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Abstract

In this paper we continue an investigation into the expressive power of con-
current programming languages. In a previous paper we developed a framework
for language comparison based on language embeddings, which are mappings
that preserve some aspects of the syntactic and the semantic structure of the
language. We provided separation results by demonstrating the nonexistence
of various kinds of embeddings among languages. In this paper we comple-
ment the separation results with positive results, by demonstrating embeddings
among various well-known concurrent languages. We describe the language
embeddings via embeddings between transition systems. The embeddings re-
veal interesting connections between hitherto unrelated concurrent languages
and models of concurrency. Together, the positive and negative results induce a
preordering on the family of concurrent programming languages that quite often
coincides with previous intuitions on the “expressive power” of these languages.

1 Introduction

In this paper we continue an investigation into the expressive power of concur-
rent programming languages, begun in {47). In the previous paper we proposed
relating languages by investigating the existence of rompilers among them that
preserve certain aspects of their syntactic and semantic structure. In particular,

we have considered compilers that are:

1. Homomorphic with respect to parallel composition, i.e., compile p || ¢ by
compiling p and ¢ independently and then composing the results, and
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2. Preserve semantic distinctions, i.e., compile programs that are semanti-
cally distinct into programs that are semantically distinct.

We call a compiler having the first property an embedding and say that an
embedding with the second property is sound.

One might expect to find a sound embedding among any two Turing-complete
programming languages. It turns out this isn’t so. In [47] we show that some
concurrent languages cannot be soundly embedded in others. In this paper we
complement the negative results with positive results: we demonstrate sound
embeddings among various well-known concurrent programming languages and
models. Together, the positive and negative results induce a preordering on
the family of concurrent programming languages that quite often coincides with
previous intuitions on the “expressive power” of these languages.

Our results are summarized in Figure 1. Although far from being complete,
the emerging picture reveals interesting connections between hitherto unrelated
models of concurrency. _

The rest of the paper is organized as follows. Section 2 presents the frame-
work of language comparison. Section 3 describes our notion of transition sys-
tems, their parallel composition and their observables. Section 4 lists the con-
current languages we wish to compare and explains soine of their properties.
Section 5 contains a menagerie of sound embeddings that justify some of the
positive results shown in Figure 1. The negative results shown in the figure
were proved in [47]. Section 6 discusses related work and Section 7 concludes

the paper.

2 The Framework
2.1 Languages and Their Embedding

In this work we attempt to compare different concurrent programming lan-
guages, defined using different formalisms and within different semantic frame-
works. In order to be able to do this we ignore some aspects of the languages

and make some unifying assumptions.
The description of a sound embedding among two programming languages
requires specifying the following three ingredients for each language:

1. A set of programs, P.
2. A (possibly partial) parallel composition operation ||: P x P — P.
3. A semantic equivalence relation ~ over P.

Since we do not need to know other ingredients of the languages under consid-
eration, we abstract other details and identify a programming language L with
its associated triple (P;||;~). We call such a triple an algebraic language.
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Figure 1: Languages with compasition and sound embeddings among them
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We adopt the following conventions. We use p € L as synonym with p € F.
For p,q € L we put p || ¢ € L to assert that p || ¢ is defined. Equality (or
equivalence) of expressions means that one side is defined iff the other side is,
and if both are defined then they are equal (or equivalent). For the remaining of
this paper L and L’ denote languages with components (P; |[; =) and (P'; [[';~'),
respectively.

Definition 1 Let L and L' be two languages.

e A language embedding & of L into L', denoted ¢ : L — L', is a mapping of
P into P' satisfying (p || ¢)e = pe ||’ g for every p,q € L.

o A language embedding € : L — L' is sound if pq = pe'qe for every
mg€ L.

Mapping a concrete concurrent language into its algebraic language (P;[[; =)
is immediate for the first two components, P and ||. The semantic equivalence

~ is defined as follows. :

2.2 Observables and the Fully-Abstract Congruence

We assume a (possibly partial) partial function Ob that associates with each
program p € L a set of observable behaviors, called observables. We require
that Ob(p || ¢) = Ob(g || p) for every p,q € L, and that there is a program
¢ € L, called a trivial program, such that Ob(p || c) = Ob(p) for every p € L.

