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ABSTRACT

This paper describes the research activities of the
fifth resparch laboratory at ICOT, In order to verify
1ICOT developments such as the Pl and PIM, we are
devel-n]iing next generation expert tool technologies
for resl application systems on them. We selected
the following technologies as basic elements of the
naw ration expert tools: thetical reasoning,
knowledge acquisition, constraint problem solving,
object modeling, gualitative reasoning, and
distributed cooperative problem solving. This paper
discusees these technologies and some experimental
expert gystems.

1 INTRODUCTION

Experimental knowledge processing systems are
an objective of research and development started in
the first year of the intermediate stage of the FGOS

ject. The primary motives are to probe and verify

ierarchical interfaces bebween application systems
and ICOT development such as the PIM and PIMOS,
To develop knowledge system building technologies,
we have been researching expert systems as
application systems. During the first half of the
intermediate stage, we studied and surveyed next
generation tools and knowledge acquisition support
and developed a. irutu e tool, called N.
During the second half e intermediate stage, we
are striving to develop element technologies based on
the surveys. We also organized academic and
indusirial experts into working group and subgroups
to join our surveye and discussions. To verify
element technologies, we developed experimental
expert systems for a number of applications, for
example, VLS logic design and machinery design.

2 NEXT-GENERATION TOOLS

Conventional tools for building an expert system
have a prominent feature: rapid prototyping.
Althouph such tools are effective for some
applications, they are not suitable for building large-
scale aﬁ.pliuatiuu systems because a buildin
methodology has not been established. An idea
expert system ought to provide & vocabulary
matching the scope of its tasks. Conventional losls,

based mainly on rule of thumb, provide only an
inference engine common te knowledge
representations such as rules and frames, and thuas
require uniformity of fasks. Under this constraint of
the tools, users must stabe their problems, This may
make the building of complicated large-secale
application systems diffienlt, To help build
knowledge systems, next-generation tools ought to be
organized into problem solving frameworks
meatching an application domedn, In other words, we
think that & next-generation expert system will be
realized by a sat of generic tssks [Chandrasekaran
#4] or & set of building blocks, From the perspective
of problem =olving frameworks, the rese and
development trend of t aystems is shifting from
analytical to synthetic problems. Analyiical

oblems infer the characteristics of a whole system
vom & given system structure and subsystem
characteristics. Diagnostic and control problems are
typieal examples of this type of problem. Synthetic
problems showever involve the determination of
the system structure and subsystem features
which would result in 2 set of system
characteristics, Examples of synthetic problems are
design and planning problems [Eobayashi 88],
Synthetic problems are basicelly combinatorial
problers. & number of solutions in a synthetic
problem may be infinite. That iz, the problem may
result in combinatorial explosion, In order to aveid
combinational explosion, naxt-generation tools are
ngected to incorporate technologies for inteiligent
inference control. i
Taking these frends into aceount, we are now
researching the following five technological
elements,
(1) Tool architecture for design tasks

(Constraint- based problem solving and
object medeling)

(2) Hypothetical reasoning )
(3) Distributed cooperative problem solving
(4) Utilization of deep knowledge and qualitative
reaﬂnmn%' .
(5) Enowledge acquisition support systom

3 TOOL ARCHITECTURE FOR
DESIGN TABHKS
As slrea

dy explained, existing expert systems are
breadly classified into systems for analytical



roblems and systems for synthetic probiems.
alytical problems arve, like diagnosiie problems,
regarded as problems of selecting hypotheses in 2
limited solution space, because a set of hypothetical
solutions and a set of roles for selecting hypotheses
can be predetermined. Synthetic problems, however,
need efficient problem solving, sines solution s
are so large that fabricating candidate solutions as
hypotheses beforehand is cule, Dem%'r- problems
are ical examples of gynthetic problems. The
development of 2 design expert system reguires a
large amount of knowledge that depends on & design
object, Representation of the design knowladge and
& problem solving mechanism are important for
research on a design expert system. Our chiectives
are to clarify the architecture of design expert
systems and to develop tools for building them,

3.1 Required Functions

Different groups of designers vse different kinds
of standard such as design metheds, parts, and
compensnt umits, Thus, building toels, enabling
designers to boild and maintain expert systems by
themselves, are required. This section overviews the
design knowledge representation and the problem
solving mechanism in the tools needed to satisfy this
requirment,

3411 Enowledpe Hepresentation

Tyg realize & design experi system building tool,
knowledge representation reguires two facilities: one
iz that knowledge must be represented suitably for
the tool, and the other is that designers must be able
i mdﬂrwent them easﬂ{. Design knowledge iz
broadly classified into knowledge about design
obf'ecta themsgelves and knowledge about problem
solving, Enowladge about design objects consists of
the structures, shapes, and atfributes of the desipn
chjects. A set of iteme of knowle about a design
object is called an object model. Enowledge about
problem zolving, however, is composzed of methods to
anelyze object models, to evaluate and modify
solutions, and plans to design the ohject and search
from candidate solutions, According to the above
classification, a design process can be regarded as a
desipn requirement satisfaction process [Tomiyama
88, Uhsuga B5); operations such as selection,
modification and refinement with knowledge about
problem solving are repeatedly applied to an n?ect
model, Furthermers, to enable designers to build an
expert &f‘)wbam by themselves, an environment is
re where ¢ design expert system can be built
on% by declaratively re%resenﬁng an object modeal
and knowledge about problem solving, To realize the
enviranment, we propose & building tool that
generates a design plan from separate inpuls of an
object model and knowledge about problem solving,
end that provides an interface between design
knowledge and the problem golver. We used a
congtraint analyzer, similer to knowledge compiler
[Araya 87] and constraint compiler [Feldmean 38], to
obtain these tool facilities.

A4.1.2 Problem Salver

If & design plan s given explicitly, a design
prablem can be salved aceording to it There are often
cases where a design plan cannot given explicitly
but omly constraints can be given. An effective wafv o
solving these cases is to employ constraint problem
solving, regarding a deai]t%? process a5 A constraint
satisfaction process. In addition to this, the whale of
& design process ean be captured from the single
:nnm}:t. a constraint satisfaction proeess; an cbject
model represents constraints on the struetures of the
design objects, and design requirements and
knowledge about problem solving also represent
constraints, These constraints are given priorities
and changed dynamically according to the designer's
intention and preference, and fo frade off between
performance, due dates and cost, Therefore, o
constraint solver suitable for a design problem iz

required,
3.2 Object Model
3.2.1 Object Modelin Design Problems

Diesign objects in design systems are represented
i the form of model deseriptions, & design object
model represents information and knowledge about
design objects, such as their ativibuies, shapes, and
structures. During a design process, a model that
satisfies requirements Is constructad; it represents a
zolution.

Modals used in conventional design systems

consist of dats structures that are merely static. They
necd to be interpreted and manipulated in terms of
deslgn tasis or procedures. Only koewledge about
design methods is important. Knowledge about
design objects is embedded in model manipulation
procedures or daai;gn methods, In conventional design
systems, it is difficult to make effective vse of the
knowledpge about design objeets. Also, hiigh
performance desipn and the cstablishment of a
general methodology by which to build design expert
systems will be hindered because knowledge about
design object and knowledge about problem selving
are not disti ished betweasn.
. Thus, to solve design problems effectively, it is
important to represent the knowledge about design
ohjects as object models and to put those models to
practical use in the design process,

3.2.2 Use of the Object Model

A frame system has been used to represent
structures and atiributes of objects in knowledge
systems. Hecently, an object oriented paradigm
whose concept iz similar to the frame system has
been generally used and also applied to design

roblems, Although conventional ohject oriented
ATIEUA are suitable for representing structures,
attributes and behavior, they do not provide facilities
for representing or using consiraints on design
objects, Therefore, introducing constraints to an
object oriented paradigm provides efficient
formalism for knowledge representation in terms of
declarative description, }_?[n representation of a
design object, however, functions are required that
can describe and vse not only constraints on
numerical attributes (Instance variables), but alse



constraints on the stroctores. We are examining
two ways of using design object models, One is to
ﬁauerat.a a design plan by analyzing and eompiling

nowledge about the design object and about
problem solving [(MNagai 88al. It is suitable for
parametric degign, The geeond way is o provide a
systam for supporting the design process interpreting
knowledge deseribed on ohject models. This system
makes it possible to construct not only models that
satisfy the constraints, but also suppart their
effective construetion. This second way is suitable for
a problem in which the structure of the design object
is not given or is not fixed. In such a case, the

roblemn must be solved by trial and error or by
interaction with users, This system is briefly
explained in the next ssction.

825 Design Ohject Representation System

Currently, a knowledge representation system
for deaiE:i object modeling, FREEDOM [Yokoyama
88), iz being developad. To support dasiﬁn tasks,
FREEDOM provides the facilities that keep the
status of the model for constraint satisfaction by
interpreting constraints that are degeribed in the
ohject model and are dynamically added during the
design process.  Knowledge representation provided
in the FREEDOM system, based on the ohject
oriented paradigm, makes it possible to deseribe
eongtraints about attribute values and structures.
The attributes of the design obhject mods]l are
represented numerically or symbolically, and their
values can be obtained by solving constraints derived
from them, In conventional ohject eriented systems,
the relation between a class and an ingtance is a
statie one, whereas in FREEDOM, the search for a

clasz that satisfies design requirements is realized
using & congtraint satisfaction mechanism. Thus,
when a strueture or an atiribute of an instance is
modified, if constraint satisfaction cannot be
execoted in the elass to which it belongs, the class
may be changed automatically to another class o
gatisfy the eonstraints. In this way, it is possible to
for a class that satisfies design requirements
not by describing the Lﬁrueedum explicitly,
but by using constraints about the design object. As
deseribed above, FREEDOM provides facilities for
supporting design processes by using constrainis
ibed in the object model, and haelps to build
advanced design expert systems,

5.3 Design Plan Generation Using a Constraint
Analyzer

This section first describes representation of
design knowledge about problem solving, Second,
design plan generation using a constraint anslyzer
that enables desiners themselves to build design
expert gystems is degeribed.

