achieved with current hardware
technology; p=rhkaps "EE,P88 Jips is the beet that can b2
hoped Tor in & machine of moderctes cost. So the geal of one
megalips performance seemg to hnecessarily imply some degree
pigoarallelism in the performance of the basic operations of
._!’=¢‘

DESIGN COWNSIDERATIDNS

In thinking about possible designs, we will tend to first
Asgume a non—-structurs=—sharing implementation. The

reagan is thkat non—structure-sharing is conceptually
simpler, and amongst other things simplifies garbage
callection. Structure-sharing may well not be worthwhile if
the alternative, copying, cen be implemented efficiently by
hardware. Hayever, there are counter~arguments, and we will
certainly kesp structure=sharing as an apfion to ke
congidered.

Tha main problem in designing a4 higher perfoarmancs Prolog
processor seems to be the bottleneck between the processor
and main memory. Te achieve one resolution per micosecond
will certainly regquire a very high traffic between the
proc=s3sor and ASin pemory. For sxample, at fTirst sight, ore
resolution of *concatenate’ reguires the procossor to read
22 data items and write 8 data items:

f.vcaasclause. ... 14 ===}

"’
Loveagoal.ceed] d —mem=m—m———— >0 Frolog | ====== Y Lysasgodleasred 4
[rar] | ———wceemcmm e ——— » i processar i ====== > {varl |1
[list recorgd] 3 —=mmmmeaceo > | ====== > flist recordl I

However with “tail recursian cptimisation” and & cache of sufficient sizxe,

the number of main memory datea accesses can hopefully Be raduced 12 JF ftems
read and F items written:
Reads - ___ . Urites
i i

g musec ————== = > Proleg 4

1 musec Icomsialilii..] : processor A

2 musec [conslazil2]..] [} [= e ————— >

J musec ... b e e ! [consiatllt*i..]

. [censia2i12*)..]

- ow

The functions tp be performed by the Proleog proceasser are,
basically, unification and backtracking. (Froceure
invocation can be viewed as & special case of unification).
Generally speaking, the bulk of the processing i®
unification. One can think of a Froleg processor &as a
machine whick can move, test, and compare symbolic data very
gquickly., There is little ar no need for the usual
arithmeticslogical operations on binary data.

PARALLEL UNIFICATION

Our firgt proposal “or spesding up Proliog {6 &8 processor
which exscutes unification steps in parallel. The key
observation here is that it ie immaterial what order ihe
steps of a unification are perfaormed. Although different
g derings may result in different vardiable bindings, the
results are equivalent according to the semantics of Togic.
This is a very nice property. Contrast the effzct of
assignment in traditional l[anguages.

An example of how a unification might be performed in
paralle] folleows. For the time boing we will ignore the
cepying C(renamiag) of input terms which must take place
prigor to or during umificationy; we consider onlu tThe
unification of constructed terms. The effect of the
unificaticn will be +to compute tre cff=ct of one resoluticn
of ‘concavenate’! ‘resvlvedlld,673° hoelds if & iz a goal stack
and E' is the new goal stack which results from dcing one

olutien.

resclvedconclconsda,bl,c,L,g),5%) =
resolre(conc(cons(X, L12,L2, cons(X,L3), B, conc(lLi,LZ,L3, 532

concd{consgfa, b, c,L.a = 6" = conedL{,L2,LY. G}

concdecons (X, L1}, LE, congdX, LI, 6)

consfa,b}) = e = L2 L = conedX,.LL3) g = & conctL1,L2,L3,6) =% &°
cons X, LT2 H] H
LI ! { i
: H ! ! I
a = X b = L1 ¢ =» L2 cons{X,L3) =-> L g -3 &
H !
H !
a =» X b =3 L1

eneral, if unification steps are to proceed in parallel, there
may be simultancous attempts to bind the same variable, and equally
there may be gimultancus attempts to read the same variable or piece
af_stru:ture. The hardware must allow for this. The processor we
envisage will allow simultaneous reads and writes of the same storage
location. All reads will proceed withcut conflict and will obtain the
same wvalue. Only one of the writes will succeed: thz others will fail
and it will be up to the firmware or software to take appropriate
aztian on write failures. In the cass of variable bindings in unification,
the action required is simple-—merely redo the unification step with
the nmew value just written to the variable by another unification step.
A sketch of possible hardware to realise parallel unification follows.

“;’MF example, there is only one attempt to bind each variable.