The semantic equivalence ~ over L is defined to be what is known as the
fully-abstract congruence induced by Ob and || [11]. Specifically, it is the largest
equivalence relation satisfying p ~ ¢ => Ob(p) = Ob(g) and p = p & ¢ ~
¢ = (pllgd =4

We note that in [47] we studied embeddings which are sound with respect
to the observable equivalence, i.e., the kernel' of Ob, rather than with respect
to the fully-abstract congruence. It is easy to see that an embedding sound
with respect to the observable equivalence is also sound with respect to the

fully-abstract congruence: °

Proposition 1 Lete : L — L' be an embedding satisfying Ob(p) # Ob(q) = Ob'(pe) #
OV (ge). Then € is sound.
Proof: Let p,¢q € L such that p£g. Then there is a program ¢ € L such that
Ob(p || ¢) # Ob(q || ¢). By assumption OW((p || c)e) # O¥((q || ¢)e), or
equivalently OV (pe || ce) # Ob'(ge || ce), implying that pe#'ge. D

Nevertheless, the negative results in [47] for embeddings sound with respect
to the observable equivalence hold also for this more general class of sound
embeddings. We chose the latter here since it is more robust in that it depends
less on the fine details of the observables, and since it allows greater freedom in
designing sound embeddings, as shown by Proposition 3 below.

1The kernel of a function f is the equivalence relation = satisfying a ~ b iff f{a) = f(b).




2.3 Embeddings Among Transition Systems

In order to simplify our task we describe mappings among transition systems
rather than among programs. This approach, which can be employed since par-
allel composition is the only program composition operation we consider, allows
us to ignore the concrete syntax of the different programming languages. How-
ever, in order to deduce the existence of a sound embedding among languages
from the existence of certain mappings among their corresponding transitions
systems, some assumptions are needed. _

With each programming language L we associate a set of transition systems
T and assume an operational semantics ¢ : P — T from programs to transi-
tion systems. Since Ob, the observables of L, are defined via the operational
semantics we assume that Ob is defined over T as well and that it satisfies
Ob(p) = Ob(po) for every p € L. For the remaining of this paper L and L’
denote languages with observables Ob and Ob' and with operational semantics
o:L—T and o' : L' = T, respectively.

For any language I we assume that the transition system of the program
? |l ¢ € L is uniform in the transition systems of the programs p and g, i.e., that
there is a partial binary operation ||T over T such that for any two programs
p, ¢ € L, with transition systems T, T, the following diagram commutes:

o

s
T, T" T 1

Let ~7 denote the fully-abstract congruence over 7 induced by Ob and ”T
We say that L is T-complete if for every T' € T there is a program p € L such
that po ~T T I Lis T-complete then p ~ ¢ iff po ~T go. Hence we overload
| and =~ to mean also HT and 2T, respectively, for languages complete with
respect to their transition systems.

We note that in such a case the operational semantics ¢ : L — 7 is actually
a sound embedding of L into the algebraic language (T;||;=).

In the following we specify for every programming language L we consider a
set of effective transition systems 7 and claim that L is complete with respect
to 7., For languages given directly as transition systems, such as I/O Automata
and AC, we restrict ourselves to the effective subsets of these languages.

To show the existence of a sound embedding of L into L’ we will describe a
sound embedding ¢ : (T, ||,~, — (7", |',~’). This approach is justified by:

Proposition 2 Let L and L' be languages complete with respect T and T,
respectively. If there is a sound embedding € : (T;||; =) — (T7;||';2') then there
is a sound embedding £’ of L into L'.
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Proof: Assume L, L', T, T', and € as above. By completeness for every p € L
there is a program p’ € L' for which poe = p'c’. Since (p || g)oe = poe ||’ goe
for every p,q € L one can derive from ¢ a mapping ¢’ : L — L' satisfying
(p || 9)¢' = pe' ||’ g’ and pe’ =’ poe for every p,g € L. Such a mapping is
homomorphic by construction and hence is an embedding. To see that &’ is
sound note that psq implies poegt’goe since both ¢ and & are sound, which
implies pe'st’qe’ by construction of &’. O

3 Transition Systems

3.1 Basics

Definition 2 Assume a given set S of siales, closed under cariesian product,
and a set A of actions, which includes the internal action 7. A transition system
over S and A is a pair (I, T) where I C § is the set of initial stales and T, the
transition relation, is a subset of S x A x § salisfying:

1. s 5L s€T foreverys € S.
2. 545 ifsws €T anda#r,

The two requirements on transition systems are made for convenience. The
requirement that transitions other than stutter change internal state is no re-
striction since a process spinning in one internal state can be modeled by a

process flipping between two internal states.

We do not incorporate fairness constraints in our transition systems.

A compulation prefiz is a sequence o 2 53 3 s3... of alternating states
and actions, which begins with an initial state, ends with a state if it is finite,
and for each i the triple s; = s;;; is in the transition relation. A compuiation
is a computation prefix which is eithér infinite without a stuttering suffix, i.e.,
Vidj > i st. & # sj, or ends in a state from which there are no transitions

other than stutter.