3.3.1 Enowlede about Problem Solving
Knowledge about problem solving consists of

‘methods te analyre obiget models, to evalnate and

modify solutions, and plans to design the object and
gearch from candidate solutions. The characteristies
of design knowledge about problem solving are
varions representation types: there is knowledge,
such as desipn formulas, where solving procedures
are represented explicitly, and knowladge, such as
that expressed by inequalities, where solving
procedures are not represented explicitly. In
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addition, knowledge that is independent of a design
object and heuristics that is closely dependent on a
certain design object are mixed, For example, design
formulas and searching from catalogues in design
knowledge about problem selving, and basic parts
and funetion units in objeet models are independent
of & design object. erefore, with the aim of
enabling designers to represent this knowledge
eagily, we employed an approach where those
independent kinds of knowledge are prepared as
syatem libraries; we pre{:ared sets of desilgn ormulas
and catalggues in know about problem solving,
and sets of basic parts and function units in object
models, These WEES of knowledge must be expressed
in & form that designers can easily refer to and
modify. Consequently, dezsigners’ heuristics can be
e ed explicitly, by referring to or by inheriting
and modifying libraries,

3.3.2 Design Plan Generation Using a
Constraint Analyzer

A constraint analyzer can handle various types
of knowledge and can speeialize knowledge by
combining knowledge independent of a certain
design object and designers’ heuristics which depend
on & certain design object. Since the constraint
analyzer can generate a design plan by analyzing
dependencies among constraints, design knowladgs
can be also represent declaratively. Eflnputa to the
tool are dasign requirements, object models, and
knowledge about problem solving. They are given by
specifying system libraries, or by modifying libraries
with referring or inheriting libraries. Eeference to
results of previous design and designers' heuristics
about searching from alternatives are also
represented as knowledge about problem solving.
From these inputs, the tool analyzes dependencies
among constraints and parameters, generates a
design plan, and provides an interface betwesn the
design knowledge and the constraint solver, The
output from the tool is a specialized expert system
including designers’ heuristics. Therefore, s flexible
environment in which build an expert system can be
bailt by dzsi%ners themselves is obtained by dividing
desipgn knowledge into object models and knowledgs
about problem solving, and by employing design plan
generation uzing a constraint analyzer,

3.4 Constraints in Design Problems

The structural information derived from the
ohject model is constraints expressed explicitly. In
addition, design knowledge such as mel;hoé{s to
analyze ochject models and design requirements such
ag cost performance are also reparded az constraints,
from the single view of the constraint concept.
However, not many of the existing tools that support
the construction of expert systems provide an
environment that makes it easy to express the
eonstraint concept explicitly; the person constructing
the system must use the language depending on the
tool to realize mechanisms for applying constraint
representations which depend on the desipn ohbjeet,
This section diseusses the characteristics of
constraints in design problems [Nagai 88h),

(1) Staticand dyasmic constraints

y existing constraint solvers considsr
congtraints as static entities. In design problems,
however, not all constraints are given in the
initial stages of a design process; many are added
or deleted during the design process,
Furthermore, there are suggestive constreints as
described be’luw; eomgtraints are dynamiecally
changed in design problems.

(2] Oblipatory and suggestive constraints

Mot all the constraints are selected and executed
on an egual basis in design problems, In other
words, priorities are assigned to constraints, and
the priorities are besed on design regunirsments
and designers' intentions., All obligatory
constraints must be satisfied, and these are
generally given explicitly. Suggestive
congtraints, however, are used as guldes in
choosing the optimum branch af a node in the
search tree, and they arve given lower priorities
than chligatory constraints, Thus, if an ::E]igat.c-ry
constraint cannot be satiefied, suggestive
constraints may be changed so that the obligatory
constrainis are satisfied. .

{3) Local and global constraints

Manz design problems are divided into
subproblems when an attempt is made to solve
the problems, Thus, it ig necessary to distinguizh
whether the applicable scope of a conatraint EEISES
Iocally within a subproblem or is globally related
to other subproblems. In addition, interactions
among loeal consiraints within a subproblem and
interactions betwesn local and global constraints
minst be considered.

(4} Propagation of values and interval bounds
ome constraints in design problems are
represented by inequalities. Therefore, not only
do constraints propagate values, they also
propagate over interval bounds in which
vartables that can take eertain values must be
considersd.

When considering practical design problems, one
eonstraint may beleng to multiple types of these
characteristics,

3.3 Architecture of the Building Tool

_As stated above, we divide design knowledge into
object models and knowledge about problem solving,
This enables us to maintain knowledge and to modify
knowledge flexibly. Viewing knowledge and
requirements as constraints, constraint based
problem solving is employed. To help designers to
build an expert system suitable for a design problem,
we propos: & bulo.ng tool that regards inputs of
design knowledge as constraints, generates desi
plans by analyzing thefr dependencies, aad provides
an indterface between design :nowledge and a
constraint solver. We used a constraint analyzer to
obtain facilities for this building tool. The expert

tem which iz the outpus of the tool can efficiently
obtain scluticns that satisfy the design



requirements, according to the design plan generated
by the tool, Fig. 3.1 shows the architecture of the
huilding tool. An expert system building tool
MECHANICOT [Terasaki 88}, is being developed
now. MECHANICOT is a tocl for & mechanical

arametric design. It analyzes dependencies

etween structures of a design object and
parameters, produces a design plan, and builds a
gpecialized design expert system,

4 HYPOTHETICAL REASONING

4.1 Problem Solving with Hypothetical
Reasoning [Inoue 88¢]

Hypothetical rensoning [Inoue, ed. 88] is 2 type of
inference which is desirable to have when dealing
with alternatives amnntiaknﬂwladge, or incomplete
knowledge (knowledgs that may not always be true)
in problem solving. Ii assumes that unelear or
insufficient knowledge is true (establishes
hypotheses), and attempts to have the inference

oeeed based on the hypotheses, Because the
E;'ﬁoﬂmses and formulss derived from the knowl
and hypotheses are not guaranteed to be true, it is
necessary to check consistency through constraints
or other means, If a contradiction ocenrs in the
reasoning process, we must remove the original
hypotheses and select other ones instead. For this
TEAROT thetical rensoning can be interpreted as
a kind of non-monofonic recsoning, and belief
revision technology is reguired. ypothetical
ressoning 1s in fact inference as practiced by
humansg, and is one key to implementing advanced
inference mechanisms such as commonsense
reasoning and learning. Comventional research into

etical reasoning, however, has concentrated
on establishing the basic inferential mechanisms,
and there has been little work done from the
viewpoint of epplication in problem solving, This
gection discusses a 1:?ru::d:uf.;.lrpus-. system called
APRICOT/0 of the APRICOT project [Inoue 88¢c] as
& basic software tool for next-generation knowledge-
based systems,

A& variety of frameworks for handling bypotheses
and ineomplete knowledge has been Eo:se.d [Doyle
79, de Eleer 86a, Poole 88, Reiter ﬂgf.u ut from the
viewpoint of appfi:raﬁun, they have been faced with
major problems in that (1) there has been no
integmt?d handling of the generation, selection, and
verifieation of hypotheses, and (2} architecture has
not taken problem solving into aceount, As the basic
stemdpoint for the construction of APRICOT, we
stressed the following two points

(1)By using domain-dependent knowledge,
azpevinlly deep knowledge (such as structure and
function knowledge), commonsense knowledga
{knuwlag%e of physical laws, ete.) and constraints,
APRIC will automatically generate and
enumerate hypotheses. It will be mors
intelligent than the conventional approach
stressing heuristic rules,

(2) Positioning the inferential eontrol mechanism
between the hypothetical reasoning mechanism

and a domain-dependent problem solwer will

enhance efficiency [Tnoue B8a).

There are two points to be considered in the use of
hypotheses. The first is & dependency of what
knowledge is established on the basis of what
hypotheses. Truth maintenance systems (TMSs)
manage dysamically contradiction-free
characteristics in a database (working memnrgr}
ineluding the hypotheses, and have besn proposed
[Deyle T9] and in the assumption-based TM
{ATMS) [de Kleer 88a]. The second is called
ahductive reasoning, where hypotheses that do not
contradiet the database explaining the cbserved
events are seiected. A hypothetical reasoning system
of this type has been proposed in [Peole 88). Both
have in common management of cuns:‘stenc])n
however, and can be unified model-thoretically
{Inone #8b). In other words, the former maintains
the contradiction-free style of the database from the
input h}rpﬁtheﬁe& and the latter determines goal
hypotheses from the input observations,

APRICOT provides a basic framework for using

thetical reasoning in problem sohrin]g, but as the
problem solver is dependent on the problem domain,
only one of the ahove approaches may be stressed,
d:lpendin&glnn the problem domain, For example, the
inferential strategies for diagnosis and constraing
satisfaction would be as outlined below,
4.1.1 Problem Solver for IMiagnosis

If components are sgzumed to be working
eorrectly, and predictions from those assumptions are
inconsistent with behavioral ohservations, the
conflict set (the set of disfunctions of negated literals
of assumptions) are determined, and possible
combinations of faulty components can be calculated
theoretically by converting the conjunective normal
form (conflict get) into the disjunctive normal form,
This means that it is sufficient to find a consistent set
of assumptions that explain the observations and
goals through backward reasoning.

4.1.2 Problem Solver for Constraint Satisfaction

Assumptions are regarded as assignments of
values to some variables, and so when results derived
from them through forward reasoning are
inconsistent with the specifications, the
combinations of assumptions that support the
ohservations or their negations are determined. In
planning, a set of parameter values satisfying
various kinds of constraints is collectad as a context,
In design, multiple design models are maintained,
structured with hierarchical contexts so that the
upper layers are the design model assumptions and
the lower layers the parameter assumptions.

4.2 Hypothetical Reasoning System APRICOTHO

The APRICOT/O sish:m for hypothetical
reasoning consists of the ATMS [de Kleer 86a], which
maintains consistency based on combinations of
assuraptions (called environments), and a rule-based
%)ljgblem solver, APRICOT/) is implemented in ESP
Hjima & Inoue 58, Fujiwara & Inoue 581

APRICOT/O treats the ATMS and a rule-based
problem seolver ealled the assumption-based
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infarence engine (AIE) as independent modules. As
shown in Fig. 4.1, ATE provides the ATMS with dafa
(facts and assumptions) and their justificntions, and
the ATMS efficlently determines 211 contexts (sets of
all data which hold in each consistent environment).
AIE procesds with inferential processing while
cheﬂtigg whether the ATMS data holds in some
COnNGEELS,

In multiple worlds of the ATMS, each time a new
fact is inserted it causes other eveniz such as the
addition of a justification and the vecurrence of a
contradiction. To express theze astivities accarately,
APRICOT/0 sxpresses components such as
aﬁsumgtinns, justifications and contradictions as
ESP objects. Attribute information for each is
containgd in the object slot, and the truth
maintenance algorithm is implemented through
inter-object message usﬁinlg.

