FGCS Assessment,

Gilles Kahn
INRIA Sophia Antipolis, FRANCE

Introduction

Assessing the FGCS project is a hard task, not only because there is little time and
space Lo do 50, but also because the scope of this project is very wide. I doubt if many
people can read equally competently the work that has been performed in so many

diverse areas: computer architecture, programuning language design, database de-
sign, natural language analyvsis and generation, genome research. I for one have
very little competence on natural language work, although I hear from a variety
of sources that this may indeed be one of the strongest points of your work in

the last phase of the project.

The FGCS project is very broad, but everyvone can sce 1ts uuity of purpose. When
listening to all the presentations and reading some papers, I wonder whether there
has been cnough time for true integration of the many components that have been
developed in the seven laboratories. | suggest the following problem, to see what I
have in mind. You have developed a theorem prover, MGTP. On the other hand, you
have sophisticated tools to generate sentences and paragraphs in Japanese. Assumc
that you would like to connect these two coruponents, so that the theorem prover
praoduces proofs in natural language, that a Japancse mathematician would like. Tn
particular, these proofs should not be too verbose, concentrate on the real difficulties
and be socially acceptable. Is this a problem that can be solved in a matter of weeks
or months with the software that you have developed, or do we need to start a new
project?

I have listened carefully to all the talks that reported the work of FGCS project,
and I must say that they werc all very high quality presentations. The laboratory
chiefs show considerable experience, maturity in their scientific fields. Answers to
questions are very direct and frank and do not try to cover up difficulties when there
are some. As well, the demonstrations have shown strengths and weaknesses of the
software. I appreciate the considerable amount of work needed in preparing such a
thorough presentation of the FGCS achievements. This has confirmed an attitude that
I have witnessed in the wonderful INRIA—ICOT meetings that 1 have attended: a
completely frank exchange of views with scientists of high caliber, who are concentrat-
ing on basic research, and building software prototypes to demanstrate the validity of
their fundamental ideas.

— 67 —

The Central Issue

As | see it now, the FGCS project has been attacking a fundamental problem in
Computing, namely concurrency; and it has chosen a line of attack, Logic Program-
ming. This is a priori how good projects get started: with a difficult and decp problem
on the one hand, with an original idea on how to solve it on the other hand. Indeed,
the problem of concurrency in computing, which has been with us practically since the
invention of computers, has become ever morc essential in the past 10 years. Lel us
review for a moment the positive and negative aspects of your approach.

On the plus side, we can see many advantages: first the attack is extremely original,
almost far fetched for some. The Japanese effort appears immediately as a leader,
because noone else is betting on this direction of work on the same scale, even though
a number of very bright individual researchers around the world have had successes.
Second, your approach is a software approach, i.e. you are concerned a priori with the
intellectual control of parallel hardware, with putting into hardware mechanisms that

will make it easier to program. Let us go more quickly through the other

advantages: the problem seems tractable, opens many questions, leads to basic re-
search; it focusses on fine grain parallelism, which is a priori harder, on irregular
problems that occur in symbolic computing —of course—, but even in numerical
computing (finite elements), in geometry or in discrete events simulation.

On the negative side, the major problem is that the approach is
very difficult:

how can one have an efficient computing system that combines parallelism with
non-determinism, which is implied by a declarative approach? Parallelism means that
you parcel out work to remote computing units, non-determinisin means that you may
discover at any time that this work is useless and should be canceled immediately. In
fact, the problem is so difficult that one of these two aspects runs the risk of being
short-changed. Clearly, GHC and KL1 have shown their bias in favor of parallelism.
The second problem with your approach is that people have misunderstood it: they
considered that you worked on Logic Programming, using parallelism to compensate
for its intrinsic inefficiencies. Another difficulty, linked to the originality of your ap-
proach, is that when you started, there were very few applications based on the logic
programming paradigms, so that you ended up having to mount your own effort to
build applications.

Let me add two remarks regarding the difliculty of your project. First I have
stated in my talk that the Logic Programming community, as a scientific group, was
“weird”. As there were many proeminent members of that community in the audience,
I received a large number of inquiries about what that statement really meant. First,
Logic Programming, in 1981, was virtually unknown in the United States. The group
of scientists who had been fighting for it was necessarily a bit paranocid about that
fact. Second, there was, and unfortunately there still is, in this community —usually

— 68 —

not among the top
leaders— a slightly sectarian attitude: they have seen the Truth revealed, nothing

else deserves paying attention to.

The next remark has to do with something that has unfolded during

the project in the commercial world: artificial intelligence, as a business, has not
exploded as expected. Progressively — to the dismay of the many gold seekers in
Silicon Valley, but not to the surprise of true scientists — it has turned out that
the limiting factor in the development of Al is not hardware, not even software,
it is the capacity of human beings to modcl satisfactorily a larger and larger
number of problems that were not previously solved on the computer. So Al and
experl systems have developed and matured, but not at the rythm of electronic
circuit technology. As a result, many companies have dropped out of the field
entirely and a company like Thinking Machines Corporation has [undamentally
redirected its marketing cfforts away from AL So it is certainly the case that
some Al applications are compute bound —and you have worked on them—, but
the pressure to solve these problems is not drastically different of that of solving

a number of other scientific problems.

