Japan’s Fifth Generation Computers Project —
A trip report

Ehud Y. Shapiro
Department of Applied Mathematics
Weizmann Institute of Science
Rehovot 76100, ISRAEL

1. Introduction

Last April Japan's Ministry of International Trade and Administration (MITI), in
cooperation with eight leading computer compaznies, lsunched a research project to
develop computer systems for the 1990°s. The project, called the Fifth Generation
Computers Project, will span 10 years. Its ultimate goal is to develop integrated
systems — both hardware and software — suitable for the msajor computer application
for the next decade, identified by the Japarese as “Knowledge Information Processing™.
Ever though it may ultimately have applicable results, the current focus of the project
is basic research, rather than the development of commercial products.

In addition to bringing Japan into a leading position in the computer industry, the
project is expected to elevate Japan's prestige in the world. It will refute accusations
that Japan is only exploiting knowledge imported from abroad, without contributing
any of its own to benefit the rest of the world. Hence the project sims at original
research, and plans to make its results available to the international research
community.

1 was the first non-Japanese researcher invited for a working visit to ICOT, the
Institute for New Generdtion Computer Technology, which conducts the project. Due
to the nature of the project I was given explicit permission, even encouragement, to
report on everything I saw and heard during my visit; hence this report.

ICOT is located on the 21% floor of an office building in central Tekyo. It
currently hosts around 40 researchers, most of them »n a 3-year “loan™ from their
industry-based research laboratories at Fujitsu, Hitachi, NEC, Matsushita, Mitsubishi,
Toshiba, Oki, and Sharp.

The institute is divided into three research labs, responsible for research in
hardware, basic software and applications software. The leaders of the laboratories are
Drs. Munakami of Nippoﬁ Telephone and Telegraph, and Furukawa and Yokoi of the
Electrotechnical Lab. Both NTT and ETL are government supported research

laboratories. The leader of the whole project is Kazuhiro Fuchi, also originally from
ETL. .

For me, the most intriguing aspect of the project is its commitment to build the
Fifth Generation systems sround the concepts of logic programming. In this report I
will try to trace the roots and rationale for this commitment, and its possible
implications.

Since I was exposed to a rather small circle of people in Japan and did not take any
notes, this report may be biased. Iregret if I unintentionally offended or misrepresented
anyone, For a broader-based survey of the project the reader is referred to Uttal's
article in last September's Fortune.

2. History

The logic programming approach was characterized recently by Maarten van
Emden [11] — one of its founders — as:

e The use of logic to express information in a computer.

» The use of logic to present protlems to o compauter.

e The use of logical inference to solve these problems.

More technically, it can be be summed up in two “equations™:

program = set of azioms

computation = proof of a stalement from the azioms

The axioms typically used are universal axioms of a restricted form, called Horn-clauses
or definite-clauses. The statement proved in & computation is an existential statement.
The proof is constructive, and provides values for the existentially quantified variables;
these values constitute the output of the computation.

The source of these equations can probably be traced back to intuitionistic logic
and proof theory, but its first appearance as a practical approach to computing is a
sequcl to Robinson’s unification algorithm and resultion principle, published in 1065 [8].
Several hesitant attempl were made to use the resoiution priuciple as a basis for a
computation mechanism, but they did not gain any momentum [3]. The beginning of
logic programming can be attributed to Colmerauer, van Emden and Kowalski.
Kowalski, in his 1874 IFIP paper (5], formulated the procedural interpretation of Horn
clause logic. He showed that an axiom:

Aif Bl and B2 and ... and Bn

can also be read as a procedure, where A is the procedure head and the B's are its body.
Under-this interpretation the axiom reads: to execute A, execute Bl and B2 2rd ... and
Bo; or better: to solve A, solve Bl and B2 ... and Br. Under this reading, the proof
procedtre is the interpreter of the language, and the unification zlgorithm performs the
besic operations of variable assignment, data selection and data construction.

