Report on Visit to ICOT
July 18th - August 4th 1989

Jim Crammeond

Dept. of Computing
Imperial College, London

Introduction

1 was invited 10 ICOT by Dr. Chikayama after he visited Imperial College in April to
exchange experiences with implementation of committed-choice languages on parallel machines - I
have been developing the Parallel Parlog system that runs on shared memory machines such as
the Sequent Symmetry and many issues relevant to the tightly coupled (intra-cluster) part of the
PIM machine also arise in the implementation of the Parallel Parlog system.

My main objectives of this three week visit were (a) to get an overview of the parallel
implementations being developed at ICOT and bow they are progressing and (b) to carry out a
performance comparison between my Parlog system and the parallel KL1 system which runs on
the Seguent Symmetry, (c) to exchange ideas om problems common to our implementation efforts;
particularly in memory management and scheduling.

This report describes some of the work carried out and discussions 1 had on these matiers

during my slay.

Overview of ICOT Implementations

There are many KLI1 systems al ICOT! On the Sequent Symmetry there is the sequential
system PDSS which is the main one used 10 write programs - this system has a well developed
environment with a micro-PIMOS user-interface, tools for running within emacs and debugging
Facilities. 1 hope to have time for a proper demonstration of this system before | go! [under-
stand that this system is also compatible with the KLI systems on the PSI and multi-PS]
machines (although this may change).

The main system being developed at present is the VPIM (Virtual PIM) systemy, wrilten in
PSL - an in-house variant of the C language which will enable real registers 1o be specified on
real PIM machines. A PSL o C translator exisls so thal VPIM can be compiled on the Sym-
melry wsing the © compiler in the osval way. This system nns in parallel on (he Symmelry bt
it is a highly instrumentced emulator and includes features such as MRB garbage reclamation
which will be supported in hardware/firmware on real PIM machines, so it is preily slow, PSL
compilers Tor the 5 dilferent PIM machines will be writien by the manufaclirers of these
imachines,

ICOT now hes nmlti-PSE muchines incloding o 64 processor machine. This runs the PIMOS
operating sysiem amd has 4 fron-emd processors - PSI machines rooning SIMPOS. Parallel appli-
cations are generally developed on PDSS first and then copied (o0 the muli-PS! machine, perhaps
vid the PSI machie. Microowle compiled on the PSE machine can ron on the moli=-PST nuachine

—_10 —

but PDSS has a better debugging environment for KL1 than the PS] machine. This should obwi-
ously change as the mult-PSI PIMOS environment improves,

The third system on the Symmetry is the KL1-ps system (iovoked as clsim). This system
is a parallel KL1 system which is desigoed to run reasonably efficiemtly on the Symmetry - it
was this last system with which I made my comparisons with the Parlog system. KLI-ps pro-
vides a very basic user-interface - this system was apparently written mostly by Masatoshi Sato
who left ICOT some time ago and no further work bas been done on this system other than per-
formance measurements by Evan Tick for his comparisons with the Aurora Or-Parallel Prolog sys-
tem.

Performance Studies

When I amived at ICOT I already had 6 benchmark programs which had been developed
and used by Evan Tick in his technical report [2)' which I had adapted ﬁ'anG_HCtn {Flan)
Parlog and ran on the parallel Parlog system. However, Evan had made significant improvements
to most of these programs and had produced a oumber of other benchmark programs so we
selected 10 of his new KL1 benchmarks and I translated these into Parlog for us to make our
comparisons. '

Before getting down to making comparisons, I decided to rewrite the garbage collector in
the Parlog system to use a semi-space copying algorithm (which is also used by the KL1-ps sys-
tem), With the pew set of benchmarks I was ahle.tuau:mmlate_m star.isﬁl:s_ahmu the pDew
garbage collector and compare it with my old (sliding) algorithm. It does run faster - but requires
more space, of course,

Evan and I measured execution times for the benchmarks onm 1, 2, 4, 8 and 12 processors”
and also the number of reductions performed. The reduction counts were essentially the same on
both systems; the timing results, however, did not show a clear pattem. For six of the beoch-
marks Parlog was 20-45% faster; it was 70% faster in one case and then slower in the last wwo
cases: semigroup was 15% slower and zebra was 30% slower.

I spent some time investigating the two benchmarks which were slower; the firsl case was
due to spending a lot of time in the garbage collector. The KLI-ps sysiem has only two options
for memory (heap) allocation - 4Mb and 40Mb(!). The semigroup benchmark would ooly rom with
the large memory option, but would then do no garbage collections. By increasing the heap size
in the Parlog system (which can be set to any size) so thal only two garbage collections were
done, the Pariog system was the faster than KLI-ps by 5%.