In view of the remarks above, my assessment is as follows. The FGCS project has
accurmulated considerable experience on MIMD computing, in terms of programming
and architecture as well. This experience is prohably unique. All methods that would
be applicable only for a small number of processors have been rejected off hand. This
Is & very sound approach for basic research. In terms of software, you have designed
and implemented bold and elegant ideas. | believe that many of these ideas will be
useful, and used, ontside the ideological context of FGCS. The basic research that you
have performed has been published in the epen literature, il is decp and durable, it
has earned you the esteem of many scientists around the world. Globally, my opi.nion

is very positive.

New, I will turn to the aspect of your work that is closest to my personal area of
rescarch.

Language Issues

A priori, all of the work of FGCS revolves around one language, KL1. KL1 is an
original construction. Aspects of KL1 are described in many papers. The implemen-
tation of KL1 must be fairly similar on all of your hardware platforms, otherwise you
would have a difficulty porting PIMOS, and applications. It would alse be difficult
to train new users. Yet, I see no single report which is “the definition of KL1”, that
I could read at leisure to form a precise opinion of the language. I think one of you
wrote that KI.1 = FGIIC + meta - control + convenient-things. That leaves a bit too
much rovm for my imagination. In fact, I am not totally certain, given my previous

understanding of ESP, that the logic programming aspect of KL1 is so important in
comparison with the Object-Oriented Mecthodology of using KL1, that Chikayama-san
alluded to in his presentation.

In any case, even if KL1 is very well designed, it is not the only language that
you have designed. 1 have heard of A'UM, AYA, MENDELS ZONE, GDCC, cu-
Prolog. The dream of having one single language to implement everything, no matter
whether your are a systems or an application programmer is long gone. In fact, facing a
multiplicity of languages is unavoidable. But luckily, we know now that this diversity is
tractable, thanks to the advent of distributed computing. So KT, like all prografuning
languages, needs
a detailed evaluation of its features: what is used by systems programmers; what,

1s tmportant for programs that generate KL1 code; what should be in libraries
rather than as a primitive of the language; what are the protocols that should
be used to interface to other languages, because in the past ten years, we Lave
all learnt that there are very few “purely AT applications. In the process of this
analysis, you may also reexarnine where hardware language support was essential.
This was impossible te assune in 1981, but now we know that IMICrOProcessors

supporting 64 bits of address space are here.

Basic rescarch must elucidate, by analysis and experimentation, what the basic
mechanisms and the basic protocols are. 1 feel that part of this remains to be done for
KL1, although the really costly part, building an implementation and accunulating
experience in building operational software with it, has been done thoroughly in the
project.

Technical questions

I would like to list here a number of technical questions that have come to my
mind during your presentations. The fact that I ask such questions show that ! take
extremely scriously the work of the project, and that 1 feel that it is necessary to
understand your design decisions, to appreciate them fully. First, I would like to
understand with greater precision the innovations of PIMOS, in comparison to other
distributed operating systems such as AMOEBA, GUIDE or CHORUS. I am convinced
that PIMOS’s ideas are very general and quite unconnected to Logic Programming,
frankly. My second question concerns memory management. As a Prolog user, I rarely
have problems with speed, but 1 keep fighting with the memory ranagement schernes
of the various Prolog systems. 1 wonder whether you have laoked at the remarkable
work of Bekkers and his colleagues at TRISA, in Itance. On a similar line, I understand
that you were focussed primarily on parallelism, but some schemes for extending the
applicability of logic programming have appeared in the last ten years. In particular,
given your interest in Theorem Proving, I would have thought that Lambda-Prolog,
an extension of Prolog thal includes terms with binders, should be of interest for you.

— 70—

F 1

Several groups have designed languages at ICO7T. Were certain principles of lan-
guage design systematically used, did you design or use general tools for this task?
Certainly the technology that you have developed can be useful there.

To conclude this paragraph, I believe that having unity of purpose is extremely
useful; it gives everyone a sense of a global objective, a way of measuring progress.
But basic research has its own logic as well. If you pass near an important scientific
problem and do not treat it because it is not squarely in the direction of your project,
this will be unfortunate. Because we are in 1992, I cannot avoid the banale remark

that Columbus did not look for America.

Conclusions

In basic research, ten years is NOI' a very long time. As T mentioned earlier,
research on parallel processing has been with us at least since the mid-fifties. Many
many subjects of Computer Science have taken longer than that to mature. In the case
of an extremely original project like FGCS, everyone could —and did— predict that if
you were serious about basic research, then it would take morc than ten vears to reach
vour objectives. Il may be necessary to arrange the pursuit of your goals differently,
but it is in the nature of goad basic research to create constantly new and unloreseen

problems.

Tn terms of technical achievements, the FGCS has produced many technical papers,
1t has accumulated considerable competence on software for MIMD machincs, on how
to hamess the power of a large number of processors. It has defined and followed what
I believe are fundamentally good strategic
directions of research: software for parallel processing, theorem proving, Object-

oriented Operaling systems, computing problems connected with the law or the

understanding of the human genome.