At the same time Colmerauer and his group at Marseills developed a specialized
theorem prover, written in Fortran, which they used to implement natural language
processing systems [0]. The theorem prover, called Prolog (for programming in logic),
embodied Xowalski’s procedurzl interpretation. Later van Emden and Kowalski
baptized (circumeised?) the language, by providing it with operational, fixpoint, and
model-theoretic semantics, and showed them all to be the same [2].

In 1876 Furukawa, today the head of ICOT's second research lab, visited SRI for a
year. He got hold of a photocopy of a photocopy of ... of a photocopy of the sources of
the Marseiile Prolog interoreter. He brought it back with him to Fuchi, his boss at
ETL. Fuchi was fond of Planner [4], and later of Kowalski's ideas, but did not believe
they would result in a practical system. Nevertheless, he punched in the Prolog
interpreter, inductively infsrring some missing lines and unreadable characters, and
made it work — and, to his surprise, work fast.

In 1979 some MIT] officials thought it would be a good idea to start a new,
revolutionary research project; they termed it the “Fifth Generation Computers
Project”. They ccnsulted several people in academies and industry, including
Munakami at NTT. Munakami recomended Tohro Moto-oka, from Tokyo University,
and Fuchi as people worth listening to. What the MITI people did not know at the
time (and perhaps they do not even know today) is that Munakami, Fuchi, and Moto-
oka had spent a year together some twenty years ago at the University of Illinois at
Urbana-Champagne, working on the ILLIAC-N, for some N<4.

Several informal committees gathered to discuss the nature of the Fi‘th Generation
Computers. Simultaneously discussions with industry to solicit cooperation with the
project began. Initially, the committees sugg&:ted{?’fltae Fifth Generation Computers will
look like a Xercx's Dorado, and the Filth Generation Cemputers network will look like
an Ethernet. MITI detested this conservative, unoriginal answer, which was in total
disagreement with the goals of originality and innovation.

- Even though industry was rather reluctant to cooperate in a more ambitious
project, MITI did not give up. It formed a rather large committee, headed by Moto-
Oka, with specific instructions to come up with something more revolutionary.

This was the once-in-s-lifetime chance for the dreamers. Fuchi and other people in

ETL who were exposed to logic programming presented their views on how Fifth
Generation Computer Systerns should look: they should look intelligent, friendly, and
— most important — be programmed in predicate logic.

The first step was to determine the target applications of the Fifth Generation
Project. After some discussions, ths commitiee agreed on the target of developing
“Knowledge Information Processing Systems”, which means, roughly, applied Artificial
Intelligence. The next step was to choose the tools; st first there were strong Lisp
proponents. Lisp is & successful programming language, and has an experienced user
community in the US.

On the other hand, Fuchi and his group from ETL were deeply convinced that logic
programming is a more promising research direction. They made great efforts to
persuade the rest of the committee members to base the Fifth Generation project on
logic-programming. They were encouraged by MITI's desire not to fcllow mwainstream
computer science research in the US, hut;%ifﬁcultia; overcoming the fear of their
colleagues to make such a bold step into this mostly unexplored territory. What tipped
the scale were several studenis a{ Tokyo University. They got excited about Prolog,
and their enthusiasm swept along Moto-oka — the chairman of the Fifth Gereration
Committee — as weil.

The resulting proposal — to develop knowledge information systems on the basis of
logic-programming — was ambitious, went against mainstream computer science
research in the US (cf. Ada), and provided a fertile ground for original reszarch.

Around this time an international conference was called, to discuss “Fifth
Generation Computer Systems”. In this conference, held in October, 1961, the Japauese
plan was exposed (7], and feedback from prominent researchers was solicited. The plan
presented at the conference was rather baggy, faithful to the Japanese tradition of
achieving consensus at almost all costs. As a result it elicited a rather mixed response
rom the West. Some went as far as saying that it is devoid of any technical content.
But even though Ed Feigenbaum told them to forget the logic programming gimmick,
the Japanese went on with t.eir plan.