3.2 Parallel Composition

For each set of transition systems 7 over S and A we define the parallel compo-
sition of transition systems IIT using two auxiliary binary operations, || over
states and ||'A over actions. Both operations are associative, commutative, and
may be partial. We lift both to sets and define S; ||S Sy = {8 ||'3 s2 | 5: € 5;
and s HS s is defined}, for any S;,S52 C §. We omit the superscripts 7, S,
and A when they are clear from the context.

We define (I,T) = (I),T1) || (I2,T2) to have initial states I = I || I> and
transitions s; || 52 aude st || 8% if T; has the transition s; = s} for i = 1,2 and
all three components sy || 52, a1 || a2, and s} || s5 are defined.
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Transition systems come in several basic variants:

1. Global Aections:

» State composition is cartesian product.
e Action composition is defined by a || a = a for every a € A

Global actions are employed in I/Q Automata and in Theoretical CSP.

2. Binary Actions:
The set of actions A admits a complementation operation satisfying @ # a

and @ = a for every a € A\ {7}.

+ State composition is cartesian product.

¢ Action composition is defined by a || @ = 7 for every a € A\ {7} and
a || r = afor every a € A.

A variant of binary synchronization is employed in CCS. The difference
between the original CCS definition and ours is that we allow independent
actions to occur simultaneously, whereas the original definition requires
strict interleaving. The difference does not matter in our case since it
neither affect the observables and hence nor the semantic equivalence. If
desired, the difference can be eliminated by using different labels for truely
silent actions and for internal communication actions.

3. Binary Channels:
There is a function ¢ : § — 24 associating with each state a subset
of A. Transitions preserve ¢, i.e., s = s € T => ¢(s) = ¢(s'). State
composition, when defined, satisfies ¢(sy || s2) = ¢(s1) U c(s2).

o State composition satisfies s, [| 52 = (s1,82) if e(s1) Ne(sz) = 0.

o Action composition is defined as in a binary actions language.
Binary channels are employed in Occam and CSP.

4, Shared Store:
States consist of two components S = Z x D, a local state from Z and a

shared store from D. Actions have the form A = D x {1,]}. Transitions
labeled dT are called active and those labeled d! are called passive. We
use TT and T} to denote the active and passive subsets of T, respectively.

We require that a transition (s, d) 4 (s',d"}) satisfy s # &' if it is active
and 5 = s if is is passive. The intuition is that active transitions are
carried by the process and passive transitions by the environment. Since
these rules allow reconstructing the transition label from its source and
target states the label can be omitted.
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e State composition is defined by s; || sz = (s;,52) for states 5; =
(z1,d1), 82 = (22,da) if dy = dy = d. The resulting state is written
more concisely as (z;, z;; d).

o Action composition is defined by df || d* = dT for every d € D.

Shared-store transition systems are used for Dataflow Networks, Actors,
the concurrent logic languages, Linda, Unity, and AC.

In most shared-store languages “output never blocks”. This property is
captured by:

Definition 3 A sef of shared-siore transilion sysiems T is asynchronous
if for every two iransition sysiems {Il,T1} (I2,T2) € T and tmy state

(21,20;d) € S if {z1;d) — (&}; &) € T] then {22;d) — (z2;d") € T5.

All the shared-store languages, except AC, are asynchronous.

Some shared-store languages are “loosely coupled” [33] in the sense that
active transitions from two concurrent processes sharing the same store
can always commute., This property is captured by:

Definition 4 A sei of shared-store asynchronous transition systems T is
loosely coupled if for every two transition systems (I, T1), (I, T2} € T and
any state (31, 22;d) € S if (213d) — (shsdi) € T] ond (23d) — (35 da) €
Tg then there is d' € D, uniform in dy and d3, such that (z;;dz) —
(2:d') € T] and (22:dy) — (25;d') € T). Otherwise we say that T is
tightly coupled.

Note that if there is a partial order on D such that active transitions never
decrease the shared store then the requirement that the store value d’ be
uniform in d; and d; in the definition above induces a least upper bound

operation on D.

Dataflow Networks, Actors, the concurrent logic languages Lucy, DLV,
and FGHC are loosely coupled. They have natural partial orderings and
least upper bound operations which are consistent with our definitions.
Linda, Unity, AC, and the concurrent logic langua.ges FCP(:) and FCP
are {'.lghtl:pr coupled.

3.3 Observables

For each set of transition systems 7 we define a (possibly partial) function
Ob that associate with each computation prefix ¢ of a transition T € 7 an
observable outcome. For a transition system T', we define Ob(T'), the observables
of T, to be {Ob(c) | ¢ is a computation prefix of T and Ob(e) is defined }.
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Observable outcome in action-based transition systems is defined for com-
putations. The outcome Ob(c) of a computation ¢ is a pair consisting of a
termination mode and a trace, which is the sequence of actions of the transi-
tions it employed, with internal actions removed.