1 SKETCH OF A PROCESSUR FOR PARALLEL UNIFICATIOM

- Each Prelog symbel occcupies one JI2-bit word: éan address plus
a few type bits. For exemple:

: i ! 8 = blank
! address ~ value I tuype | I = reference
e e e e e e e e ! 2 = atamie
B-_ T I8 J2 JF = structure

= Processor A (see Figure 1) comprises:

ta) 8 f{or fewsr) (or more) processing units, esach with a few internal
registere a simple arithnetic unit, and twe JI2=hit i-0 buses to a
shared cache. '
Each processing unit is controlled by the same microprogram.
Each procegsing unit has a cycle time ("clock tick") of
182 nenoseconds or lewss.

(b)) Cache of up to &4 pages of 4 {or possibly more? wards cach:
total 258 wordg.
As=cciative memory maos J2-bit addresses inte csche locations.

€eld. Hemory management unit regpones:ble for frandl ing cache pags
faults, and doing page iso to main memory.

€di Interleaved main memory capable of reading and writing
pages of 4 FE-bit words in one cucle. Ewvery microsecond, the
processer can read ons page and write ancother.

- Each i-o0 bus of gach processing unit can be simultanecusly performing
zny ens of the following coerations in one cycle:

ta) Read any word from the cache. MWB. Several buses may simultaneously
read the same word.

f62 Attemat to wrivte to any word in the cache.
I'f geveral buses attenot to write the same word, only
one will spucceed; failure will be signalled to the others.

{c? Blaak cut & cache page. (Intended feor use in creating new structurssl,

(o) Remap a cachs pege o & new puge azdrezs.

€=} Discard & cache page.

feasibilty of building & machine such as this is BlUpported by the

tence of the GA-1 computer designed and built at Kyote University
by Shinji Tomita and colleagues. The @a-1 hardware ineludes four
separate ALUs which can simultancously access a set of shared
registers under control of a single 168~hit horizontal-type
microinstruction. Several ALUs may simultansously read or write the
game register. The actiomn in the case of simultansous write is
diffevent from what we propose; on the QA-1, the values to be written
are simply OR-ed together. Apart ¥Frem that, the basic concept is very
similar. The Kyoto teocam are currently designing a successor machine,
cvalled @A-2, with a similar architecture,

Figure 1

{ microprogram
[}

N O P I

A -

! queus

|
i

H trail

.

I

| irsal wtack

i

L L [T Sepp———

et T T R T e ——

code

——— e —

i T pep—

N = om. ws

m me em

LEET

S

-

e E=w

A Em TR Eg

- PROLOG FPROCESSOR A

coxsEFEErEaafRrcossssoS oo prperreEEEREREESEEsssE

[]
v
F
[l

H L i i H
Pobfnie §F f ! Undt 2 | coaveasarvesana | Unid 8 1
! 11 !] !
H H H H H :
i H i H ! !
EEEsEfSszo=ssfosfoso=sccerfoasfsarresrrrereenarenassa e el
! H ! H H H H
H H H H i i !
! H H i H ! H
uu-nr*nu;:=*u=$=====::t=:xuﬁ=n:n=====nu=ﬂé======t==#
H i ! H H ! !
! ! ! H H i {
H i i H { i ‘
sz ¥osossndoufdcrcrenrlfenfuar s Trasrerasrnsenren et
H H) 4 ! H ‘
H H H i ! ! !
i ' i ! i H i
mEranrrfsErar sl rareeen oo fesccsss=ssssosassss=s=s=ssk=ss%
H H ! i H ! i
i ! H H i i i
! i { H i ; [}
mxzmefrereadosfaneesr s fsslss s s eSS sss=ssassrEs=k
H H ' H H H i
f H ! ' ! ' '
! i i i i H i
EEENEF LT R -1 F - b e e R o) o
H H ! : d ! H
H ! ! ! ! ! H
H H H i ‘ i H
ToonEffresresiesfoerprasltsssssSsssasrsosssssssasaasEEak
H i ! ?] ! I
! H I ! ! I !
i I H H ! i i
H i i 4 i H H
EEEE R EEE TR SR SRR S o8 e e o s 28 1
§
!
memnory !
management
unit !
H

—_ 44.—

HICROPROGRAMHNING THE PROLOG PROCESSOR A

A non-structure—sharing unification algerithm for & single (sequentiall
processor is shown in Apperdix I. The intention is that the operations

af sach line can be performed concurrrently, as a4 single micro—instruction.
It will be ceen that a single unificaticon step takes 6-18 clock cuycles

¢+ 7 celock cycle for each extra dereferencing operation necdedl.