AlE is the aectual problem selving mechanizm,
operating within the hypothetical reasoning system
to link the user-input premise faets and rules from
the knowledge base with the belief siates from the
ATMS, To avoid firing unnecess rules and
generate only the minimum essentinl number of
Justifications, an inference contral mechanism

similar to the Rete algorithm is used, The EET
unification function is used in matching assumptions
and facts to rule conditions, A rule consists of the
condition part, which is matched with obtained facts
and assumptions taking all eontexts into account,
and the aetion part, which provides additional facts
and assumptions, and their justifications to the
ATMSE, Fach condition of the condition pari is an
EEP predicate, variable or atom, whose valuation is
true if the ATMS node corresponding o the ohject
fact or assumption is believed {(called IN), that is, the
ATMS node holds in some environments, or, a
method call or ESP buili-in, whosa valuation is true
if its BESP execution, such as & numerical calealation,
succeeds. If all conditions of the condition part ars
true, a justification of the form ; =<condition
art> = <aetion part> is passed to the ATMS,
ules without an action part indicate that the
generate contradietions if they are exeonted, an
they will be executed with maximum priority within
the same enviromment in petion part gueue
ﬁlﬁ&rﬂjng, Several AIR rule examples are given

Example 4.1

1} rule9i:: temperaturce (XY}, {Y¥=25} ->
cooler ON (X},
Flf the temperature Y of room X is 26° ar
higher, turn on cooler X,

&) birdfly:: bird(A) => assume{Tiy(A)).
eIf Ais & bird, assome it can flv.

3) contradiction:: not{X). X -» [].
g6l both affirmative and negative of X exist
at the same time, it is contradictory.

43 Knowlsdge Compiling on APRICOT

As diseussed in £.1, the basic concept of APRICOT
iz to utilize variouns kinds of knowledge, including
ineompleta knowledge, linked together functionally,
to solve problems eff?e-:ti‘l.reiy. Model knowledge
expressing prineiples (called deep knowledge) s
combined with constraints and heuristies to generate
gnwnrful knowledge that iz directly helpful in the

omain task; this is called hnowledge compiling.
While the problem solver of APRICOT/, namely,
AlE, is a role engine and handles ATE rules only,
APRICOT/O ean simulate the fonction
implementation of knowledge mmpi]ing, u-nlly if all
knowledge such as default knowledge, logical
inference rules and constrainty are converted into
AIE rules, and are passed through a sophisticated
scheduler,

4.3.1 Dynamie Hypothesis Generation and
ofault Reasoning

. When humans solve problems, they perform
infarence as establishing a succession of assumptions
depending on theiy cireumstances. In this process, all
go-mbla hypotheses are not listed beforehand; rather,
Ty;mtheses can be generated or deleted as reguired.
To implement this process, in APRICOT/0, a function
is provided that dynamically introduces hypotheses,
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Use of this function allows defanlt rules to be
represented that produce results as long as no
evidence contradicts them. For example, & normal
default “afx) : Mbi{x)/b(x)” [Reiter 80] can be
expressed as an ATE rule “allx} ~» assume(h{x) )™
Internally, an assumption Tppy (A is 2 ground term)
ig introdeeed, and b{k) is expressed as an assumed
node supported I:éy Ppiay.  The justification
"a(AATpoeb(A)" [de Kleer 86h)] is passed to the
ATMS. This allows inference to proceed using Iy
28 a4 default assumption.

Example 4.2

When Tom Sawyer met Huckleberry Finn, whe
watched movies on a weekday, he wondered if Huek
was a delinguent. He then remembered that Huck's

friend (himself) was not that type of person, and

thought that therefore Huek eould not be, and denied

thza}beli-el' that “that day was & schoal day”. (S2e Fig,

4,

rulel:: not({X), X ->[]. ®logical contradietion.

rule?:: day{weekday) ->
assume(not({closelschool)) {j .
S Typically, go to sehool, school not elosed
on weekdays,

ruled:: not{close(school)), see(X . movie)}
-» go_stow|X,school),
%School not closed, so pen]ille watching
movies are skipping schoal,

Oy
Node 4 (premise)
not{wicked(tom)) il
" Nuode 10
not(wicked(fin))
i
Mods 9 (premise)
[.'familia.r tom,find
in
{inzerted after node 8
generated)
Agsumption 1 o
Dnotlelose(zchool)) Node 1
conlradiction
L—_l oat
(node 1 alwavs
eontradietion)

Q

Node &
temporary(not{close{scheol)))
ot
O * S
Wode 2 (promise)] MNode 8
day(weekday) no{close(school))
i in—roug
e
MNeode T Node &
go-slow(fin, school) wicked(fin)
5 = Gut in—rout
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§ae{.ﬁ.njmnvia:l
in

Fig. 4.2 Hueckleberry Finn justification network



ruled:: go slow({X,school) -2 wicked{i}.
eople skipping school are juvenile
delinguents,

ruleb:: familiar{Manl, Man2), not(
wicked( Hani}r}n ot{wicked g‘lanZ} .
felan not a delinguent, so his friendnota
delinguent,

4.8.2 Inference Ruoles for Natural Deduction

Production rules, with which inference is
executed through Modos Ponens, have been
conventionally used in heuristic rule description.
With this framework alone, ha.ud.l‘ing more logical
strugtures such as cireuits leads to a situation where
logical cmnalateneas cannot be assured. If logieal
inference rule descriptions are expressed by the AIR
rules, it becomes possible to describe And
Elimination, Or Elimination, Modus Tollens, and so
on.

4.3.3 Handling Constraints
Omne of the uses of the ATMS in constraint-based

problem solving is constraint sotisfoction, where
golutions satisfy the set of all constraints, This

Da+y—-gt=0

|Set- of constrainta I

Rizyzh 24y—zesl={

Precompiler
l |

repards assignments of values to variables as
assumptions, and determines consistent sete of
assumptions that do not violate the constraints 4o
make them solutions. A selver eguipped with an
assumption generator and a eonstraing checker ean
silow the ATMS functions to obtain all solutions.
This fype of assumption-based problem solving can
be afu]:- ed to combinatorial problems and design
problems [Inous 881 .

If some mechanism of constraint propegation can
be incorporated organieally, problem solving
becomes even more flexible. The interface batween
the ATME and a problem solver handling constraints
has been proposed in the form of the conswmer
architecture (CA) [de Hleer 88¢] incorporating the
data-flow mechanism, In this coneept, consumers are
unit problem solving steps attached to the
corresponding ATMS nodes through an analysis of
the set of comstraints (called precompiling). The
COTEINER li%E:l:luttraEI.t.illzl-I:L procedure (pmmm&iiing}l is as
follows, First, consumers are shaped through the
data-flow emai:.rais of the set of constraints {input by
the noer as relational expressions among variables)
based on heuristies related fo the usape of
constraints, Then, the action parts are attached to
the ATMS nodes related to each condition part. The
congumer execntion procedure is as follows. When
the ATMS node becomes IN during the inference
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Fig. 4.3 CA by APRICOT/O
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process, the attached consomers are passed to the
scheduler, and E&ssad to zome solver when

appropriate, and the results are passed fo the
ATME along with its justification.
The implemeantation of CA nsing APRICOTH is

as follows and as shown in Fig, 4.3, Consumers in {da
Kleer 86¢] ara attached to the ATMS nodes, but here
they are converted to AIE rule formats, This enables
simultaneous handling of heuristic rules and
constraints through the common framework, that i,
ATE and a scheduler, In this architecture, if & value
of a variable, say "a", is assigned or updated, then the
predicate "agualia, Al" is introduced (indicatin
that“a” has a value, say A, and is unified with ES
varjable “A"). In AIE, this predicate is interpreted
as IN when variable “a" is bound by A in some
context, and so delayed execution of consumers is
possible. This means that constraint propagation is

sible as a data-driven evaluator, and CA can be
mplemented.

Example 4.3 (A process of consumer generation and
execution (See Fig, 4.8)

{1) Relationghip among x, ¥, 2: "%+ y-ud =0" s input,

(2) In the way of us*i.uﬁ the constraing, it can be seen
that “g" is only used as the output.

(3) Data-flow in the variable zet is determined, and
the constraint is converted to o rule.

(4) In an inference process, x and ¥ become 114,

(B) Bule conditions are satisfied, and the aetion part
is sent to the scheduler.

(6) The consumer is scheduled to the quene aceording
to & certain atrategy,

{71 The consumer is picked up from the queue and
passed to the solver when appropriate.

{8} 'é'h; vesult given by the solver is refurned o the

(8) The CA registers the justification *x=3 A y=5
=S5 =2 in the AT}.'Ié.

Example 4.4

The following constraints (and heuristics related
to their usages) areconverted into AIE rules below,
taking constraint analysis into account,

= —Bepra+0.Tob4c
g ig only vsed as an output)
> Bratbec
Eﬂém :sbusa-d as a test after coleulating the value of g
g ashee
(thisis used as 4 test after caleulating the value of g

rutelll:: equal{a,X), equal(b,Y), egualic,?
- {::3- "IS:I -343:':44-5. ?3T+Z?, ( )
equal(g.G).
rulell2: :equal{a, X}, equal({b,Y}, equal{c,Z).
equal (g,G), {G=3=X+V+2} -> [].

ruleldd:equal{a,X), equal{b,Y], &cgual{c.!],
equal{g,G), {Gh=Xa¥eZ} -> [].