The observable outcome of a shared-store transition system T is defined for
computations in which the environment made no transitions, i.e., for computa-
tions of T'T. It consists of a termination mode and an abstraction of the limit
value of the shared store. Both the termination mode and the abstraction used

are langunage specific.

4 Concurrent Programming Languages

In this section we present a catalog of the languages we consider. Due to space
limitations we describe them only informally.

For simplicity we assume that programs do not have internal parallelism,
i.e., || is used only at the top level, although many of our results do not seem
to be affected by lifting this restriction. The restriction implies that the set
of transition systems of a langnuage can be fully specified by defining transition
systems for sequential programs and defining the rule for parallel composition,

which is what we do.

1. DN: Nondeterministic Dataflow Networks (cf. [23] for the original deter-
ministic model, and [21, 39] for fully-abstract semantics for nondetermin-
istic dataflow networks). Dataflow networks operate on streams, which are
two-port asynchronous FIFO channels with an internal unbounded buffer.
Transition systems for a dataflow networks employ a shared store records
channel histories. They are asynchronous and loosely coupled.

In DN, CSP Occam, and DLV each transition system has an associated
set of input and output ports. In these languages the parallel composition
of two transition systems is defined iff they do not own a common port.

The store abstraction used in the observables of T hides the history of the
internal channels of T'.

2. CSP (cf. [18)] for the original definition and [4] for an investigation of
various sublanguages). CSP processes communicate using synchronous
channels, which are two-port unbuffered channels in which sending and
receiving must occur simultaneously. Transition systems for CSP are ac-
tion based and employ static binary synchronization. Closure conditions
ensure that a transition system cannot preview the value to be received
on an input channel. '

3. Occam [20]. Occam is similar to CSP. The main difference is that non-
deterministic choices in CSP can be guarded by both input and output
actions, whereas in Occam they can be guarded by input actions only.
This is reflected in the transition system for sequential programs by the
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10.

requirement that if from a given state an “output” transition is enabled,
then no other transition is enabled at that state.

Actors [16]. The Actors model consists of processes, called actors, commu-
nicating via mailboxes. A mailbox is a many-to-one asynchronous channel,
without a guarantee for order of message arrival. Each actor has a unique
identifier and may “know” the identifiers of other actors, which are said
to be its acquaintances. An actor a can send a message to b’s mailbox
only if & is an acquaintance of a. A message may include actor identifiers
known to the sender, allowing the receiver to become acquainted with
these actors as well.

Actors are modeled using state-based transition systems, whose shared
store records the messages sent to each mailbox.

The parallel composition of two transition systems is defined iff they do
not share a common actor.

The abstraction used in the observables hides all internal communication
and leaves visible only messages sent to outside actors.

Lucy [24] is 2 concurrent constraint language designed to be comparable
to actors. Its only compound structure is a many-to-one bag and only
output ports to a bag can be sent in messages. Its design is successful
in the sense that from a transition system point of view it is essentially
identical to actors.

DLV:.Processes communicating via directed logic variables [25] (e.g. Doc
[17] and a subset of Janus [43]). A directed logic variable is a two-port
communication channel that can transmit at most one message, which
may contain embedded ports. Unlike Actors and Lucy, both input and
output ports can be sent in messages. A state-based transition system for
directed logic variables is given in [25].

The store abstraction hides the values given to internal channels.

FGHC: Flat Guarded Horn Clauses [50]. Processes communicating using
shared logic variable, which are single-assignment variable that take terms,
which may contain variables, as values. The shared store consists of a set of
equality constraints. Here and in the following concurrent logic languages
parallel composition is totally defined. The store abstraction projects the
final constraint on the initial variables.

FCP: Flat Concurrent Prolog [44, 45]. (See [53] for a definition of FCP(:,7),
a cleaned-up variant of that language.) A concurrent logic language em-
ploying atomic unification and read-only variables.

. FCP(:) [42, 53). A variant of FCP with atomic unification but no read

only variables, initially presented with a different syntax under the name
FCP(], |)[41].

I0A: I/O Automata [28] employ global synchronization over a set of ac-
tions A. Each transition system T has an associated set of actions T4 C 4,
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and has a transition s = s for any state s and any a € A\T4. The parallel
composition of two transition systems T} and T} is defined iff T NT3 = 0.

11. CCS* [31, 32]. CCS consists of processes employing dynamic binary syn-
chronization. Parallel composition for CCS is totally defined.

Since the official semantic equivalence for CCS cannot be derived naturally
from observable outcomes of computations we refer to the language that
we study as CCS*. It is closely related to the language EPL of [15).