The hepe is thet, with minor modifications, tris algorithm will serve
&6 & basis for Tne micraproagrem for parelilel unificetson, which will
centrol ecach of the 8 processing units of the Prolog processor. Lower
case mames are intended to denote shared locearions, while upper case
names denote registers that are privrate to sach processing unit. In &
paralliel processing situation, writes to shared locations, such as '0
=% g* in line 'degueue+1*, may fail. In the parallel] version of the
algerithm, a failure action must be provided, wvhich in this caxec would
probably be te go back te line *decus=ue’. Similarly. & failure of the
varjable binding in line "oindx’' might cause a jump back to line
fegwitch=1".

W1l be zeen that only one vnificetion step car he initiated each
clock tick (because the processing units are sharing the counter "i'},
but since unification steps take on average about 8 cloek ticks, it
appears pogsible To keep 8 processing unite busy, thereby achieving &
spred=up of Uo Te & times.

The meximum possible throughput of the processer is therefore one
unification step per clock tick. If we consider the *concatenate’
legcg Yo consm:st of 19 unification Stocps, we might hope that +his
would take net much more than 14 clock ticks. To achiesve 1 megalips,
the clock tick would therefore have to be 78 nanoseceonds. OFf course,
we are making lots of optimistic assumptions in this cimplistic
anaiysis. in particular, we are ignoering the guestion of cache page
faults and the associated main memory accesses.

Alee, of course, the algorithm of Appendix | neede to be extended to
provide for creation of new structures, and to cover the rest of
Preleg's basic machinery, namely procedure invocation and backtracking.
whef this arehitecture is cost effective very much depends on

her aone can kecop wmultiple processing elements busy at all stages
of PFrolog execution.

An interesting possibility for future consideration is to extend the
basic idea to cover more general AND-parellelism in logic programs.
One con wview unification as a special case of AWND—parallelism, wherse
there is no noundeterminacy. It fregquently happens in logie programs
that there is more than one goal that is aveilable for execution
without any bdcktrack points needing te bhe created. 98 good example is
"quicksort", where both the "split"” and "sort” procedures are ready to
start executing as scon as their main arguments are instantiated. It
appears that the architecture already described could equally well be
used to simultansously execute mors than one goal, so long as none of
the goals needs to create a backtrack point.

— 45 -

CRITIGQUE OF PROLDS PROCESSOR A

As we've =sgen, Proiog processor A echisves at best one unification
sten per clock tick. It would be possible to improvs on this by a
more elaborate gqueaing mechanism, which would allow more than one
unification step to be initiated cach cleock tick. Heowever, if such
an improvement iz not made, it can be argued that processor A is
unnecessarily complex for the performance it achieves. Similar
performance cen probably be achieved by & more conventional
architecture which pipelines unification steps. Such & machine
flet’s call it Prolog processor 82 might well be able to perform one
unification step in a single micro—instruction in most casge. A
fFactor favoring this approuach is that sticking te an essentially
seguential unification algorithm allows one tao optimise some of the
cperations. In particular, one can mark the "first" occcurrence of a
variable and be sure that the wveriable will be unbound at that point in

the unification.

FIPELINING UNIFICATION - PROLOG FROCESSOR B

Consider a purely scquential unification algerithm, where a Prolog
clause is represented as a segquencs of Proleg instructions {(one for
each Proleg symball. The commonest step will be unifying the First
sccurrerce of a variable against the next argument of a structure.
The following is the relevant routine in a program which interprets
the Prolog instructions (where T is the current argument, pointed to
by 5, and X i® the current instructicn, pointed to by the program
counter P):

urifytvrar,anvd: T =-> [¥H] Bind term to variable.
§ - 5+1 Advance to next argument,
T «- [E52 Fetch the next argument.
F - P+1 Advance to mext Prolog instruction.
X ¢ [P] Fetch the next Prelog instruction.

unifyCopcode (M), typaedTi) Decods the next silep.

This is very similar te the instruction execution cycle in a

entional machine, with the difference that there are two tTems
¥ h smust be fetcoched & derermine She next operatisa. Sz cer think
of unificationw as hdving twoe ingtruction streams., where the opcode is
the concatenation of tag bits from a pair of instructions.