4.3.4 Scheduling

The knuwledﬁzngumpiling funetion handles
various types of knowledge (such as constraints,
henrigtic rules, defauits, and logieal inference rules) .
under the common framewark, so it is not enough for
its implementation merely to convert that
knowledge into the single ATE rule representation; it
must schedule action parts of invoked rules. This
can be accomplished by adding the following
fonetions to the action part quene,

(1) Sort the gueued action part list in ascending
arder of environment size,

{2} if consumer execution canses a contradiction to
be detected and then some action parts to be ne
longer IN, they are removed from the queue, This
prevents unnecessary justification gemeration and
consumer exechbion,

(3) Add some kind of priority as heuaristics. For
example, higher gu‘iurit}ris given to rules introducin
contradictions, Set the priority according to types o
knowledge and circumstances where o use if,

(4) Incorporate various kinds of search algorithms
[Ingue B8a),

4.4 Conelusions and Fulure Research

This section diseussed the architecture of the
APRICOT/0 hypothetical reasoning system,
gompozed of the ATME maintaining concurrent
representation of all contexts and the rule-based

oblem solver, as well as the technigues used to
implement knowledge compiling., Application iz
eurrently being considered for design and planning
problems such as the design problem of the main
spindle head in a lathe [Inove et al. B8] and the
problem of automatic generation of the disassembly
zeguence of machine tool head stocks (see 8.2}, as
well as distributed cooperative problems such as a
delivery planning problem (see 8.3). Futore plans
include extension and generalization of the A s
?}nlflj d:mrallel implementation of the ATMSE and AIE in

5 DISTRIBUTED COOPERATIVE
PROBLEM BOLVING 5YSTEM

A cooverative problem solving system solves
problems for which optimurm solutions are difficult to
obtain., A typical model of such a system is the
blackboard model, To improve antornation system
performance, cooperative problem solving functions
may be ugeful particularly in the field of designing.
Ingtance where they are useful are large-scale objests
such as LEI eirenits, becauss (1) combinations of
constraints must be considered in phases of & design
gmn_:am {including the verifieation phass} o solve

ssign problems: and (2} a conventional design
process is divided into phases which are executed
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separately; thus it may not be able to producs the
best product or design the required preduction this
field, A typical conventional system iz the
HEARSAY-II system developed in the early T0s by
the %ee:ch understanding project at CMU.

is system was designed to cbiain solutions
from ambiguous ineomplete data (including noize)
and knowledge, The architecture of the syatern was
very promising [WNii 86]. However, it gave riss to
difficulties in representing knowledge about
inference control and in processing a large volume of
data, For this reason, it has been left anused without
finding out its full advantages. However, the recent
progress in LEBI and network technologies is
aput%i hting this architecturs again, The system has
turned out to be able to exhibit the originally
expected performance if the architecture is expanded
to cover a multiprocessing environment, Theoretical
researche has also progressed in problem salving
with unsertain incomplete data and knowledge.
Distributed cooperative problem solving technignes
have been developed, mainly by the members of
Distributed AL workshops in the United States.
Target environments pursued by the members for
system models are versatile; they range from an
environment for connactionist models (massively
parallel machines) to a conventional computer
environment [Davig 80, Fehling 83, Gasser 87, Smith
85}, Nevertheless, the environments lack clear basie
eongepta that serve as criterie or assessing their
features. This fact darkens the outlook of the
ressarch. We are now trying to clarify the concepts of
distributed cooperative problem solving,
enumerating technical objectives, and probing
possible methods.

6.1 Definition of distributed cooperative
problem selving

Digtributed cooperative problem solving is
defined typically by Smith as follows [Smith 85].
“Iiztributed cooperative problem solving is
cooperative solving of a problem by a group of
decentralized and loosaly coupled knowledge sources.
K.uowladfa gources here mean knowledge systems
deseribed by some knowledge representations in
various processors. They are cooperative becavss
none of them has the necessary information or
information processing cﬂpahilitﬁ to solve the whals
problem. They are said o be decentralized if no
%lubal control and no plobal data storage site axist,

"hey are said to be loosely coupled if they spend more
tirme on computation than on communication”,

Ag in above, distributed cooperative problem
solving is irrelevant to a specific knowledge
representation form and inference method, It

Fulatea a coarse gystem architectore for problem
solving, It does not determine what sorts of
knowledge sources are decentralized or how thely are
decentratized, Nor does it elarify how knowled
gources cooperate. A distributed AT system like the
connectionist model includes tightly coupled problem
solvers which are assigned small tasks, However,
they are not re ardedg‘;'s distributed cooperative
problem solvers [Decker 571,

5.2 Btrugture of a problem solver

The system consists of multiple problem solvers.,
It divides a problem, solves subproblems, and
gynthezizes the solutions. Various architectures can
be considered for this system. We present only the
structure common o problem solvers mak‘mgiup the
system, Each problem selver congists of the following
components (Fig, 5.1}

{1) Communicator; Exchanges processing resulis
with other problem selvers.

{2) Controller: Borders retrieval spaces for tasks
and performs foscus control o reduce
communications, Foeus control gelects the least
costly, most efficient subtask when subtasks are
connegcted by OR logic, When subtasks are
cennected by AND logie, the controller analyres
parallelism,

(3) Reasoner:  Performs inference,

(4} Enowledge base: Contains knowledge of
experts. Knowledge is dispersed fo problem
solvers, and no problem solver has the necessary
knowledge to solve the whole problem,

{B) Working memory: Stores processing resnlts of
tasks,

5.3 Advantages of distributed cooperative
problem solving

A digtributed cooperative problem solving system
improves, as do existing distribution sysiems, in
performance, It heightens its processing speed and
reliability. Houtine propgrams have difficulty in
performing knowledge processing subtasks.
Therefore, iff the subtasks were distributed Lo
existing data processing subsystems, convnunication
overhead would inecroase and thuz would the
advantage of distribution be offset. Cooperation
functions are necessary in an environment whore
these subtasks can be efficiently distributed.
Introduction of cosperation funetinns also improves
the Exgandﬂhilitar of the system, When the system is
expanded, cooperation batween modules eliminates
the need to change existing system rescurces.
Another advantage of cooperative problem solving is
the capability to obtain appropriate solutions. A
feature of problems now under discussion is
uncertainty, Uncertainty here means lack of data
and lack of guarantee for completenass, correctness,
and consistency of processing results supplied to a
problem solver from others. Cooperative problem
solving may obtain justifiable solutions under this
uneartainty.

5.4 Features of a distribuied cooperative
problem solving system

Distributed cooperative problem solving can be
regarded a3 a framework of inference contral over
muliiple qrahlam solvers to solve a problam
eooperatively by using inference functions rather
than knowledge ro_ ‘esentations. The optimum
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framework may depend on problems. An inference
control frame has the fallowing facilities:

{1} Integration mechanisms
Multiple problem soclvers in a distributed
conperative E}rohlem solving system work in
harmony solve & problem. An infegration
mechanism is thus necessary in the system to
integrate the actions of problem solvars,

{2) Communications between problem solvers

Suitable communications facilities are imporiant
resoiiress for & distelbuted cooperative problem
solving system. The facilities may take various
forms the perspectives of: communication
paradigms, communication contents, and
communication protosols,

Communication Paradi me refer to the
following two communication forms:

{a)Communication through globel memory

(blackboard model)
{(b)Message passing

(a) may be asynchronous communication, and (k)
synchronous, Synchronous eommunication lowers
processing speed, whereas asynchromnous
communication makes it difficult o guarantee data
compatibility betwaen problem solvers,

5.5 Technical ohjectives

Advantages of distributed cooperative problem
solving can be divided into the following two groups:

(1} Advantages given by distribution processing,
that is, ease of system construction, hig
execniion spead, and high reliability

(2) Advantage given by cooperation processing, that
iz, generation of appropriate solutions by using
limited data, knowledge, and processing fime

In & distributed sooperative problem solving system,
tasks and intermediate solutions are exchanged
through communications. The communication spesd
is generally slower than computation speeds in
m%len‘l solvers, Nevertheless, working towards a
tter solution inereases communnication fregquency
and guantity, Therefore, improvement in efficiency
of communications is & major techniecal objective.
How to obtain appropriate solutions through
cooperative processing is another major technical
objective. To achieve these oljectives, we are now
studying the following technigues:

(1) Efficient communiecation in a distribution
envirdnment
In & distributed problem solving enviremment,
each problem solver assumes salficontrol over its
inference function. In this environraent, problam
solvers share tasks, processing resulls, or
resources, and thus must he coordinated
functionally, A technique for satisfying this
requirement is the inference contrel technique
proposed by Durfes and Lesser, called partial
global plans [Durfee & Lesser 871, This technigue
males each problem solver creste tactics for

solving a problem, which arises in the whole
network but is viewed from the loeal standpoint,
and exchanpe the tactics with other problem
gsolvers, Whether one problem solver should
employ tactics offered E:,' another depends on
evaluation standards implemented by the
problem soiver, The above technique may be a
meta-communication technigue. Another
technique for efficient communication is the
expectation-driven communication, which is
performed by anticilgaﬁng the actions of partner
problem solvers, For one preblem solver to
anticipate the action of another, it must know the
intention and action plan of the latter, The
situation theory may be used to find out the
intention action plan. This theory was first used
by SRI to devise a cooperative work plan for
multiple robots. Concerning this plan, Georgeil
proposed an action theory, and Eonolige
presented a belief mode[Honolige 85).

(2) Cooperation for cbiaining an appropriate
selution
& preblem solving technigue wused in an
environment whers applicable knowledge and
input data fall ghort iz inference based on
evidence. Human beings copy flexibly with
problems by assuming the presence of exceptions
in ineomplets knowlsdge about the real world,
The knowledge assuming exceptions are called
default knowledge. Inference based on evidence
nges default knowledge and Instanees supporting
the correctness of default knowledge. When an
inference process encounters conflictin
assumptions, it selects an sppropriate one base
on supporting values[Shastr 85]. Through the
above studies and analyses, we will propese a
framework of distributed cooperative problem
solving.

=
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Knowiecas Base

Fig. 5,1 Strueture of a problem solver

6 USE OF DEEP KENOWLEDGE AND
QUALITATIVE REASONING

6.1 Use of Deep Enowledge and Is Effects

One problem with comventional expert systems
involves the complate inability of the system to solve
a problem if it does not have inference rules for the
problem, Because the basie ability of the
conventional expert systems for solving o sroblem is
based on the range of the inference rules in the
problem domain. regver, as the expert system
does not in essence undersiand the knowledge in
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problem domain, there are limitations in the
intelligent problem solving and the explanation of
reasoning processes. As one sclotion fo overcome
this probiem, reasoning using deeg knowledge (desp
reasoning} has baaidpro ged. Shallow and deep
knowledge are defined as follows.

Shallow knnwlndﬁe; Enowledge direetly ralated
to the tasks performed by an human expert,

Deep knowledge: Basic knowledge close to the
universal laws or prineiples in the problem domain,
or knowledge of general validity such asz
representations of the structure and function of the
o] L.

Use of deep ressening {s anticipated to have the
following effects,

(1) Completeness of knowledge :
As each item of deep knowladge is expressed at a
more bagle level, the range coversd %:.r a zingle
iece of knowledge iz more broad. Hence, deep
Enowledge can cope with siteations which cannot
ba predicted in advance on the basis of direct
cauge-effect relations, such as production rules,

(2} Understanding and u:f::g]a' ing causality:
A3 the knowledge in the problem domain izin a
form which is close to physieal laws and principles
or the structure of the object, the system is far
more capable of explaining the results of
reasoning processes.