At that time I was aware only of the formal documents distributed by the
committee, but I sensed the drama that was occuring behind the scene. I saw that the
the official plan talked about “Logic programming machines, Lisp machines, abstract
data-type support machine, relational database machine, innovative von-Neumann
machines”, but that the research papers presented at the conference were showing a
slightly different, more focused picture.

The smoke cleared when ICOT was formed, with Fuchi as its director. With the

excuse of budget constraints, all ballast was dropped, and a clear, coherent research
project emerged: to build parallel computers, whose machine language is based on
Horn-clause predicate logic, and to interface them with database machines, whose data-
description and query language is based on Horn-clause logic.

The fancy AI applications of the original proposal remain, serving as the pillar of
fire that gives the true justification for building faster and better computers; but no one
at ICOT deludes himself thai in ten years they will solve all tke basic problems of Al,
an impression one can get from reading the original Fifth Generation proposal.

3. The Japanese logic programming manifesto

The battle to center the Fifth Geparation project on logic programming was mainly
political, but it had & clear ideology behind it. The rationale for the Japanese decision
was given by Fuchi at the ACM 82 Conlerence in Dallas last October. The following
summarizes the main points of his argurcent.

Before starting the project, the commiitee surveyed and siudied various branches in
computer science; among these are software engineering, databases, computer
architecture, and artificial intelligence. The studies tried to find the direction in wkich
the research in these fields was pointing; or, in Alan Perlis's words: “where do the
gradients of computer science lead?”. The results of these studies revealed — says
Fuchi — that the gradients point to one direction: logic programming; that the
corcepts of logic programming can serve to vaify recent innovations in all these fields;
that logic programming is “the missing link between knowledze engineering and parallel
computer architectures”. The findings of the committee were as follows:

e In the field of software engineering, recent work places increasing emphasis

on the importance of specifications and specification languages. Symbolic
logic is almost universally accepted as the most suitable formalism for

problem specification. The task of specification and verification is easier if
the specification and the program use the same formalism.

Program transformation work starls with a clear bul possibly inefficieat
program and transforms it, preserving correctness, into a more efficient
program expressed in the same formalism. Most research on progran
transformation was done in functional languages, but it extends quite
naturally to logic programs.

e In the field of databases, logic programs can be regarded as a generalization
of relational databases. The data-description language of a relational
database is equivalent to logic programs without conditional sxioms. Horn
clause logic was shown to be adequate both as a query language and as a

language for describing integrity constraints.
{Dne may view logic programs as the least general generalizaiion of functional
programming languages and relational databases.

¢ In the field of computer architecture, researchers have been investigating
languages that will enable us to overcome the von Neumann bottleneck.
These languages are called “single-assignment”, since each variable in a
program written in this language can be assigned a value only cnce during
its execution. Logic programming provides a clean framework for designing
a single assignment language.

¢ In Artificial Intelligence, one of the currently active areas is expert systems.
These systems, so far mostly programmed in Lisp, contain a rule-base and an
inference engine. The rules in the rule base are typically of the form

AifPland.. zad Br
and the inference engine implements a deduction mechanism similar to that
cf Prolog.
Another important area of Al research is natural language processing. Both
extended attribute grammars invented for writing compilers apd the
generalized phrase structure grammars invented for parsing natural language
can be viewed as notational varianis of Horn clause logicl. _
There is another important argument, not mentioned in Fuchi's talk. Most
problems of software ergineering involve meta-programming: the development of
programs that manipulate, 2nalyze, and modify other programs. The effort in
implementing meta-programming systems is in direct proportion to the complexiiy of
the syntax and semantics of the object programming language. In the long run, the
programming languages that will survive are the ones with a better programming
environment. Logic programming languages have simple syntax, simple semantics, and
are expressive enough to implement their own programming environment. An extreme
example of the opposite approach is Ada.

lndeed, the Prolog-10 system .includes a macro-expansion facility that translates a context-free
grammar into a logic program that functions as a recursive-descent parser. Hence the task of
implementing a parser in Prolog does not involve much more than the debugging of the grammar
of the language to be parsed.