I¥ ezach "inptruction pair” is preafetched, in the came way that a single
ingtructicr is prefelched in a conventivnal piselined mechine, it seems
possible for all the operarions of a simple unificetion step to proceed
in parallel, controlied by a single micro-instruction, s&u. This would
reEan Tthat Lhke commornesr uvnificoticn stuips cowld b= perfovncsd in a =ingle
=loeck tick {cf. preocessor 8). To see this, consider a rewrite of the

previous example, where all the cperations dare performed in parallel:

unifyfvar,anyd: T =3 [X] Bind term to the varzaoplie.
T &= T° The next term becomes the current term.
T €= [5] Feteh the term after tfRe neat.
5 <= B+1 Advance the term pointer.
K - K* The next instr becormes the current one.
X' L= [F] Fetch the ingstruction after the next.
P <= P+1 Advance the program counter.

uni fyfopcode{X "), typesdlT"2) Decode the next step.
Here X and T are the current instruction and term, X' and T are

the neaxt imnstruction and term, =nd P and § point te the instruction
and term following that.

In general the following steps will be overilapped:

Execute instuction N against term N.

Decode (ie. feteh micro—-instruction for executing?
instruction N+1 against term N+1.

Fetech instruction W+2 and term N+2.

O0f course, the moere complex unification steps will take more than ene
microinstruction to complete. If on average 'a unification sitocp takes
1.5 pycles, and concatemnation takes 14 stepm, then the cycle time
will need to be about 58 nanoseconds to achieve | megalips.

Proleog processor B will need separates buses (and caches?) for:

Reading mico-instructions from the contreol astore.
Reading Frolog instructions from a code memory.

Reading-writing terms etc. fromste data memory.

plus several buses for transferring date between internal registers,
plus at least two addersincrementers. It looks feasible to build
such a machine ¥from off-the—-shelf bit-slice devices.

CONCLUSTON

We have sketched two possible designs for high performance Prolog
PToCESFOrS.,

The first design iz more radical. and aims ts take max:imum advantage
of parallelism in unification. A mejor dusstion That needs To be

investigated is whether there i3 enough parallelism in the ather
aspects of Prolog execution to make the machine worthuhile. Yhatocver

the outcome, such an architecture could be a useful! first step towards
realising more general AND-parallelism in logic programs.

The second design is mere ronventional, and perhaps more immediately

practical. It involvrs pipelining {i.=2. overlapping} the execution

of unification ateps with the fetching and decoding of subsequent steps.
next step in investigating this design would be te produce & mare

digiiled outliny of the microcode énd aralyss its performarnre.

ACKNOWLEDEBEHMENTS

Im forming the ideag preésented here, I have benefitted from
discussions with Klavs Berkling, Bruce Hunt, Ferrando
Pereira, Ehud Shapiro, Bili Zaumen, and members of ICOT.
2ozoially Tekaghi Ckifayana erd Minore Yokcta., [heartily
thank Kazukire Fuchi and Keichi Furukawe for inviting me to
visit ICOT and giving me the cgpportunity to develop these
ideas.

APPENDIX I - Mon—-gtructure-sharing Unification Algorithm

=z
3

Wbk -

N

W 0 e s

o~ o

|~

o

deguoue?

unt fysz
unifyf:

switch:

derefx:
doerefy:
derefxy:
compares:

matchz

bindax:

bindy:

bindxy:

0 <= g+3; @ ¢ gq' else succeed;

a =» gz I €= [@ailg unifuylyz

2 <= g3 I €= i; I » 8 else dequeaue;

I-1 -» iz

X' &= [G+17-10; o= [L+21-1;

H o= [M*2; ¥ oI- [¥*)¢

caseltype (X)), typed¥d) of "BLANK" "REF"
TELANK? [hindxy., derefy,
"REF" derefx, derefxy,
FATOM’ bindy, derefy,
TETRUCT' Bindy, derety,

Y €= ¥; X ¢= [X]: sWwitch;

¥ o£= ¥ ¥V <= [¥V]; switech;

LA .1 ¥ {- ¥; X - [K1; ¥ <= [V¥V);

¥ = ¥ then unify else fail;

X = ¥ then unify;

I €= aritwii); I = arityd¥vV) eles fail;

g <- q';

Q+3 => g*¢ I -> [@i;

¥ => [2+1); ¥ =3 [@+21; unify:
¥ =2 [X*'1; X"
TR £— tr;