(3) Auntomatic generation of shallow knowledge

By comnpiling and storing reasoning results for
various situations in a rule format, doep
knowledge can be used in the auntomatic
generation of shallow knowledge, General deep
knowledge in the domain can be used in the
construction of various expert ?}ratems for
different applications in the domain (for instance,
design knowledge can be used to generate
diagnostic rules). That is, deep knowledge
acquired can be used efficlently, On the other
hand, shallow knowledge generated can be used
for high-spead inference.

One means to achieve deep ressoning is
gualitative reasoning. Its basic procedure iz to
express physical quantities and constraints existing
among them gualitatively, and to reason shout the
system behavior, Methods for current qualitative
reasoning systems (simulators) may be broadly
divided into two categories:

(1} Qualitative modeling type :

In this type of simulator, variables and
constraints representing the svaterm dvnamics
{a set of simultaneous qualitative differential
equations) are given and fixed. Al of these
variables and constraints are used to resson
the qualitative behavier of the whole system.
An example is @BIM [Kuipers 83),

{2) Qualitative process theory type :
Basic knowledge representations of this type
of simulator ar: objects and, process or
physical rules. Process and physieal rules
contain the constraints to change the states of

each ohject. Process or physieal rules which
are eurrently active are {dentified to construet
a set of constraints representing the system,
System behavior changing over time is
reasoned vsing the constraints. Mot anly are
gualitative states determined, but an
understanding of causality iz also sought.
GPT [Forbus 84) is an example of such a
gysiam,

6.2 Qualitative Reasoning Mechanism

The Fifth Regearch Laboratory is studying
ualitative reasoning mechanisms from the
ollowing two approaches,

(&) Research and development of Qupras [Ohki B8], a
GFT-iype qualitative reasoning system, which
aims to deal with physical laws in their original
form (without qualitative modeling),

(b} Hesearch for improving the efficiency of the
reasoning processes of the two types of qualitative
reasohing systems mentioned sbove.

6.2.1 OCutline of Qupras

Ap stated above, QPT iz closer to the reasaning
using deep knowledge than the approaches oriente
to qualitative simulation. However, the QPT
framework is in some respects inadeguate to express
knowledge at the level of gensral physical laws as
basic knowledge., Hence, Qupras (for the qualitative
physical reagoning system), a qualitative reasoning
system which overcomes these difficulties is under

evelopment., As shown in Fig, 6.1, Qupras consists
of a knowledge representation supporting subsystem
and a reasoning subsystem.

(1) Enowledge representation in Qupras

Enowledge repregentation in Qupras invelves
deseriptions of the chieet, physical rulpas and initial
states, Objects are described in terms of (i) attribates
{deflinition of attributes which describe the ohject),
(i) parts {definition of parts of the objeet), (iii)
eonditions (the object becomes active only when thase
conditions are satisfied), and (iv) relations (relations
among physical quantities which are valid when the
object is active). Fig 6.2 is an example of an ohject
deseribing & beiler class.

Physical rules are a:;pweased in terms of (i} objects
{to which the physical rule can be a plied), (i)
conditions (conditions under which the pﬁysical rules
may be applied), and (iii) relations {(between the
attributes of objects or other gquantities). The
physical rules are active anly when both (1) and (i)
are ackive. Fig, 6.0 gives an example of a physical
rules describing heat flow.

The initial state defines the state of the target
sysiem at the beginning of reasoning (that is,
instances of ohjects and definition of facts),

Conditions and relations of objects and physical
rules are expressed as equalities (using addition,
subtraction, multiplication and divisien),
Inequalities, or terms which deseribe facts such as
positions, Further, Qupras is capable of handling



these formulas not only gualitatively, but alse
quantitatively. ) ) .

Knewledge about objeets and physical rules is
given in the form of templates, Prior fo the inference
process, the knowledge representation supporting
subeyatem of the Qupras applies tamplate knowledge
to instanees in the initial state, to generate instances
of the ohject and physical rule, then converts them to
an intermediate format which the reasoning
subsystem can understand,

(2) Qualitative reasoning in Qupras

The gqualitetive reasoning subsystem in Gupras
has the structore shown in Fig. 6.4. Beginning
the givan initial state, the succesding behavior of the
target system iz reasoned. The qoalitative reasoning
ig performed by two processes, intra-state analysis
{pr:]ga_gatiun} and ]imltmgils {prediction), in turn,

intra-state analysis, reasoning subsystem

searches for active objsets or phyaieal roles whose
conditions are satisfied, and collects comstraints in
them to construct the simultaneouns differential
sguations describing the target system at that time.

e =0 propagates known attributs values to
undetermined attribute values through constrainta,

In limit analysis, the reasoning subsystem
prediets a gualitative value at the next time for each
attribute changing with time. It is salected from the
nearest limit points of the present valne gearchin
for the equalities and inequalities of eonditions o
objects and physical rules,
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Fig. 8.2 Definition of a Boiler
(8) Features of Qupras

(a) Knowledge related to physical laws can be
represented in a single formulation. (QPT
handles dynamic and static phensmena

separately.)

{b) Formulas describing physical laws may be
represented without gualitative modeling:
further, physical guantities may be handled in
either a qualitative or a gquantitative manner, as
the situaticn demands,

(e} Mo statements of the partial ordering between
the values of varving physical guantives, or of
quantity spaces, are required,

{d) Representation and reasoning about states
changing of physical variables iz possible. In
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Fig. 6.1 Outiline of Qupras

physics heatflow

otjecis

Heat__source—heal...sounce;

Contsiner—container;
condiions

an fContainer, Haal__source);

temperature & Heat._source < > temperaiurs @ Conlainer;
rekations

dat (theal Contalner):=:

temperature @ Hesl. . source—temparatime S Container;

end.

Fig. 5.8 Definition of eat Flow

kbl athen Fie Ui DT T P fniong] o Aty 0 Il Stabies
S ¥ roag ¥ # S wa Ghos
T
Limit Anshvnly
Lo of vk 8 T
of Beraanying cuaniibes)
Feabarion, Salenymoer jahich condhong prd syaluabed
el aned irescpaablind pEingd sdoms

Fig. 6.4 Structure of the Qupras Qualitative
Heasoning System

other words, Qupras expresses physical laws in a
more primitive form,

(4) Remaining subjects for study

{a) Studies of better Erimitives for representing such
physical laws as the conservation of energy

{bY Improvement of the condition evaluator
We have partially engbled the solutlon of non-
linear simultaneous inegualities by combining
the Sup-Inf method for linear simultaneous
inegqualities [Shestak 77) and the Grosbner-bass
method for non-linear simultaneous eouation



[Buchberger 83]. "We have also anahled control of
the sequence of evaluation of equalities and
ingqualities (freeze funetion). Howaver, we have
to inerease the execution speed,

(e} Constructing a hierarchical structare of object
definition, and generalizing definitions of
hysical rules. At present, an Improved version,

upras ver.2,which adopte these funections and

features, is under development. .

6.2.2 Improvement of Qualitative Reasoning
System

One of the problems with the current qualitative
reasoning system is that it cannet prediet the
behavior of large target systems because of the
limitations of computation time and memory
capacity, Even the algorithm, which presently
performs ressoming at the highest Sﬂeed of all the
qualitative reasoning systems, can handie only a
small continuous gystem, One method to realize a
gualitative reasoning system which can reason the
behavior of large tarpel systom including multiple

hysical domaing is partition of the target system.
f‘-’e propose two methods for partition based on the
heuristics with the structure and properties of the
target system. We estimate the effect of the partition
methods for computational complexity of qualitative
reasoning and disenss the applied conditions of the
methods,

(Partition method of target system hased on
heurighics with their straeture and properties

{a)bethod 1 : Partition method of variables
aceording to the independence of each subsystem.
Assume a target sysiem which consists of
many parts that have close interactions botweesn
internal r;ﬂm]mnenl:s and only week interactions
with external components. Such a target system
can be divided into loosely connected subsystems
corresponding to the parts. All variables
belonging to only one part are assigned to the
subsystem w5 ifs internal variables. Each
external variable (that is, an output from a part
andfor an input to the other) is shared by ho@n&‘
these subsystems as a common variable. The
behavior of each subsystam can be simulated
independently as response to the input state, The
simulated resulis of each subsyetem are
communieated to others via common variahles,
They are integrated to constitute the behavior of
the whole target aystem.

(b} Method 2 :Partition method of & systerm by the
field of applicable rules,

Assurne another tasget system, each of whose
components is designed and operated according Lo
the rules of a different physieal field (for exampla,
electronic cireuit, thermodynamies, electrostatics,
end quantum mechanies) to satisfy a different
funetion. In this case, the target system can be
partitioned into subsystems. Each subsystem
consists of a];fmtx whose flelds of dominant rules
are identical, As the range of rules applicable ta
each ohject is limited, the number aof chjacts

contained in each subsystern {5 also reduced,
Because the rules of different physical fields have
little effect, the target system is divided into
independent subsystems, Therefors, the behavior
of ®ach spbsystem can be simulated
independently.

{Z)Effect of partition methods on the computational
efficiency of Qupras .

This seetion estimates the effects of a plying
partition methods 1 and 2 to the gualitative
reaanninga tamn, Qupras. (For more details, refor 4o
[Salkane s]y:?

(a} Effect on propagation process

Eﬁme that an object system is partitioned
into W subsystems of the same size by partition
methods 1 and 2. We egtimats the computational
complexity required for simulating the system
behavior using the squaily partitioned model.
Bacause the number of instance rules gensrated is
reduced to /W, the computational complexity
required to find sctive physical rules is also
reduced to L'W. Thus, the computational
complexity in the propagation process is redocad
to approximatsly I'W times under the following
congifions:

{i} application to large target systems without
feedback loops consisting of relatively
independent subsystems.

(ii) Bzpression of each physical rule in & gensral
form,

th) Effect on prediction process

The cost required to prediet the next value of
each variable &anging with time iz proportional
te the number of instance rules gpenerated, The
cost is reduced to /W times using the equally
partitioned model, However, if there are many
variables changing with time, all the
combinations of thelr nexzt values must be
checked for congistency, The total computational
complexity in the prediction process increases
sharply as the number of va.riab}ies changing with
time, ¥, increases. Then, the somputational
complexity is not reduced unlass ¥ decreases. To
reduce the number of such variables, some
knowledge to control the order of changes among
variables is needed,

The pariition methods also have advantages in
acquiring this kind of knowledge. When the
simulator simulates the system behavior as a
whele, only the knowledge of the order of
changing among variables is available. However,
it iz very rare in practice that sufficient
Enowledge is given to specify a variable to he
changed first.  When the system is partitioned
into subsystems by the partition method, the
knowledge with the order of variable changes
smong subsystems is alse awvailable. This
knowledge is likely to be kaown, even if the
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orders of changing among variables are not
W,

{3 Remaining subjects for study

{a) Studies of efficient methods of partition of target
systems other than the above two methods

{b) Study of 2 method of mapping the qualitative
time of each subsystem o real time

(e} Dealing with discontinuous change which ocours
at the beginning and/or end of the interval of
qualitative time 1n each subsystem.,

(d} Controlling reasuningi; controlling the order of
changes among variables and controlling the
mﬂfr huIt‘ propagation uslng the dependency among
variablas.