12. Linda [7]. Processes communicating by inserting and deleting tuples in a
shared Tuple Space. Transition systems for Linda are state-based, with
the shared store consisting of sets of tuples.

13. SV: Processes communicating by reading from and writing to shared vari-
ables [27] (e.g., Unity [9]). Their transition systems are state-based, with
the shared store being the vector of values of the shared variables.

14. AC [13]): Processes communicating via a shared store that takes values
from a partially ordered set. The value of a store can only be increased in
the ordering.

15. TCSP: Theoretical CSP [19]. TCSP employs global synchronization. Its
parallel composition operation is totally defined.

In addition, we are interested in subsets of some languages. These are defined
specifically for each language, but have some properties in common:

¢ dL: The deterministic subset of L.
¢ ifL: The interference-free subset of a language L.

The deterministic subset dL of L is the set of L programs in which each se-
quential process is deterministic, has at most one transition emanating from
each state.. Note that dL is closed under the parallel composition operation
of L and that the parallel composition of deterministic processes may exhibit
nondeterministic behavior. We investigate dDN, dFGHC, and dCSP.

In some languages parallel compesition is only partially defined to avoid
naming conflicts, to ensure that communication is one-to-one, or to allow only
a single writer per variable. A common aspect of these restrictions is captured
by the following property, called interference freedom (a slightly more general

definition of this property is given in [47]).

Definition 5 Let L = (S;||;=) be a language. A program p € L is trivial if for

every g € L such that (pllg) €L, (pll ) = (gl p) ~q.
We say that L 1is inierference free if for every nonirivial program p € L,

(pllp) & L.

Some languages investigated here, e.g. Dataflow Networks, Occam, CSP, Actors,
Lucy, DLV, and I/O-automata, are interference free. In addition, we investigate
the following interference-free sublanguages:
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16. ifCCS*: The sublanguage of CCS* in which the parallel composition of
processes is allowed if and only if they employ a disjoint set of actions.

17. ifSV: The single-writer sublanguage of SV (called, in the case of Unity,
the read-only sublanguage). -

18. ifAC: The sublanguage of AC in which parallel composition of two tran-
sition systems T}, Ts is allowed if and only if the store augmentations of

their active subsets T}, 75 are disjoint.
We also investigate two other sublanguages of AC:
19. aAC, the asynchronous sublanguage of AC.

20. ifaAC, the interference-free sublanguage of aAC.

5 A Menagerie of Sound Embeddings

We now present some justifications for the arrows in Figure 1

5.1 Observable Behavior and Sound Embeddings

If = is the fully-abstract congruence induced by the observables, as in our case,
then the following proposition can be used to establish that an embedding is
sound. The proposition is useful in that it allows establishing the soundness of
an embedding without referring explicitly to the fully-abstract congruence.

Proposition 3 Let L and L' be languages with semantic equivalences being
the fully abstract congruences induced by the observable functions Ob and OV,
respectively, and let e : L — L' be an embedding. Assume that for everyp,q € L
such that Ob(p) # Ob(q) there is a program ¢’ € L' such that OV (pe ||' ) #
Ob'(ge |I' ). Then € is sound. i

Proof: Assume L, L' and ¢ satisfy the conditions of the proposition, and let
p,q € L be programs such that ptg. By the definition of ~ there is a program
¢ € L such that Ob(p || ¢) # Ob(g || ¢). By assumption there is a program
¢ € L' such that OV((p || e)e ||’ &) # OV((g || ¢)e || ¢'), which can also be
written as OV(pe || ce || ¢/) # O (ge ||/ ce || ¢’). This implies that pe'ge,
establishing that £ is sound. O

Definition 6 Define < {io be the relation salisfying L < L' iff there is a sound
embedding of L in L' and L ~ L' 1o be a shorthand for L < L' & L' <X L.

In the following embeddings silent transitions are mapped to the correspond-
ing silent transitions, and hence they are not mentioned explicitly.



5.2 Embedding Interference-Free CCS* in I/O Automata

In this section we relate two abstract models of concurrency, CCS* and I/O
Automata. There is no sound embedding of CCS* in I/O Automata, as shown in
[47], since the latter is interference free whereas the former isn’t. Here we show,
however, that ifCCS*, the interference-free subset of CCS*, can be embedded
in I/O Automata. The technique we use was first employed in an embedding of

CSP in FCP [40, 45]

For a set A, 24 denotes the set off finite subsets of A and A" denotes the
set of finite sequences over .A. For sequences = and y over .A (where elements of
A are identified with singleton sequences) z ¢ y denotes the concatenation of y
to z if z is finite, and is undefined otherwise.