4. Present

ICOT was formed last April. After the researchers assembled, the first thing they
did was to take a crash course in Prolog programming. The goal of the course was to

help create a coherent research team. Even so, I still found some die-hard Lisp hackers
in the project. We may argue whether it is better to think and program in Lisp, or
think and program in Prolog; but both are certainly superior t¢ thinking in Lisp and
programming in Prolog.

Each researcher and research group in ICOT has a long range research theme and a
short range one. The short range iasks sre usualiy related to the Personal Sequential
Inference machine (PSI). The development of the PSI machine is the immediate goal of
ICOT. PEIis the Prolog counterpart of the Lisp machines. It is expected to provide
user interface facilities comparable with the Lisp machines, have 1 or 2 megabytes of
real memory, and perform around 20K LIPSZ.

The three groups divide the work as follows. The first group, headed by
Murakami, is designing the PSI's bardware. The second group, headed by Furukawa, is
providing the functional specification of PSI's machine language (Fifth Generation
kernel language); the kernel language employs ideas of Warren's abstract Prolog
machine [12]. The second group is also developing the Prolog to kernel language
compiler. The third group, headed by Yokoi, is designing and implementicg PSI's
operating system, window system and programming environment.

The develcpmesnt of PSI is viewed mostly as a warm-up exercise, to get the
diiferent researchers familiar with the logic programming concepts via first-hand
experience. It will also serve as a research tool on which Prolog applications will be
implemented and upgrade, or replace, the DEC 2080 which is currently used by the
institute.

?Logical Inferences Per Second, a fancy way of saying Prolog procedure calls per second. For
example, micro-Prolog [8] for the Z-80 performs around 120 LIPS; Prolog interpreters written in
C for the VAX are estimated to run 1 to 3K LIPS; Waterloo Prolog runs around 25K LIPS on
large IBM machines; compiled Prolog-10 [1] runs 30K LIPS on a DECSYSTEM 2060, and is the
best Prolog available today.

5. The visit

In an attempt to increase international cooperation and interest in the Fifth
Generation project, ICOT will invite five researchers who work in related areas to its
project every year. My visii was part of this program. I spent five weeks in Japan, four
of them at ICOT. During the visit I gave talks on my research, heard presentations of
ICOT research, and had discussions with ICOT members.

Most of the time, however, I did my own research using ICOT's facilities. I
completed a design for a self-conta‘ned subset of the prograrnming language Concurrent
Prolog, implemented an irterpreter for it in Prolog, and tesied several Concurrent
Prolog programs, which I had written in Israel previously as a thought experiment.
These results are reported in [10]. 1 have also collaborated with A. Takeuchi, of the
second research lab, and fogether we have impilemenied a simple window-system in
Concurrent Prolog. '

I felt very welcome at ICOT, and, as far as I know, had [ree access to ull resezrch
carried on in the institute. My main contribution to the oroject dering the visit relates
to implementing multi-tasking on the PSI machine. In the initial planning, multi-
tasking was done in a conventional way. As a resull of the research I have done io
ICOT, and discussions I have had with ICOT members, there is a possitility that the
PSI machine will implement process creation, synchronization and communication in 2

way more suitable for logic programming, as done in Concurrent Prolog.

8. Future

Following the warm-up exercise — implementing the PSI — the experience gained
from the first implementation will be applied to the design of the super-PSI, which will
be a more powerful and, presumably, a better designed personal Prolog machine. - In
parallel a logic-based database machine is to be built and interfaced to the PSI
machines, probably using specially designed slots in the PSI's backplane.