G.3 Systems Which Apply Deep Enowledge

The range of application of deep reasoning {and
qualitative reasoning in particular) may consist of
analytic problems and synthetic problems; here we
consider a malfonetion diagmostic system emplovin
deep knowledge as an example of an analytica
problem. The ﬁllawing two types of use are possible.

{1)Generation of diagnostic rules (knowledge
compilation)

Gualitative differential equations of the faulty
system are constructed for each candidate of
malfunction. Qualitative behavior of the faulty
systems ie acguired, using the model to obtain
malfunction symptoms. By conneciing the
malfunction to the sympioms, the sysiem generales
diagnostic rules in the form of “If (symptom) Then
{malfunction)”. Becange the diagnostic rules are
generated for all the malfunction candidates, this
method is not efficiant with regard to the execuiion
tima. Therefore, it is suited to off-line peneration of
dingnostic rules.

(2)ldentifying fanlts based en symptoms

First, the qualitative value of the variable
representing the malfunction symptom is propagated
to other variables through the constraints. When
pmp&g}ated gualitative values contradiet at a certain
variahle, the variable is considered to be the point
where the malfunction causes. In thizs method,
contradiction may be detected at many variables.
Therefore, it is necessary to eliminate secondary
symptoms by some knowledge and selact only the
direct cause of malfunction. Because only a set of
differential equations must be considered, this
method is spited for on-line use with respect to the
execution efficiency.

7T ENOWLEDGE ACQUISITION
SUPPORT SYSTEMS

A major problem which fends to arise when
congtructing knowledge-base systems conecerns
bottlenecks at the knowledge acguisition stape.

Hunowledge acquisition invelves the collection of
knowledge from humean experts, arrangement and
systematization of this information, and constroction
of a knowledge base for use in 2 knowladpe-base
system. Al present, this iask iz performed by
Inowledge enginecers (KEg); that is, knowledge
acguisition relies entively on human efforts. And,
since systamatic methads of knowledpe acquisition
have not yet been established, the process of
knowledge scquisition is an sxiremely troublesome
one for the knowledge enginesr, Our goal iz to
improve such bottlenecks. Somewhat more
coneretely, we arve responsible for the elarification of
the types and struetures of knowledge possessed by
human experts, and with the establishment of
effective methods for the extraction and organization
of expert knowledge. In considering kEnowledge
acquisition support systems, we may analyze the
work of the knowledpe engineer in the following four
broad phases.

(1) Problem analysis:
this phase, the tasks of system to be developed
are determined, and the system feasibility and
significance nfnfcvclnpmuntm analyzed.

(2) Expert model ]:iuﬂding‘:
The technical terminclogy, task procedurss
(problem-golving strategies) and cunce]gtua.l
structurs used by human experts are clarified,
and the methods and environmonts of expeart
aysbem uge are defermined.

(8) Euxpert madel instantiation:
Eaypert knowledge is elicited and organized in the
fmgn_:]:f the expert model, and the knowladge bass
is built,

(4} Knowledge-base management:
The koowledge base 15 modified, added to, or
deleted to correct any contradictions,
redundancies, deficliencies, or unnecessary

({isolated) data,

KEnowledge acquisition support systems capahle of
supporting each of these ﬁhasea ave required. Below,
we diseuss the basie fechnology reguired for such
knowledge aequisition support systems, and briefly
sltetch some syatemns (CA and EPRILON/One)
which are now being researched.

7.1 Basic Technology for Knowledgea
Acguisition Support Systems

Knowledge acquisition support systems are
hybrid systems, consisting of & number of basic
technologies. We list some of these here.

(1) Enowledge acquisition interface (interface with
knowledge source)
Imterfaces for knowledge acquisition are divided
into interpretive and interactive interfaces,
aceording to the manner in which information is
exchanged with the lnowledge source. In
interactive interfaces, knowledge is obtained
directly from human experts through that
interaction. Conversational representations
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employ symbols, numbers, or. words, efc.), tables
(spread-sheets, for ingtance) and other means of
expreszeion. Interpretive interfaces, such as those
used in protocol analysis and text analysis, on the
other hand, involve the direct one-way flow of
information from the kn-:mrled%e source to the
knowledge acquisition support system. Here,
techniques for interpreting knowledge
representations used by the knowledge source
{i.e. techniques for natural language
understanding) are required,

(2) Interviewing technigues
In interactive knowledge sequisition, only the
nesessary information must be extracted fram the
human exgert if the acyuisition process s to be
efficient. Further, knowledge which is to be
acguired must be sduced through association,
Methods for prompting associations include
irwise comparison, personal consivuct theory
used with CATS, discusgsed below) and the pre-
post mathed (used with EPSILON/One, below],

{3) Building of conceptual struoctures {domain

models, expert models and knowledge
representation)
In general, the knowledge representation
supported by expert shells is extremely basic (for
ingtanee, rules and frames). Because of this, it is
diffieult for experts to cxpress their specialized
knowledge. Enowledge acquisition support
systems can facilitate the extraction of
knowledge, by su%‘purting knuwledge
represeniation in specialized operations or tasks,
Such representation may take the form of domain
maodels {basic conceptions of the objects with
which the expert deals, and relations between
objects) or of exgart models (expressions of the
task performed by the expert in terms of basic
operations; used with B ONfOme).

(4} Refinement of task models {expert and domain
maodels)
During the process of acguisition, acquired
knowledge containg deficiencies, redundancies
and centradietions, A refincment method
appropriate to the model structure is thus used to
perfect the task model,

{5) Enowledge base evaluation The acguired
knwled&e (task represeotation knowledge) is
translated to the knuwledngu rapresentation of an
expert shell, and the inference engine of the
expert shell is used to evaluate the extent to
which the system is capable of the intellectual
activity of the expert.

7.2 Classified Tagk Aequisition Suppert (CTAS)
System

CTAR [Yamazaki et al, 87) iz a knowledgs
acquisition support system which builds an initial
knowledge bass for classification-type problems.
Enowledge-bass systems may be broadly classified
into a synthetic class and an analyiical class; of
theas, CTAS is appled to the analytical class. In
general, problem selving for the analytical clags

eonsiste of a hierarchieal classification task and an
ordering fask. The hisrarchical classification &asic
classifies the elemants (items to be classified) on the
basis of broad, clear traits. The crdering task, on the
other hand, classifies slements that can no longer he
classified by clearly distinguishable traits, accordin
to the sirength of correlations between traits an
elements, CTAS enahles the acquisition of
knowledge bases in which these two tasks are done
uging kmwleﬂ}g& acquisition methods based on
George Kelly's Personal Construct Theory. Using the
elements, traits by which elements are classified, and
scaled ratings{a scaled rating is the correlation
between elements and traits), CTAS generates
production rules with a certainty factor, CTAS
consultation consists of five stages - elicitation,
arrangement, refinement, rule generation, and
testing., In the elicitation process, elements for
classification, traits and scaled rating are elicited;
the arrangement stage involves making graphs and
tables using the elicited information so that the
ac?_uired knowledge ean be perceived visually, The
refinement process comprises refinement of
elements, ts and sealed ratings, while the rule
generation process iz concermed with the
generation of production rules. In the festin
rocess, the roles thus generated are evaluated,
ongultation for each of these processes is explained
below, In the elicitation process, support of
hierarchical classification tasﬁ and ordering tasks
relies on the elicitation of classification elements,
fraits, and scaled ratings. In hierarchical
clessification tasks, traits which can be used to
classify alemenis into hievarchical levels are elicited,
and elements are thereby organized ints groups; this
process may be performed either top-down or bottom-
up, In top-down classification, division into
hierarchical levels is first performed; this method
is effective when experts have already organized
elements {into a hierarchy). In botfom-up
classification, clagsification is performed after
clicitation of elements; this methed is advantagesus
when elements have not been organizsd, or have not
been organized throughly, by experts, An orderi
task involves the elicitation of traits, and seale
ratin%s between elements and traits for every group.
Four types of graphs and a table arve prepared in the
arrangement process - hierarnhicaf trees, ratin
grids, implication graphs, and cluster trees. Al
except hierarchical trees are pra}ia.red for each group
in & hierarchy. The hisrarchical tree indicates the
hisrarchical relationship between groups of classified
elemnents, A rating grid indicates, in table form, the
elements, traits and scaled ratings contained in &
group. An implication graph shows the implieation
relationships betwsen traits in a group. A cluster
tres ig prepared for each of the elements and traits
contained in a igﬂn.y}a Each cluster tree indicates the
similarity of relationships between items
lclassification elements and traits). The graphs and
table facilitate visual inspection and verifieation of
alicited knowledgs by human experts. in refinement
processes, several types of refinement methods based
on the Personal Construct Theory are used in the
refinement of elements, traits and scaled ratings.
Additions, deletion, integration and rengming are
performed for the different items (elements and
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traits), Sealed ratings are also corrected. In the rule
eneration three types of production rules -
ierarchical rules, conclusion rules and intermediate
rules - are generated. Hisrarchical rules are nged for
hierarchical classification, and express the
hierarchical relationships between elements.
Conclusion and intermediate rules are uasd for the
ordering tasks; and the correlations between traits
and elements contained in a group are expressed
using the certalnty factor. In the testing process,
rules thus generated are evaluated through use. In
this process, the hisrarchical rules are invoked, and
ups of elements which are to be assessed are
etermined. Then the conelusion rules and
intermediate rules are first inveked, and result in
clagsified elements which are displaved in order of
the certainty factor, The advantage of CTAS les in
itz support of know acquisition focusing an the
structure of tasks which the knowledge-base systems
perform. Also, the graphs and table enable efficient
refinement of the acquived knowledge base. By using
the CTAR system, a high-guality knowledge base for
clagsification-type problems can be obtained, and the
knu‘lfled‘ge basz can be refined efficiently. Possible
gpplications of OTAS lie in classification tasks in the
warious areas of din?oaﬁes and planning, OTAS was
developed uwsing ESP running on the PBI, and
kmwlehdge bases thus acquired are performed using
the CTAS inference engine,

7.3 Enowledge Acquisition Sug&ort System
Based on Expert Model (B LON/One)

The EPEILON/One [Tsubaki et al. 58] [Ohsaki et
al. 88)] is a knowledge acquisition support system
which gathers intelligent expert work in smell units
ealled oparations and builds a kaowledge base, We
designed an expert model [Taki of al, 87] to represent
a knowledge base congizting of these aperations, We
also developed the pre-post method as a means of
acguiring knowledge for the expert mode, Fig, 7.1
shows the configuration of the EPSILON/COne. The
knowledge acyuisition strategy of the pre-post
method seguires knowledge through the knowledge
acquigition interface and builds an expert model.

tion, as a knowledge representation model of
struetural information, the stroctural information
knowledge representation constroction module
acguires struetural information knowledge Lhmf
the knowledge acquisition interface. Then, the
refinsment module refines the expert model based on
structural information knowledge. The expert modal
and struetural information knowledge are converted
into a knowledge base for expert shells by the
knowledge representation translator. In the
following, we discuss the basic concepts employed in
expert models, representations of the structure and
functions of the expert model, and pre-post method.