In terms of social achicvements, the suceess is truely remarkable. The project has
developed basic research in computing on an unprecedented scale in Japan, supporting
a number of activities outside ICOT as well. The Journal that it has fostered, New
Generation Computing is a good scientific journal. ICOT has developed friendly and
fruitful international contacts with many countries and scientific institutions. This
cannot be overemphasized. For many of us, the project was absolutely crucial in
opening and maintaining contact with Japan. Finally, the project has maintained
faith in Artificial Intelligence as a fundamental research topic with a scientific basis.

I cannot imagine, at this stage, that ICOT will stop brutally. I have understood
that you plan to release software to the world, in a novel policy of your government.
On the basis of the little experience I have in this arca, I would say that few researchers
in the world will want to use software if they know that no one is there to maintain,
develop and improve it, as well as basing its own research on it. Software that has not

-1 -

changed for 18 months is considered dead. Of course, free software is not maintained
like commercial software, but researchers must have the feeling that the authors of the
software still care for it before they use it.

Tokyo, June 4 1992

P

2nipsed WELPE; L aU S53SE\

. +u.>.:.3 h:ﬁQ.JJom.. o9 nso_..ﬂo*:vmuL H :a.rfuuﬂo (el

aHWIN WL _4*5157 b SrTuTMDG |{ousipMa3juT

ASWU.C. H.—.s._an» Mo + n.ﬂqa.*\ﬂ toup uofnva

_. 53\\ -+ D ' 2 ﬂ)o i&* \\ ,S\ﬁ%u uc nmc::ugn\mcuﬁoi(I Ssv.r.onﬂ*w 30JQ Jvuwc_u ﬂo.’.n.»o}dlf
\VGC\dL ﬂ;o_

WJ _d.* hﬂ_,o..ef Jmﬂi rl.»0> u.ﬂr...m.\.o&\vm

oﬂ@!&id prem YTR824 2150]
WL
ﬁ WIMRUAGD PN uado snesd wasoryy wof rdgve Iy PR G ey
suauymy e ATV tgraaan b vaplepe s uoniny
rra 3oy
mc.ido;m.«g 2 2&3\#%0 (AT Poag
bg.urm.m jouro Ay
J\rdfwj

- Tionaf
S\UA U.—mog

ey e
3§ . H
Spoage fo suy y e S
[=mpep
ﬂ:u(_.s\OSOU -
e
R csv_Ao»L\ < WU_UM_

— 73—

ﬁeﬁo,b_ PUIWOUTIW 2Tq T AP e aroasay
Crovraray ﬁ_wse._\ 5T

PJS M Dty Ao}
»}W_ou_\foz $om Srquiojory < v
‘o M.ta+ ﬂs,;.Cm ="
% Yol
.u,&of VMo Mt m«; 4mq _sTns ﬂwo> S| ds ! lfq.inv
Ju;donum U._mdm quLLﬁn’ wfﬂc._m N 4 ;8— gsﬁl_dI
. s|oqy, vewao ! mul.d:.f@ oy pwo
szﬂ 4.@.32@5@4 m.wﬁum.eodg q..‘i\a\:mse_ %o ﬁﬁi.ﬁ\g ncnasu*
! \@:_ZS S\CSJ:_L ue y p
e Foag-m * 9205 ' IN02 S3NIW T VAY 1 WOV
: g ‘ d@dﬁm.gw INQ .
1

ﬁwlﬂa__nﬁ :J,..w_\ q vy

.L‘.SNUUG U m, qn.v_o.M»l/\ oo oYM
w:So‘GSdl.*.XW m . J

PA2pisuc)y Chpmrasand 00 fo Qo_owafus N

: ﬂ:dﬁ {2 S35

.?;1 MMW\.ma udvﬂo.\: mj/u.v,‘,dfu} uf\ SoM
..«Scsaﬂciuf ﬂwoccuI
T7M
: u_n_.d:._.;_ uT

“a3e ! 3a1n5 ' Yg30ny s

.WOTNﬁ:nAfS‘W MO Msian SOWIg¢
: mso_FQ,Lu MS_.:&JQU;_! rmevy 2 :\Uq\

Conc\usfo ns

IR

I«d«‘m%/rea win Fuvw((awo\-sam :
| O \1€a,rs AB NOT a very (ons’h'me_

. Ac\f)fevwonfs o«!— ¥FGCS (“c.c\nm'ca‘)

- man

- COYnYch’.hcz N so‘)(‘huwfe_ s—or‘ MIMD
\avge # o{, rocekovs

- 3003. s'\’wj'ea&c devedhions
So-H‘anfe "H'\eorem tvrov('y\é, oocos | gtnome

Ach levements o:f FGCs (Soaa‘)
_ Raste Research Touwrnal

- 'Ih“'erv\a*(omﬂ Coni&&tg 3 Fn'eua\s
- Fadf s AT

CANNoT STeoP BRUTALLY

Bu-t be ware ICOT (F"-c SOrH'\We)
not (TcoT Fru_) SQPWL

- 75—