TR+1 =} tr; X

¢ bg else unify;z
=> ETR1; unifys

¥ => [¥']1;: ¥' ¢ bhpg else unify;

TR €~ %r;

TR+1 =3 tr; Yr =3 [TR1;

K'Y = ¥*' then unify

H £{= ¥'; Y o= pr X* { ¥*" then

48 —

TATOM® FETRUCT"

bindx, bindx,
derefx, derefx,
campare, fail,
fail, matehl;
switch;

bindy else bindx

APPENDIXR II =

L

Suymbol

1@ conc(

12

B =& =4 =1 ou

X,

L1,

KK, L3

L3>
Lz,
L1,
cang{

The Concatenate Loop
Code

CalL WU, (X}
MOUEI U, X2
MOUEM A3, 3¢V}
MOUVEHM ad,. 4c¢U>
HOUEM a5, S5¢U)
JEP €, xHSS1
HLRZ2M TR,R1#
HRLI R1,<U12
MOUEN B71,2¢U)
MOUEM TR.%TRB
HLRZM B, ¥
CaIgE ¥, MOLS
MOUVE R2,8¢(B)
JRST 1¢C>

CAMN R2;1ist
JRET clause
MOUE T,@87¢B2
TLHNN T,MSKEMA
HOUEM T,1<U1)
HMOUE T,82c¢82>
TLNN T, MSKMNA
HOUEM T,&CL2
SET2M 2¢U12
HOUE 2,342
JEP C, xUSKY
CAILE 8,MAXREF
SKEIPH RT,@c8)
JREET DEREF1
HOUE Rt ,8¢C)
HRLI R1,cu12
MDUEM RT, 282
CallL R,GMARGIU1T)
CRIGE B, cUU1>
JRET 1(LC)

JBP C.¥NECK
HRRM FL,@CUY
MOUEI R1,~D4288288
ANDCAM RT,2ZCU)
HOUVEI X, U
MOUET X1,<¢U1)
MOUEI U,g@cer
MOUETD Ui ,81{C>
SETOM —-1¢U1)
CAMLE U, $UMAX -
CAMLE U1, $UTHMAR
JRET 2{C>
MOUEI a3, 2¢X1)
MOUE A4, 4¢X)
MOUE AJ,&¢x)
JRET dconc+i

in Cempiled DEC-18 Prolog

Explanation

Is the parent determinate?

Discard parent's frame.

Save argument 1 as local 1.

Save argument 2 as local 2.

Save argument I as local J.

Enter "head"®

Take the current trail pointer,

patr it with the glebal stack pointer,

and save the pair Iin the current frame.

flemember the initial trail state.

Extract frame pointer from arg 1.

is arg 1T a molecule?

Get its functor.

Exit "head" routine.

Is the functor a list?

Gato the appropriate zlauss=.

Get the first field of arg 1.

Is it a molecule or atomic?

Store it in glebal variable 1.

Get the secend field of arg 1.

Ig it a molecule or atemic?

Store it in local wvariable 4.

Initialise glebal var 2 to unbound.

Eet =rg 3.

Enter "output molecule”

Is arg 3 a reference?

Iz the reference unbound?

FProcecd.

Bet the skeleton address,

pair it with the global stack pointer,

and store the resulting molecule.

Is the reference a global?

Is it after the last choice point?

Exit "output molecule” routine.

Enter "neck"” routine.

Save the addr of alternative clauses.

Mark the presence of a global frame
in the current envrironment. '

Set parent's local frame.

Set parent’s gleobal frame.

Allocate local frame.

Allocate global frame.

Hark end ef globdl frame for GC.

Is the local stack not full?

Is the global stack not full?

Exit "neck" routine.

Arg I ie & ref to global 2.

Arg 2 is the value of local 2.

Arg 1 is the wvalue of local 4.

Goteo the concatenate procedure.

reutine.

routine.

COMMENTS ON THE PERSONAL SEGUENTIAL INFERENCE MACHINE, PSI

David Warren, February 1983

My overall impresgion of Pei is that it is a well
thought-out design. I think it was the right te decision to
stick to well-proven techniguee, in order to design a
machine which can be realised guickly. The planned
performance of 28-38 K lipz., and mewmory of | N words or
more, should be more thén adeguate for a perscnal machine.
It will be good to have a personal Prolog machine with a
powsr somewhat in cxcess of a DEL ZEsE. I*d like to have

one !