7.3.1 Basic concepts of the expert model

We propose an e t model based on two different
ideas - a simplified expert task model, and analysis
and grouping of diagnostic expert knowledge for
production expressions,

¢

Enowledge acequisition interface

!

!

Enowledge
acguisition
(pre-pogt
Pre-pos
method)

Strueture
knowledge
representation
congtriction
moduls

Expert madel

~~

Structure
knowledge

!

Translator

Expert model
inference
engine
Refinement
module

Enowledge base
for expert tool

Fig. 7.1 EPSILON/One overview
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Fig. 7.2 8implified diagnoestic task model

(1) Simplified expert task model
The cperations performed by an expert system

B

to represent these task

mag‘he divided into & number of task targf;.nsuch
s diagnostics, design and control. We a ted

es uging simple models,

We shev this appmacht{gcr_-use simplified expert
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tasks allow us to provide images of e SYELETL
operations 1o human experts, to enable them fo
give expression to their own knowledge. We here
present one example of this (Fig. 7.2). On
studying simplified sxpert task models, we found
that & models (that is, operations) eould be
coneeived to consist of the object (source element,
gmulp}, smessipg {evaluator), and processing
results (destination element group).

(2) Rule analysis in diagnostic expert systems
Froduction rules are the general means of
representing knowledge in expert systems, The
knowledge engineer must possess knowledge
representation technigues having a production
rule form, We assumed that soch technigues
appear in rule forms, and discoversd the following
seven description forms in sets of production
rules: selection, classification, sort, combination,
translation, input and outpuk forms, The result of
combining these bwo ideas is generic operation,

7.3.2 Stucture of expert models

Az just explained, expert models consist of types
of operations and the relations between operations.
These operation relations contain information on the
order of execution of operations, Next, as an example
of an operation, we consider a classification into
types (Fig. 7.4). In the figure, group animals-1 is the
gonree elament groun, while animals-2, animals-3
and animals-4 are destination slement groups.
Supposa that the evaluator's task is to divide the
elements into three groups according to size. In this
sxampls, the elsments are dog, eat, woll, porpoise,
rat, whale, elephant, and the size of each animal iz
its attribute.

Expat hodel s Oppeation fistation Inkoamarion [P poet Paistions)
Cengtions Benien Emans By e Aliley Vauss
Exmisnar
Dratintion Eleaseal @i

Fig. 7.3 Fxpert model structure

— [T ]

— Apimalzd

Fig. 7.4 Examf;le of an operation type
{classifieation)
Method of knowled ge acquisition
{pre-post method)

7.3.3

The main strategy of the pre-post method
stimulated the expert to remember the associative
operations before and after (pre- and post- ) a given
operation. It is relatively easy for the expert to state
what operations are necessary before and after a
given operation, For ingtance, when a car will not
run, if a human is asked “What should be done before
checking the engine?”, it is easy o answer “Cheek if
there’s gasoline tn the tank” or “Check the hattery™,
Further, in the pre-post method, the details of
operations are determined, and the operation
management strocture (meta-seript) is configured,
The knowledge ascguisition process by the pre-post
method proceeds as follows,

{1} Collection of operations serving as the starting-
point of knowledge acquisition Arbitrary
operations are extracted from the expert. (An
example is the “engine check” just mentioned.)

(%) Extraction pre- and post- operations
Extraction of operations preceding and following
each of the above cperations (in the above
example, “Check the gasoline” and *Check the
battery™).

{5) Checking of pre-post relations
Graphic illustration of the operations preceding
and following each operation, and checks for
differences in these relations.

{4) Determination of operation types )
Types are assigned o operations; when
assignments cannot be made, operations are
further divided into smaller anits. Operation
ty%:eapre chosen from emoeng seven types, such as
seloction and sort,

{5) Operation merging cperations in which the same
processing is performed are merged,

(6) BEvaluator determination
By extracting the DEEESSﬂr¥ information far
operation types, the details of the evaluator are
decided, (When the type of oparation is selection,
selection eriteria are extractad.)

{7} Determination of source element groups
The elements to be processed by the evaluator are
determined. (When the {ype is selection, chjects
for selection are extractad.)

(8} Determination of element atiributes and values
The attributes and attribute values for sach
element, to be evaluated by the evaluator, are
determined.

(%) Grouping of operations into blocks
Operations which rely on identical reasoning
methods are combined.

(18}  Determination of reasoning method
The operation reasoning method is
determined sequential or parallel, full.
solution or partial-solution search,
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7.5.4 Hefinement method by using different

knowledge representation models

Human knowledps consists of a variety of demain
Ienowledge. Accordingly, it is desirable that each
piece of knowledge ould be acquired in a format
guited to its representation. Hoewever, o lonowledge
base of & single knowledge representation must be
refined from many points of view, Besides the expect
model of the B MiOne, there is a knowl
representation model which can hierarchical Iv
rapresent the structural information of the system. It
seems useful to refine the expertmodel by comparing
this knowledge representation model to the expert
model, so we dre presently studying this method,
7.83.5 Future ressach

We have introduced an expert maodel derived
fremn analysis of production rales in dia tie expert
gystems and the simplified expert task model, and
aeguisition method (pra- methoed) for this model.
We are developing the EPSILON/Cne by ESP on the
PSL AL present, it iz eguipped with & sequential
inference engine for the ert model, The expert
model is a framework which can represent parallsl
cperation knowledge, so we will have to study the
possibility of applying it to knowledge acquisition
aurited to parallei: inference. Moreover, we will have
to daYelup parallel inference epgines for the exper:

el.

8 EXPERIMENTAL EXPERT
SYSTEMS

8.1 Expert System for VLEI Logic Clrenit Design

A cooperative expert system for logic eireuii
design, ealled co-LODEX, &ucf_tg_ts input of the VIEI
behavioral algorithm specifications, datapath
structure and constraints to support antomatic
design of CMOS standard eells. Constrainis on gate
connt (or more precisely, basic cell count) and
constraints on delay time can also be input. Az
indicated in Fig. 5.1.1, co-LODEX performs overall
design through cooperation between the agenis
designing the finite-state machine and control
cirenit, and these implementing the datapath
siructures (registers multipliers) in the CRIOS
standard cell. Cooperative operation is handled by
requesting one agent to alter something when an
other agent prevents the constrainis from being
satislied, For example, if a datapath satisfying the
constraintz cannot be implemented under the
controls generated by the control design agent, the
data path design agent request changas the control of
the control system design agent. In design work,
there are cases where redesign iz unavoidable,
Especially in cooperative systems, where changes
may be rggl estad from the outside, efficient redesizn
is esential, In ¢o-LODEX the problem is resolved
through assumption-based reasoning,

(1) Alternatives cceurring in design are regarded as
assumptions, and change is managed through
use/non-use of assumptions in redesign,

{Z) Violation of constraints is a contradiction, and
redesign cancels the contradietion,

(3) Constraints can also be treated as assumptions,
considering that design may be repeated while
changing constraints,

(4} Redesign must be handled through operations on
the conjunction of delay time conditions
conditions related to bazic cell count, and
assumptions expressing the cause of the violation
of conslraints,

8.2 An Expert System for Automatic
Determination of Disassembly Sequence of
a Head Stoclk

This system aims at studying efficient inference
control mechanisms. To aceomplish the aim,
problems in aviomatic generation of disassembly
sequence of machine tool head stocks are emploved as
specific examples. An example of machine fool head
stocks is shown in Fig, 8.2.1. This cxample consists of
80 components, which are represented by the
conngctive relations based on a fitking tolerances and
by three-dimenszional data using generalized cylinder
expression. This system generates the disassembly
sequence with the connective relations and from (1)
knnwledEe to extract candidate components for
disngsembly, (2) knowledge to select the component
to be disassembled from the list of candidates, (3)
knowledge to evaluate the disassembly cost and to
chock the inter-component interference, and (4)
knowledge to update connective relations. The
procesging seguence is given in Fig, 8.2.2. The
disasaemtﬁ}r gequence is generated as follows, First,
extraction knowledge is applied {o conneqtive
relgtions, and components that can be disassembied
are listed. MNext, selection knowledge is used to
determine the -:om)]mnent in the list that is the
easiest to disassemble. Selection knowladge is given
a priovity and ordered, based on ezse of digassembl
derived from connective relations. Components wit.{:
the same digassembly priority are evaluated by
dizassermnbly cost and checked by inter-component
interference knowledge. When a component is
removed, connective relations are renewead by
knowledge to update connective relations. This

rocesy 18 repeated until all components are

isagsembled. Even with evaluation knowledge, the
gequence will have alternatives because eaze of
disassembly and cost are equivalent for multiple
components, The sequence will also be forced to
changs by inter-component interference, To solve
these problems, this system employed the following
approach.

(1} Alternatives of disassembly sequence are
hendled asmultiple contests,

{2) A hypothetical reasoning mechanism is applied,
assuming that alternatives of disassembly
gequences are hypothesss, and the evidence for
disagsemnbly sequences being inappropriate as
shown by the cost evaluation and inter-
compenent interferenca check is a contradicton.

This research is based on research performed in
cooparation with the Mechanical Engineering
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Fig.8.1.1 System Structure

Laboratory, Ageney of Industrial Science and
Technology, Ministry of International Trade and
Industry [Sekigochi 83], [Sekiguchi 7).