Let p be a CCS program with transition system (S, I, A, T). Let D 4 denote
the set of sequences over A U 24, ordered by prefix. We call an element of 24
an offer and an element of D 4 a ready trace.

Definition 7 Qutsianding offer, enabled action, admissible ready irace
Letd = ry,7s,...,7, be a ready trace. An offer r; is outsianding in d if for no
actiona si. a€Er;, a=rj, j 2 i

An action a is enabled in d if @ € vy for some outstanding offer r; in d.

We say that d is admissible if every action a = r; in d is enabled in the ready

frace d; = r1,72,...,Ti-1.

We define pe to be the I/O Automaton with transition system (S x 24 x
D, Ix0xA,D4,T), where T' is defined as follows.

Let s € S be a state with s 2 5; for 1 < i < n being the only transitions
from s in T', and let @ = {a,, a3, ..., 8, }. Then for every ready trace d and every
i, 1 < i< n, T has the following transitions:

Qutput transitions:

¢ Offer (Offers @ if no a; is enabled):
(s,0,d) LA {(s,d,d 0a), where no g; is enabled in d.

o Act; (Do a; if @ is enabled):
(5,8,d) = (5,0,d ¢ a;) if T is enabled in d.

Input transitions:

o Accept; (Accept choice of @ if a; was previously offered by self):

(5@, d) = (s:,0,d) |

¢ Input: In addition, for any state s, offer @, and ready trace d, we have:

(s,d,d) = (s,d,doa)

where a is either an input action such that that @ ¢ & or an input offer.
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Note that only admissible ready traces can be generated by a computation.
Note also that if the actions that can be taken by p,g € CCS"* are disjoint (im-
plying that their parallel composition in ifCCS* is defined) then the actions that
can be taken by pe, ge are also disjoint, implying that the paralel composition

of pe,qe € IOA is defined.
We claim that if p,¢ € CCS are observably distinct then so are pe and

ge. This is shown via a mapping from computations of the I/O automaton to
computations of the corresponding CCS program, which maps an Ac#; and an
Accept; transition to a CCS transition synchronizing on a; and maps Offer and
Input to stutter. '

Proposition 4 ifCCS* < IOA.

5.3 Embedding I/0 Automata in Theoretical CSP

1/O Automata and TCSP are similar in using global synchronization. The
differences between these models is that in I/O Automata one process initiates
an action and the others must follow suit. In TCSP all processes must agree in
order for an action to take place.

However, it turns out that the identity mapping from IOA to TCSP over-
comes this difficulty, and is indeed a sound embedding. The interference free-
dom of IOA ensures that only when the output transition is enabled then the
corresponding synchronous action in TCSP will occur.

This may justify the view that, ignoring syntax and fairness, IOA is a special

case of TCSP.
Proposition 5 JOA < TCSP.

5.4 Embedding I/O Automata in Unity and in ifaAC

Let p be an I/O Automaton with transition system (S, 1, A, T). Thene: JOA —
Unity maps p to the Unity program pe with the transition system (5, I', T},
where 8" = Z x A*, 2 =8 x A*, I' = I x A x A, That is, states of a Unity
program have the structure (s, d;d’), where s is the internal state, d is the value
of the local variable and d' is the value of the shared variable. 7" has the
following transitions, for every state s € S and sequence d € A*:

e Output: (s,d;d) — (s',d ¢ a;d o a) if there is an output transition s =
s'eT.

+ Receive: (s,d;d') — 's',doa;d') if &' = doaod” for some action a and
sequence d” and T has an input transition s S,

e Input: (s,d;d’) — (s,d;d o a) for every internal state (s, d), store value
d' and a € A.
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We claim that if p,g € JOA are observably different then so are pe and ge.

Proposition 6 JOA < Unily.

It turns out that the same mapping £ constitutes an embedding of /O Au-
tomata in AC. Note that the image of the embedding is actually included in
ifaAC, the interference-free, asynchronous sublanguage of AC, since an active
transitions of pe augments the store by an action taken by p, and actions taken
by composed I/O automata are disjoint by definition of the model of I/0 Au-

tomata.

P.rupﬂsition 7T IOA < tfaAC.

5.5 Embedding ifaAC in I/O Automata

Let p be an ifaAC program with transition system (S,I,T), with S = Z x D.
Define aug(T) = {{d,d')|(s;d) — (s’;d') € T'}. Then for any T € ifaAC, Te
is the I/O Automaton (S, I, aug(T),T"'), where the output actions are aug(71),
the input actions are aug(7T*), and T has transitions (s; (44) {s';d’) for every
(s;d) — {s";d') €T

It is easy to see that active transitions of T' are mapped to output transitions
of the I/O automaton Te and passive transitions of T to input transitions of

Te,
Proposition 8 ifaAC < IOA.