The absence of wvirtual memory should not be too much of a
drawbeck, provided one can afford an adeguate amount of
physical measory. The DEC-18 address space of 256 K words is
ample for most Prolog programs today, and in general rather
e information will be packed into the Psi word than the
~-18 ward. O0F courses a lot depends on how big the Poi
cperating sytem will be.

The main area where | think there iz room for improvement in
the current Pzgi des:ign concermng Llall recur=ion pgptimisation
(TR, The form of TRO currently envisaged is more limited
than that iwplemented in DEZ-1€ Frelog. and will miss
important cases where TRO is really needed.

In DEC-18 FProlog, TRO spplies to the last call of esvery
clause, provided only that the calligg procedure contains ng
backtreck points (which ¢ simple to check at run-time), It
is NOT necessgary that the callee be determinate, i.e., TRO
is effective suven if the callees hazs more than one
potentially mateching clause. To implement this more general
Fo=m =~ TRZ reciuireg thet thes arpuments of =very call he
copied into registers and then deposited inte the callee's
‘stack frame. In cases where TRO is applicable, the callee's
Aack frame will sverwrite the caller’s etack frame.

The DEC-18 form of TRO would seem to be particularluy
adpantageous for & machine like Psi. More items can be kept
in hardware registers without needing to be saved in memory.
In particular, it should be possible to avoid saving the
contents of Psi'se frame buffer in many cases. Algo the
cache will be mere effective, sinte accesses to the local
and cantrol stacks will be kept more lecalised in memory.
also, for certain styles of programming (such as is used in
conrmurrant Prelcg), genesral TRO will be essenticl o
conserve space on the local and contrel stacks, and to

permit garbage cellection te properly reclaim space on the
global stack.)

As preosently designed, the Psi machine code does not
directly support indexing of clauses. I think some indexing
mechanism will be essential for many applications. and for
much of the basic Psi software (where clause indexing will
play the rele of a case statement). In general, the machine
design assumes that code ig static and dos#s mot nead to be
frequently updated. There will clearly be a necd to provide
far more dynamic asserting and retracting of clauses, which

implies some other form of clause storage. A dioticlbion
like that betwsen DEC-18 Prolag’'s compiled and interpreted

code will emerge, and this is probably a reasonable thing.

The KLE8 machine language provides ample hooks and low-level
primitives to coaver all sventualities. It should b= easy teo
fall back on conventiconal technigques if the high=level
language framework proves too constrictive for implementing
bagic softwarc. I wernder, though, whethasr guite B0 maeRY
primitives are needed. From the erdinary user®s point of
view, the "bind_hook' predicate (which seemzs to be identical
toe Colmerauer’s "freeze®) will be a particularly welcome:
addition. I Ffoeer, though, that it will complicate the basic
machinery of Psgi.

Te conclude, the design of the bagic Psi machine looks wvery
solid. The big challenge is going to be implementing all
the software that will be needed to make it a really usable
pergsonal machines. I have not yet got a wvery clear picture
af what the final user environment will be like.

FPERFORMANLCE EUVALUATION OF FPROLOG SYSTEMS

David Warren, February {983

How can one fairly compare the performance of different
Proleg systems? To gome extent it is an impossible goal,
gsince it all depends on what Prolog task one is interested
in. The relative speeds aof twe systems will vary according
to the task chosen for comparigon. It i nort really
meaningful to say one system ig ¥ times faster than anoather,
without further gualification. That having been said, it is
nevertheless usaful to agres on terninelegy and standards
for meadasuring Proleg performance.

A term Which has captured the popular imagination is *lips",
standing for “logical infersnces per secand”. Thisz *erm
obvricusly parallels "mipa” ("millions of inetructions per
second”, which is a rough and ready, but useful, unit for
medsuring conventional machine performance. There is no
ndard mechine instructiogn” that is being reasured here.

gractice, "mips" is just & medsure of the Ffastest rate at
which a machine can execute instructions, and the
instructions timed are simply whatever that machine can
execute fastest! it seems reasoneble to follow the same
line with "lips”. All that needs io be made precise is what
is meant by "one logical inference’. I take thisg to mean
"one t(successfull) resoluticn". I would enly include
rzsoluticsns sgeinst user-drofined cleuscs; calls to built-in
predicates should be discounted. Eo the Prolog system
builder should feel free to pick whatever example of Prolog
his system performs resolutions fastest on. Howewer, maybe
resolutions over nullary predicates should be disqualifisd?
The example which I personally use for measuring lips is
ligt concetenation.