The more distant goals and plans of the Fifth Generation project are described in
their report “Outliue of research and developinent plans for Fifth Generation computer
systems”, dated May 1982. They include the development of a system with the
following functions:

¢ Problem solving and inference

o Knowledge-base management

o Intelligent interface

In the Fifth Generation systems the problem solving and inference mechanism
corresponds to the CPU and main memory of today's computers; the knowledge-base
management system corresponds to today's disk and file system; and intelligent
interface corresponds to external I/O functions,

The systems programming, data-description, and query langusges wiil be besed on
predicate logic. The target machine will perform 100M to 1G LIPS, and will comprise
up to 1000 processing elements. The knowledge-base manzgement system will have a

capacity of 100 to 1000GB. The intelligent interface system aims at a vocabulary of up
to 10,000 words, 2000 grammar rules, and 98% accuracy in syntactic analysis of written
natural language; a speech rscognition system, capable of recogaizing up to 50,000
words with 95% recognition; and a graphics system capable of storing and utilizing up
to 10,000 pieces of graphics and image information.

These figures should be taken with a grain of salt, since ithey represent targets,~
which can be attained only by means not known today. I suspect that we will not find
out the feasibility of these research targets before the project comes close to its
conclusion.

As part of the attempt to create a more cooperative atmosphere around the project,
and to make .compuler science research in Japan more accessibie to the scientific
community world-wide, an establishment of an international scademic journal is
planned. One of its proposed titles is “Journal of New Generation Computer
Technology”. The journal will invite contributions from outside Japan, and will
probably publish research on ail topics relating to non-von Neumann computer
architectures, applicative and logic programming languages, and artificial intelligence.

7. The Japanese way

It is difficult to understand and evaluate the Japanese project without some
understanding of the Japanese culture. I am certainly not an authority on this subject,
but I have had a glimpse of it during my five weeks in Japan.

A key factor influencing the Fifth Generation project is the Japanese striving ior
consensus, and their tendency towards cooperation and community effort. Heunce
deliberating on the form of the project was a rather long and tedious process, but once &
consensus was reached it was a rather stable one, and its continuation does not depend
8o much on a particular individual. The tendency to stick with the community may
come as a hindrance when individual originality and creativity are concerned, but is of
great value when research goals are clearly set, and attaining them requires cooperation
and coordination. Hence I think that a group of Japanese “super-hackers™, put to work
together, is much more likely to achieve effective cooperation and commurication then a
similar American group.

Another important sspect is the deep identification of Japzness employees with
their company and job. This identification is even stronger in a high-energy workplace
like ICOT. At some slcoholically-rich occasion people mentioned, only half joking,
certain traditional Japanese rituals they might perform if the project fails.

This devotion is reflected also in the less heroic daily routine: It is not uncommon
to find people working at ICOT until & or 9 p.ra. One is not terribly impressed seeing
graduate students work like this; but these people are employees with families, who may
have to commute one hour or so after work.

An American company that atiempis to establish a high-quality research group
faces every day the danger that a better paying or a better located company will attract
its researchers. As a result, long-range personnel planning is impossible, and preference
is given to shert-term projects, whick can keep the interest of the brighter researchers at
least for a little while. . On the other hand, MITI can trust that the human infra-
structure belng developed at ICOT -— a team of researchers, trained in 2 new
technology, that can address all aspects of designing, building and programming s new
computer — is as solid as the building ICOT occupies.

8. Conclusion

People who believe in the unpredictability of scientific progress and revolutions find
2 planned revolutionary project to be almost a contradiction in terms. But sometimes
ideology has to give way to reality: the Japanese project is both well planned and
revolutionary. It did not invent the concepts of logic programming, but it is certainly
the first, and perhaps today the only one, which grasped the immense poiential of this
approach, and gathered the critical mass of resources necessary to utilize it on a large
scale.

There are thoughts and attempts throughout the world at responding to the Fifth
Generation project, but I suspect that this battle is already won. The eventual success
of the project will follow not from the amount of money invested in it, nor from the
number of people working on if, nor even from the individual excellence of these people.
It will follow from the coherent vision of its leaders, the genuine enthusiasm that they
generate, and from the promising path of research ihey chose.