Corollary 1 JOA ~ ifaAC.

5.6 Embedding I/O Automata in FCP(:)

The programming techniques used here to embed 1/0 Automata in FCP(:) and
of Unity in FCP(:,7) are explained in [45].

Let p be an I/O Automaton with transition system (S,I,A,T). Then ¢ :
IOA — FCP(:) maps p to the FCP(:) program pe with the clause

p(S,As) :- S=s, As=[alAs’] : true | p(s’,As’).
for every input transition s — s’ € T, and the clause
p(S,As) :- S=s : As=[alis’] | p(s’,As’).

for every output transition s = s’ € T Such a program n.ay be infinite, but by
assumption on the effectiveness of the transition system for p its an equivalent

finite program.
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5.7 Embedding Unity in aAC

The embedding £ : Unity — aAC maps a Unity program p with transition
system (S,I,T), § = Z x D to the aAC transition system (S',I’,T') with
§' =ZxD*, I'=IxA, and T' having the transition {s;dov) — {s';dove?’),
for every d € D* and every transition (s;v) — (s';v') € T..

Proposition 9 Unity < aAC.

The opposite embedding of aAC in Unity is the indetity mapping, establish-
ing:
Proposition 10 Unily ~ aAC.

We were unable to construct an embedding of sound embedding of AC in
Unity or in aAC.

5.8 Embedding Unity in FCP(:,7?)

The embedding ¢ : Unity — FCP(:,7) maps Unity program p with transition
system (S,I,T), S = Z x D to the FCP(:,?) program with the clause:
p(S,Vs) :- Ve=[v|As’] : true | p(S,As’).

for every passive transition (s;v) — (s5;v') € T, and the clause:

p(S,Vs) :- S=s : As=[V7|As’] | V=v, p(s’,Vs’).

for every active transition (s;v) — (s';v') € T. Such 2 program is infinite in
general, but by assumption on the effectiveness of the transition system for p it
is equivalent to a finite program.

5.9 Embedding CCS* in aAC

The embedding € : CCS* — AC is very similar to the embedding of ifCCS* in
I/O Automata. It takes a CCS program p with transition system (S, I, A,T)
to the aAC transition system (S, I',T"}), with §' = 5 x D 4, where D 4 is the
domain of ready traces over A defined above, I' = I x A, and 7" having the

following transitions: N
For every state s € S, where s = 5; for 1 < i < n are the only transitions

from s in T, @ = {ay, az, ...,an}, and every ready trace d:

¢ Offer (Offers @ if no a; is enabled):
(s,0;d) — (s,do@;d o) if no q; is enabled in d.

e Act; (Do g; if it is enabled):
(s,0;d) — (si,0;d ¢ a;} if a; is enabled in d.

— 162 —



o Accept; (A silent transition that changes the internal state if one of the
actions offered by the process was taken by the environment):

(s,d’;d) — (5:,8;d) if d = d' 0d" and T occurs in d”.

¢ Input: In addition, for every internal state (s, d’), store value d and every
single-element legal store augmentation z, we have:

(s,d’;d) — (s,d";d o z)

The effect of this implementation is that every synchronous CCS transition
is realized by three AC transitions: Offer, Act and Accept.

We claim that if p,qg € CCS* are observably distinct then there is an aAC
program ¢ for which pe || ¢ and ge || ¢ are observably distinct in aAC.

Proposition 11 CCS* < AC.

5.10 Embedding Theoretical CSP in AC

The embedding ¢ : TCSP — AC maps a TCSP program p with transition
system (S, I, A,T) into an AC transition system (S5’, I, T'} where §' = S x A*,
I' =1 x A, and T" has the following transitions for every s = §' € T

« Initiate: (s,d;d} — (s',d o a;d ¢ a),
¢ Participate: (s,d;d} — (s,d;d¢a), and
e Update: (s,d;doa) — (s',doa;d oa)

The Initiate transition allows a process in internal state s to initiate action
a. The Participate passive transition allows a process in internal state s to
passively participate in a, without changing its internal state, if some other
process initiates it, and then use the Update silent transition to update its

internal state from s to §'.
We claim that € maps observably distinet TCSP programs to observably

distinct AC programs.
Proposition 12 TCSP < AC.

We were unable to construct a sound embedding of AC in TCSP.

6 Other Known Embeddings and Non-Embeddings

6.1 Known Embeddings

Various sound embeddings are known from the literature (although not under
this name, and not proven formally within our framework). An embedding of



Dataflow Networks in Theoretical CSP is shown by Josephs, Hoare, and Jifeng
[22]. The same method applies to embedding Dataflow Networks in CSP. It can-
not, however, be used to embed DN in Occam, since Occam cannot implement
unbounded buffers. An embedding of Dataflow Networks in Occam is given by
de Boer and Palamidessi [3]. An embedding of Dataflow in ifUnity (i.e., the
read-only subset of Unity) is given by Chandi and Misra [9]. It seems that
another method employed there can be used to embed CSP in ifUnity.