The zebre benchmark is more complicated to explain. A large factor of the poor perfor-
mance is due to the lack of clause indexing in the Parlog system - this was evident when
abstract machine instmction counts were compared: the Parlog system executed 2.4 times more
ingtructions than KLI-ps. Another improvement could be made to the Parlog version ol thiy
henchmark using sequential conjunction operator to reduce the number of calls to the scheduler -
the two improvements combined made Parlog run 3% laster than ihe KEI-ps version; though we

1 this report contained timings for 2 “model A™ Symmetry, | had only amomny benclmaio on o “moded BT Symemetry with
the anpraved cicle algorithin aod so wished b i all henchanarks on the same machine. ot Sysetries w000 ane sow
mend] 13 Syommelry s,

2 abmining semi-refinbke loures for 12 processors was e hardest as e Symmeny was often busy with many users sotive
o the moching!

still should examine more closely why KL1-ps is performing so well.

I had discussions with Goto-san about the memory organisation aod word formats in KLi-ps
which is quite different in some respecis to the Parlog system. Two key differences are that (a)
the KL1 system uses 2 words (8 bytes) for each beap cell, compared with 1 word (4 bytes) for
the Parlog system and (b) the KL1 system has one area for storing goal records (processes) and
heap terms, while Parlog uses separates data areas for processes, goal arguments and heap terms.
My garbage collector thus performed perhaps 3 times faster than KL1-ps but only operated on the
heap. It also did not perform so well if the goal argumens stack was large (containing large holes
indicating garbage) and the active heap was small. Such characteristics were displayed by two of
the benchmarks and after discussions with Goto-san and Imai-san I decided 0 make changes to
miy system to enable this stack to be garbage collected.

Of course, we also compared speed-ups, but found that (apart from one benchmark) these
were about the same on both systems - hopefully we can investigate further the oot notable
excepiion, After discussions with Chikayama-san, Goto-san and Imai-san about the scheduling
algorithm oo KLI1-ps 1 had expected the Parlog system to produce slightly better speedups than
the KL1-ps system, but this was not 50 - at least on the B processors figures, BEriefly, the main
difference between their schedulers is that an idle processor in Parlog will search other processors
mn gueues for work, while in the KL1-ps system it will set a flag and wair for 2 busy processor
to give it work (at the next reduction step). [would like to compare speed ups on 12 or 15
processors, though,

This comparison work, though still incomplete, has been extremely useful for finding some
of the weaknesses and strengths of the two systems. For example, afier comparing the figures for
abstract machine instructions executed, Evan Tick examined the KL1-b code for the benchmark
where KLl-pt was 70% slower since it was executing more instructions than Parlog. This
reveiled that the compiler was doing a poor job on certain constructs - this compiler is also used
in the PDSS and VPIM systems, so perhaps should be investigated further. In general Parlog
executed 30% more instructions for the benchmarks where it was 30% faster - this could well be
due to better engineering of the C emulator. [feel this work has also highlighted the importance
for having many reasonably non-trivial benchmarks to test such systems.

Presentations and Discussions

I gave two presentations during my stay; one on the second day at ICOT and one on the
second-last day at ICOT. In the first talk [presented an overview of the Parallel Parlog system,
giving a high level description of the intemals of the Parlog emmlator, and also described some
experiments [bhad carried out earlier this year on with different scheduling algerithms.

My second talk presented the results of my work at ICOT, described above, in comparing
the Parlog and KL! systems and [described some of the main known differences between the
two systems, 1 had hoped that this presentation would in faor be more of & discussion with
plenty of audicnce participation and [was not disappointed! We covered many aspects ol the
different systéms and also thoughl ol further statistics to examine.

Various members of the VPIM team in the dih Labordtory presented ombines of their work
Wome i partcelar, Imai-san presested an overview of the PIM project and of the VPIM, and
Kawal-san thscussed the Shoen struclore o be implementied on the VPIM,

—12 —

Taki-zan showed me a video of the multi-PSI demonstrations used in the FGCS cooference
last year and Kawai-san and Fumichi-san of Mitsubishi were able to show me live demonstrations
oo the 64 processor mult-PSIL, all of which was most interesting.