Any response to the project may match the amount of money or other resources
invested in it, but will fail to to come up with the same sense of direction and devotion
that holds the Fifth Generation project together. One such example is the British
response, which basically says: Let's keep doing what we do today, but with more
money. Money will increase the progress of research, but by itself will not result in a
new gereration of computers.

The Fifth Generation project faces two dangers: one is that it will succeed too late;
the other is that it will succeed too early. If several years pass before any applicable

10 —

results come out of the project, it may be decided to dissolve ICOT in its current form,
and to continue Fifth Generation research in the industry-based research labs, from
which the ICOT researchers came. Because of the crueial role of its leadership, this will

effectively mean the death of the project.

if the nroject succeeds too early, industry way realize that what is going on in

ICOT is “hot stuff”, and pressures to convert the Fifth Generation project into a
classified one will mount. This will undermine MITI's original goal of increasing Japan's
prestige in the world and rebuilding its image. Since the project is currently declared es
open and solicits international cooperation, such a step may be considered a betrayal of
confidence, an exploitation of foreign knowledge of a kind even worse than what Japan

has been accused of in the past.

[1]

(2]

[3]

[4]

(5]

(€]

References

D. L. Bowen, L. Byrd, L. M. Pereira, F. C. N. Pereira and D. H. D, Warren.

PROLOG on the DECSystern—10 Uszer s Manual.’

Technical Report , Departinent of Artificial Intelligence, University of Edinburgh,
October, 1981.

M. H. van Emden and R. A. Kowalski.
The semantics of predicate logic as a programming language.
Journal of the ACM 23:733-742, October, 1976.

C. Cordell Green.

Theorem proving by resolution as a basis for question snswering.

In B. Meltzer and D. Michie (editors), Machine Intelligence 4, pages 183-205.
Edinburgh University Press, Ddinburgh, 18532.

Carl Hewitt.

Descriplion and Theoretical Analysia (Using Schematu) of Planner: a Language
jor Proving Theorems and Manipulating Models in a Robot.

Technical Report TR-258, MIT Artificial Inielligence Lab, 197%.

Robert A. Kowaiski.
Predicate logic as a programming language.
In Information Processing 74, pages 569-574. North-Holland, Amsterdam, 1974.

Frank G. McCabe.
Micro—PROLOG programmer”s reference manual.
Logic Programming Associates Ltd., London, 1981.

7]

(8]

[}

{10}

{11}

[12]

T. Moto-oka et al.

Challenge for knowledge information processing systems {preliminary report on
fifth generation computer systems).

In Proceedings of Internation Con ference on Fifth Generalion Compuler
Systems, pages 1-85. JIPDEC, 1881.

J. A. Robinson.
A machine oriented logic based on the resolution principle.
Journal of the ACM 12:23-41, January, 1865.

P. Roussel.

Prolog. Manuel Reference el d* Ulilisation.

Technical Report, Groupe d'Intelligence Artificielle, Marseille-Lumiry,
September, 1975.

Ebud Y. Shapiro.

A subset of Conecurrent Prolog and its interpreter.

Technical Report TR-003, ICOT — Institue for New Generation Computer
Technology, January, 1983.

M. H. van Emden.
Community News and Events section.
Logic Programming Newsletter (4):11, 1982.

David H. D. Warren.

Implementing Prolog — Compiling Predicate Logic Frograms.

Technical Report 39 & 40, Department of Artificial Intelligence, University of
Edinburgh, 1977.

e BIBRE
c k% BRI Y SRaypiro
cIE B Depariment of Applied Mathe it cd
Weizmemn Iastitule o Science

Redoarsx T6o6D
lerael

e Faealy of e Grodadte Sehimt, Vol Univmas,,
Mas, 1582, PL D.

CERE: O WREE; WO, WIGLL, BHE

— 12 -