The technique used by Milner to embed the value passing caleulus of CCS in
pure CCS [32] can be applied to embedding CSP in ifCCS*. There is a straight-
forward embedding of Dataflow Networks in concurrent logic langnages. Even
the weakest languages in the family, those employing Directed Logic Variables,
admit this embedding. An embedding of Actors in Lucy is given by Saraswat et
al. [24]. There is a simple embedding of Lucy’s bags in terms of Directed Logic
Variables. There is a known embedding of DLV in FGHC, which has been used
in an actual implementation of a subset of Janus in FGHC. A straightforward
embedding of FGHC in FCP is given in [45]. That survey includes other em- -
beddings among concurrent logic languages which are not considered here. An
embedding of Linda in FCP is described in [46]. Embeddings of Dataflow Net-
works, Shared-Variable languages, and concurrent logic languages in the model
of Asynchronous Concurrency were studied by Gaifman, Maher, and Shapiro

(13].

6.2 Non Embeddings

SV in ifSV

Single-Writer Shared Variables (ifSV) are interference-free, whereas Shared Vari-
ables aren’t. This precludes sound embeddings of ifSV in SV by our earlier
results [47]. An implementation € of SV in ifSV that realizes a shared variable
by a process that manages it is not an embedding, since if p is a program that
writes on some variable z, pe must write on some variable, say y. Assuming
(p || p)e = pe || pe contradicts the interference-freedom of ifSV,

SV in IOA

I/O Automata are interference-free, whereas Shared Variables aren’t. This pre-
cludes sound embeddings of SV in IOA [47). In particular the implementation &
of shared variables in I/O Automata, shown by Goldman and Lynch [14], is not
an embedding, since it is not homomorphic with respect to parallel composition.

SV in CCS

Milner [32] shows an implementation of a shared variable language in CCS. The
embedding is homomorphic in a very restricted sense, which does not cover SV,
Concurrent processes can communicate only via variables declared outside their
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scope. They can interact with the outside world only via two fixed variables,
which are identical for all programs. Hence independent programs cannot be
composed in a meaningful way. Attempting to extend the embedding to allow
‘open’ composition, by allowing arbitrary external variable names, would not
work since it is not clear with which agent to associate the process implementing
a variable. Having multiple copies of a variable process would result in an
unsound embedding. The embedding of a shared-variable language with “open”
composition in CCS is possible if the language is restricted to be single-writer,
ie., to ifSV. In this case the embedding associates the variable process with the
(unique) agent that writes on it.

CSP vs. CCS

Brookes [6] describes an embedding of CSP in CCS-like synchronization trees.
Of course there is also an embedding of CCS in synchronization trees. However,
it seems that from these two embeddings one cannot reconstruct an emheddm,g

of CSP in CCS, or vice versa.

6.3 Other Related ank

A review of some previous work on the subject, including [26, 32, 22, 26, 36,
37, 49, 8, 30, 35, 45, 1, 2, 10, 38, 4], was given in [47). Two recent references
not mentioned there are [34, 52]. Mitchell [34] introduces a notion of language
translation which is essentially the same as the notion of fully-abstract embed-
dings described in [47], and uses it to demonstrate that Lisp is not universal
in the sense that it cannot embed any language having an abstraction context,
i.e., a context that its application to observably distinct programs may result in
equivalent programs.

Vaandrager [52], following earlier work by de Simone [48], uses structural
operational semantics to compare I/O Automata to other algebraic models of
concurrency. We have yet to understand the relationship of this line of research

to ours.

7 Conclusion and Future Work

The work presented here is preliminary in many ways:

¢ There are many missing arrowheads in Figure 1. Each represents an open
problem. Our tentative conjectures as to which direction the missing
arrowheads will point are reflected by the relative height of the languages

in the figure.

+ Many important languages and models of concurrency are missing from
our figure. Incorporating them into the framework is a job that remains

to be done.
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+ We have not considered operators other than ||. In particular, hiding in
some languages is incorporated in parallel composition and in others it is
a separate operator. Allowing hiding as an additional operator seems a

natural extension.

e We have ignored fairness in our treatment. Incorporating the different
fairness criteria into the comparison may refine our understanding of the

different models.

o In [47]) we have introduced a separation schema and applied it in a limited
way. Additional applications of the schema are needed in order to separate
languages which we have failed to prove equivalent.
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