Apart from crude measurcments of lips, there is a need for
recognised benchmarks for Prolog. The benchmarks should

erciss, to differing extents, the main facets @f Proleg
ution, mamely:

— brocedure call and return,
= unification,
= backtracking.

Teating of the commoner standard built-in procedures,
especially arithmetic, should alse be covered, in separate
benchmarke. The benchmarks ussd in my PhD thesis fand
included in the “"Implementing Prolog" report) could form a
gtarting point, although [think it would be a good thing to
make a more deliberatec and systematic attempt te cover a
range of different types of Prolog program. For instance,
the example that was intendsd to exercise backtracking (the
geographical database query) is probably more a teat of
arithmetic capability.

Fer some Prolog systems, the precise ordering of clauses
and<ar placement of cuts can make a significant difference
te performance. It is difficult to know how to properly
smooth out these esffects. In general, more reliable
camparisong 4re obtained if all solutions are enumerated and
Many testers of Prolog perforfmance prefer to time examples
of "real" programs; ¥for example My own programs Warplan and
Chat hale been used for this purpose. This view has a lot
tg recommend it, but, with large programs, it is often
difficult ta be cértain that exactly the same code is bheing
tegted on different systems.

Whatever benchmarks are chosen, extreme care hae to be taken
to exclude irrelevant factors when making the timinges, and
to make sure that what one is trying to measure iz not
swanped by other phencomena. Farticular care nesds to be
taken when “"scaling up” a short benchmark to make it last a
meazsurable length of time. Factors which, if mot properly
allowed for, can esagily distort performance measurements of
Prolog include:

= time to read in a program or command,
= time to output results,
= time for garbage collection, stack shifts, ete.

sets of bogus Prolog performance measurements appEaTing

ﬁur- te allow for these factors has resulted in at least
n print (papers by fMoss, and by Gutierrez).

UDAVID H. D. WARREN

Computer Sclentist

Artitiecial Intelligence Center

Computer Science and Technology Division

SRI lnternationsl, Menlo Park, CA 94C25 tel: (415) B59-2128

SPECIALTZED PRCFESSIONAL COMPETENCE
Legic programring=-the use and implementation cf Prolog; natural
language question answeringj; plan generation and program synthesis

PROFESSIONAL EXPERIEHCE

Eesearch fellcs, Department of Artificial Intelligence, University
of Edinburgh, 1975-81: research on planning, natural language and
logic programming; author of the DEC-10 Prolocg compiler/intercreter

Progracmer, Internationzl Computers Limited, 1571-72: compiler
implementation

Programmer, IBM United Kingdom Laboratories, 1963-70: PL/1 language
definitien

ACACENIC BACKEGECUND
Behe {(1969), Mathematics, Cambridge University
Ph.D. (1977), Artificial Intelligence, University of Edinburgh

PUBLICATIONS

"Issues in natural language access to databases from a logic
programeing perspective," Proc, of the 20th Meeting of the
Assoc. tor Comoutational Linguistics, Toronte, Canada {(June 1982)

"Efticient processing of interactive relationmal databasa queries
expressed in logic,"” Proc. of ihe Seyenth International Conferance
o0 Yery Large Data Bases, Cannes, France {(Segtember 1981)

Coauthor, "Detfinite clause grammars for lengquage analysis--a survey
of the formalism and a comparisen with augmented transition
networks,™ Actificial Intelligence 13, pp. 231-278 (1980)

"Logic programming and compiler writing,"™ Softsare Practice &
Experispce 10, pp. 97=125 (1980)

"Prolog on the DECsystem—-10," in Expert Svstems ip the Micro—
Elsctropic Age, ed. D. Michie, Edinburgh Oriversity Press (1979)
Coauthor, "Prolog--the language and its implementation compared with

LISP," Erocs of the ACM Sympoosjum on AI and Programming
Lapguages, FRochester, New York (August 1977)
Applied Lggic, Ph.D. thesis, University of Edirnburgh (1977)
"Ceneratirg conditional plans and programs,™ Prog, of the AISH
Summer Conferspce, Edinburgh, Scotland (July 1976).

PHROFESSTONAL ASSOCIATIONS AND HONORS

Association for Computational Linguistics
Cpen scholarship te Churchill College, Cambridge