I has a few discussions with Chikayama-gsan, Goto-san and Imai-san about scheduling in the
VPIM, which essentially extends the algorithm used im KL1-ps by baving prioritised un gueves.
I also had fruitful discussions with Goto-san and Imai-san about memory management and some
ideas I have for a future Parlog version, which may also be of use in the tightly coupled part of
the VPIM systern. e

Comments

I think the introduction of multi-PSI machine has encouraged more work on parallel applica-
ticns in ICOT than has been done before - it is always mice to mun programs on the real thing -
and this is good news. '

[have the impression, however, that it is not s0 easy to write programs that run well on
the multi-PSI as expected. 1 have seen clever tricks in programs such using extra arguments o
goals to produce extra copies of terms which in turn reduces the oumber of remole references
{and so improve speed) when such goals are moved to different processors. Io addition I pote
that the programmer hag 1o write the code to distribute the work load (either by static or dynamic
load halihchlg}.'Hupcﬁﬂly as the PIMOS eovironment improves, such things will become easier,

The multi-PSI1 system already has a nice graphical tool to show how much time each pro-
cessor is spending on executing a problem; but this gives no indication of whar goal are being
executed where. [believe it is imporiant to develop tools for aiding applicarions wrilers to
understand how their program is being executed oo a parallel machine, This is equally important
for the Parlog system and the tightly coupled part of the PIM machine.

What 1 have in mind is a tool equivalent o the WAM Trace facility [1] developed for the
Aurora system. This analyses a post-moriemn dump of a parallel execution run and animates how-
the search tree was explored by the processors. This can often help a programmer understand why
his program does not speed wp in the way he expecied, or how it can be improved. This paric-
ular facility is not direcdy applicable to committed-choice languages, so we need 1o comsider what
kind of information would help the application writer understand how his program is executing.
Also, we may prefer 10 attempl @ real time analysis of what i5 going on (like the existing multi-
PS5l wool) rather than a post-morem dump. OF course, any such tool should be praphical, so thal
we can use il in demonstrations!

| was surprised that (apan from Evan Tick who frequently visils ICOT) no one is writing
parallel -programs 10 run ou the KLI-ps system. Admitiedly it is a primitive system with no
debugging aids, but | think more complex applications are needed to test the tightly coupled com-
ponent of the PIM design and curmently VPIM s too slow to use for developing applications.
Perhaps a more performance oricnted version of VPIM should be produced for this purpose,

I suspect tha having 1o deal with five different Bavours of PIM machioe hes added some
miwehooiwe complesity o the VPIM design and implementaiion elfort being done w1 1COT -
VPIM Dhaving (o beospitably poratde for all five machines, T hope this does not hinder the pro-
press towards the completion of the final stage of 1COT's plan.

Acknowledgements

I found ICOT to bave a very friendly environment in which to conduct research and greatly
enjoyed my stay bere. I would firstly like to thank Iwata-san and Karakawa-san for mngi.ng my
accomodation here in Tokyo, which was excelient.

Iwmﬂ:!lihetﬂthankEvanTickrwhﬂngnuﬁmmu[mWﬁsmwurkl_hmﬁ
carried out at ICOT. I would like to thanks all those members of the 4th Laboratory with whom
1 bad many interesting discussions, lunches, dinners (Kawai-san in particular deserves mmch praise
for his efforts in translating many Japanese menus for me!). Thaoks also to the table tennis
players for inviting me to play!

Special thanks to Imai-san for showing me the sights of Kyoto and Nara last weekend and
arranging my stay in a Japanese Inn which was excellent. Finally I would like to thank Fachi-
san, Uchida-san and Chikayama-san for inviting me to ICOT.

References :

1. T. Disz and E. Lusk, A Graphical Tool For Observing The Behaviour of Parallel Logic
Programs,”” pp. 46-53 in 1987 Symposium on Logic Programming, Computer Society Press
0.

2. E. Tick, “Performance of Parallel Logic Programming Architectures,”” Technical Report TR-
421, ICOT (September 1988).

£ g James A. Crammond (ifi%F Jim Crammond)

B . BY FYRBEAvAITAD Ly VHEREE (v v Fv)
Dapt. of Computing
Imperial College of Science and Technology
University of London

: (DFIEBYF)
¥ M 180 Queen’s Gate, London SW7 2BZ
Telephone: 01-585-5111
Telex: 2681503

Edir: 1988 5 PhD. Hufd)
~VFy b7y FPRPHTERBTES (=¥ 3)
Department of Computer Science
Heriot-~Watt University '
o SCRH -
"Implementation of Committed Choice Logic Languages
on Shared Memory Multiprocessors"
A #:
Parlog, FCP, GHC % & @ liflMM % 2 2) A MDA F 7
e biclgEd b AT 5 V.

RAED T L UF:
FURGROTR (EARAMTBOKREFX) 2L TS,

thiToEhRER:

¥ J.A.Crammond and C.D.F.Miller,
"An Architecture for Parallel Logic Languages",
Proc. of 2nd Int. Conf. on Logic Programming, 18984.

¥ J.A.Crammond,
"A Comparative Study of Unification Algorithms for Or-Parallel
Execution of Logic Languages",
IEEE Trans. on Computers C-34(10), 1985.

¥ J.A.Crammond,
"An Execution Model for Committed-Choice Non-Deterministic
Languages",
Proc, of 1986 Symposium on Logic Programming, 1986,