8.3 Delivery planning

The delivery planning support system supports
the assignment of tra and drivers, and the
selection of rouies. The delivery task is that
packages from a distribution center are delivered on
multiple trucks i multiple destinations (retailers).
This system generates satisfactory plans. This
preblem has some constraints, for example, they are
numbers of trueles and drivers as resources, reguired
visiting time intervals for the destinations, and
trucks’ capacity. The primary target of this system is
a feasibility study for distributed cooperative

roblem solving systems, First, delivery requests
ymkaﬁes) are divided into gronps called areas,
through heuristics, This means dividing the problem
into subproblems. A delivery plan for each area can
be generated autonomously by the distributed
problem solver called the area agent, but each
generated plan is not complste, Flg 5.3.1 shows a

simple example of area agents and delivery requests.
Resources for delivery (trucks and drivers) ean be
shared hetwean areas, so resources for an area need
to be allocated in covperation with other areas. The
flexibility of the penerated plans iz alse enhanced b
giving a package to multiple areas and f'.hmug]i
cooperation between the areas. System input consists
of route information, truck and driver information,
and delivery orders. System cutput is the delivery
plan for a single day, Fig. 8.3.2 shows a simple
delivery plan, Multiple candidates are svaluated by
the total cost. This system accepls user input with
the puide in the event of loops or d2ad ends. Tt haga
funetion to explain the plan generation process,

8.4 Troubleshooting Expert System for
Elecironic Switching Systams

This system infers the probable cause from the
symptoms of an electronic switching system fault,
The diagnostic process is as given below,
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Fig. & 2.1 Evample of 2 mchine tool hesdstock

(1) Bymptom data is analyzed, and the components
that could be causing the problem (suspects)
defermined,

(2) The suspects are repressnted as a group of
funetional blocks,

{3) Effsctive tests are selected for each suspect and
exseuted. The number of suspects Is reduced from
the results. This process is repeated.

{4) Tinglly, the remaining sugpect iz replaced, and a
check made to see if the faull disappears,

Inferences in narrewing down suspected
components hg test results are freguently
indeterminate. In inferences of this type, the final
indicated suspect is in error through errers in
Ja ent, If the suspected component is replaced

the fanlt is still present, it indicatss an error
(eontradietion) in & ju ent made up to that paint,
80 thatju;igment is éﬁlﬁt&ﬂ. and a different conclusion
iz reasoned (& differeni suspect is selected), A truth
maintenance fechnique such as an ATMS is
incorporated in order to realize this kind of
indeterminate inference, An ATMS can handle
multiple contextis simultanecusly. In this case,
restrictions on the number of environments handled
simultaneously were imposed to prevent & drop in
ocessing efficlency. As an example of an imprecise
ﬁ:dgement, it can be assumed that the power supply
iz normal {5 the power supply alarm is not active gut
if the power supply alarm indicater lamyp is broken,
there will be no alarm even if the power supply is
abnormal, Tn this situation, the assumption that the
}rigﬂvsr supply is normal fs made.
e rule may be expressed as:

Table 1. Connective relations

Conneciive relations Code | Level
Pressure fit Pr
Push fit Fu
Serew fit e
Tapear fit Ta
Flt Splime fit ip
Position fit Fo
Hovable fit Mo
Gear coupling | e
Ring fit ki
(Eey i e
Clanp contast Gl
Taper  contact Ta
Contack | Flane contast M
Bxtarnal contact Ex
fiear meshing e
{fiap plane} Gz
Update
4+ += Capndidate exiraction
knowledge

| Pisassenbly camdidate ]

+— Selection knowledge for
disassanb]ly componsnt
= Evaluatien knowledgs

| PMizassenbly compomant |

Update knowledge for
sonnective relations

| Disagseably seglenen |

Fig. 8.2.2 Processing proceders

if power_ supply  lemp not on,

asm__alarm__ok % power supply alarm is normal
then power _supply__is_ normal (eause iz othar
than power supply)

In thisrule ssm__alarm__ok is an assumption. If
the truth of this assumption becomes doubtful, a fest
is executed, If no contradiction is generated, then the
test may be omitted, which is an adventage in system

performance.
8.5 Computer Lavout

This gystem aims at a feasibility study of parallel
}:mpessing in problemm-solving, using the problem of
igmg ot geometrical shapes within a limited space
{thatis, computer layout),

3P is used, and the pilat
system is implemented on the PSI, The hasic
configuration of ESP objectz is given in Fig. 8.5.1,
and the following hierarchical problem-sclving
approach is tried, taking parallel processing into

consideration. The parallel problem-solving ohjeect
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invoked by user request requires an upper-level
processing object. The upper-level processing object
divides given eguipment inio groups, and the room
into zones 2o that the problem can be reduced to
subproblems by allecating each group to an
appropriate zome. Through pseudo-parallel
Pm:essing realized by the above problem division, 2

ut satisfring semantieal constraint conditions
(that iz, equipment maintenance areas and pillars
may not overlap) is obtained. Pseude-parallel

essing and the reduction of possible answer sets
E;wsemantica] constraint conditions makes the
search for an answer more efficient. Constraint
conditions img.used between }ﬂarallel processes
congist of constraints to align the front of units of
equipment, and limitationz on distances between
specified equipment pairs. These are relatively weak
congtraints, so paralle] processing iz extremely
efficient, }iowwer, if therse are strong constraints
such as the requirement for the front of one zone to he
aligned with that of another zone, interferencs
between parallel processes often reduces parallsl
processing efficiency. Future research is required on
the allocation of information acquizition rights to
minimize inter-process interference.

8.6 Intelligent secretary

The moest common method of building a
knowledge base for expert systems is for a knowledge
engineer (KF) to interview o domain expert and
extract hisher knowledge. In this method, however,
a new expert (the KE) is requaired, and there are not
enou 8 to spread expert systems. Much of the
Enowledge of experts is already available in printed
form, in various forms as dissertations and books. As
human beings acquire knowledge, they acquire vast
gquantities of knowle&i: already arranged
systematically through books, and experts and 5
can also form knowledge bases for expert systems
from such basgic knowledge and experionce. Ifit were
possible to convert the natural language found in
such documentation into o knowledge base suitable
for an expert system, it would be extremely easy to
develop expert systems, The goal of thisz research is to
establish methods for converting knowledge
expressed in natural language into knowd bases
for expert systems, The field is limited to secretarial
work, primarily scheduling, and we present a
knowledge scquisition method by using the text
knowledge primitive (SEIP) to be problem solution
alieited from documentation. A knowledge
acquisition method using SKIP requires a funetion to
draw conerete actions from general concepts, and a
funetion to systematize text using multiple jargon
and expressions in a single form saitebls for a
system, These are called the expression
systematization function and the structural
systematization function. We are studying and
developing 2 knowledge compiler which links thesa
functions, The overall strocture of the knowledgs
acquisition support tool prototype, incloding the
intelligent schedunling system, is shown in Fig. 8.6.1.
Current knowledge zequisition support tools process
decumentation in § format {which restricts
scheduling) into a knowledge base for scheduling

eystems, and then its knowledge base is used for
intelligent scheduling,

8.7 Plant Control

This study aims to demonstrate the potential of a
logic programming lanpuage for application to the
plani control domain. A prolotype plant control

m was constructed and applied to a gteam power
plani as an example of a control object. Hnowledge
representation technigues were investigated for
describing the structural and dynamic
characteristics of the plant in the control demain.
Basic functions needed for controlling the power
plant arve:

(1} Monitoring the states of the plant;

(2) Belecting andfor determining the timing and
amotnt of control action;

{3) Planning the sequence of contrel asctioms
responding to malfonetions detected or aiming to
improve the control parformance;

(4) predieting the transition of the states of the plant
v gimulation,

Here, (3} and (4) were selected as the main subjects
of the prototype system,

In the prototype system, the plant model is
described in the form of deep knowledge such as
physical laws and the strueture of the plant, Usin%
deep knowledge, the control systermn enables contro
actions to be gencrated even if ap unexpectod
sitnation oceurs where heuristic control knowledge
{shallow knowledge) does not exist. The behavior of
the lI.-'lal,aml::-e ending to the specified control action is
predictad, i:ehis result is used for evalusting the
validity of the ssquence of control actions generated,

We employ qualitative reasoning mechanism to
realire deep reaxunirf. In gqualitative reagoning, the
object plant is modeled gualitatively with the
varinbles and constraints contained in it expressed
gualitatively. Thes behavior of the plant is acquired
in the form of the transition of qualitative states,
Both of the gqualitative reasoning systems based on
the methedelogies of [Huipers 86] and [deKlear 84]
have been explored and compared. Due fo the
ambiguity caused by qualitative valuss, a great
number of states are generated which acteally never
ocenr, Therefore, neither mathod can be applied
directly to plant comtrol. To aveid combinaterial
explosion, pruning the unsuitable candidates of the
states based on heuristics praved to be more effsctive
than introducing the full order among the landmarks
of different variables.

In future study, the mechanizsm of generating
control actions wsing deep reasoning must he
examnined in more detall. Parallel processing and
knowledge compilation of the reasoning results are
congidered to be effective to improve the efficiency of
deep reasoning processing,
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£.8 Portfolio planning support system

This system iz designed to support portfolic
lanning, where a specific amount of capital is
ivided among mult.iﬁ]a investment options, The
user inputs the portfolio problem by sper:if;rini profit
and safety targets, and the portfolic plan is
generated and refined by analysls from multlil?le
viewpoints to output the final portfolio plan, The
objective is the establishment of cocperation
olegy which can reach a solotion to the overall
rohlem ng} exchanging planning information
etween individaal aﬁﬁe in a muléi-agent problem
resolution process, A knowledge base module of this
system stores the knowledge essential for problem
resolution by & standard portfolio peneration module
and a portfolic improvement module. For the
standard portfolio, agents are structured primarily
on investment options, and for Enrtfoliu
imprevements primarily on evaluation viewpoints
for generated investment ﬁlana o7 AgEressive.
investment strategies, The knowledge module is
implemented on a el logic langoage (FGHC), in
the POOL (Parallel Object Oriented Language for
eooperative problem solving) parallsl ohject-oriented
langunage. POOL program is a set of class
deseriptions defining objects. Class definitions
cengist of inheritance, slots and default values
methods and loeal predicates. One-to-one and
broadeasting communication functions are supported
asmesgage handling funetions. Fig. 8.8.1 shows class
hierarchical strueturing for the investement option
agents.

9 CONCLUSBIONS

This paper reviewed the surrent state of research
and development on experimental knowledge
brocessing systems, The next steps forwards the final
stage will consist of enhancements of fanctions and
technologies, through use and verification of
grperimental sxpert systems for individual
component technologies. Parallel processing will be
introduced, and integration as a next-generation ool
will be promoted,
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