RESEARCH AND DEVELOPMENT
OF THE PARALLEL INFERENCE SYSTEM
IN THE INTERMEDIATE STAGE OF THE FGCS PROJECT

Shunichi Uchida
Atsubire Goto

Kamp Taki

Katsuto Nakajima
Takashi Chikayama

Institute for New Generation Computer Technology
4.28 Mita-1, Minato-lou, Tolyo 108, Japan

ABSTRACT

This paper introduces the research and development of
the inference system in the FGCS project. Hesearch on
the parallel inference system in the intermediale stage
included the parallel hardware system (PIM) and the
parallel software system. It started with the adoption of
a new language, OHC, as the base of the parallel kernel
language KL1. At the same time, it was determined o
develop the multi-P A1 system in ovder to encourage pat-
atlel software research. A distributed language processor
for WL1 was developed on the multi-FST system.

The development of the KL1 language processor and
also the development of & parallel operating system for
the PIM (PIMOS) was considered to include many un-
known problems. However, the goal of the research and
development for the intermediste stage was set to in-
clude the experimental building of the PIMOS on the
mmulti- P81 system and fo run some small scele applica-
tion software systems on it.

The development of a parallel hardware system aimed
at the experimental building of a PIM having about 100
processing elements (PEs), making the best use of expe-
riences gained in the development of the smaller version
of the P8I CPU.

Another aim was to develop 2 cross programming envi-
ronment of I{L1 on the smaller version of the P81, PSI-11,
su as to prepare for the wider and larger scale parallel
software development to be done in the final stage.

This paper contains not only the research and develop-
rment resubts but alse the background in which important
technical decisions were made,

1 INTRODUCTION

The research of the parallel inference gystem in the in-
termediate stage included a perallel hardware system
end software system. [4 started with planning aiming
at the experimental building of & parallel inference ma-
chine (PIM) having abaut 100 processing elements (PEs)

and wlso its parallel software system, the PIM opesating
system (PIMOS). This planning made full use of the
development in the initial stage such as the parallel ar-
chitectures and models proposed in the reseavch on the
datafiow machine and the reduction machine, and also
the P51 hardware systemn and its operating system, SIM-
POS.

A unique [eature of the intermediate stage research
and development is the coupling of the research on the
parzllel hardware with one type of parallel software, bl
pacallel operating system, PIMOS, newly adopled as an
iinportant rosearch target.

The research and development of parallel software has
never been conducted in as a large project anywhers in
the world, This meant that very little pragmatic sofl-
ware had been developed. The main reason was the lack
aof suitable paraliel hardware.

On the other hand, parallel kardware which was worth
huilding parallel operating systems for had never been
built, although spedial purpose parallel hardware sys-
tems such as image processors had been built. This was
becsuse the design of general purpese parallel hardware
needed the characteristies of the behavior of the parallel
software running on it. This implies that the paralel
eofiware must exist before parallel hardware can exist,
Thus, the relation of parallel hardware and sofbware is
something like the chicken and egg problem.

To solve this problem, a stepwise development stral-
iy was introduced which used two successive versions
of the multi-PST systems, the rulti-PS1-V1 which con-
tained six PSEI machines as its PEs and the multi-PSI-
V2 which contained up to 6& PSIIT CPUs.

These multi-PS1 systems enabled software researchers
to confirm their ideas on parallel programs by writing
znd tunning them in a real parallel hardware snviron-
ment. Then, their ideas reflacted in the design of the
next version of the hardware,

Using the multi-PSLV1, the experimental distributed
language processor of the parallel lagic programming

language, Guarded Homn Clause (GHD), was built to
study the communication mechanism between PEs. This
work thoroughly analysed how to extend the GHC lan-
uige to design the paralle] kernel languags, KL1, and
the kind of functions required for the PIMOS, The ax-
peritiental distributed language processor of GHO had
its debugging funciions augmented and extended to &
petude parallel programming environment of GHO on
PSL-T and PSLIL It was used for parallel algorithm re-
search running many small scale benchmark programs,

This made it possible to start the development of the
ol t-PSLVE, followed by the development of the prac.
tical KL1 distributed language processor and FIMOS,
These research results were reflected in the design of the
PIM hardware,

The stepwise development stralegy in which the soft-
warg and hardware development grew little by little
worked more effectively than had been expected.

Thus, most of the techrical aims included in the in-
termediate stage goal were achieved by the development
of the multi-PSI-VE with the practical KL1 distributed
language processor and the kernel part of the PIMOS
running on it.

The confribution of the research of the multi-F5LV2
and FIMOS to the design of the PIM hardware enahled
us bo set the resenrch goal of the experimental imple-
meatation of the PIM hardware & higher level in terms
af ita processing speed and the size of its PEs. Thus, the
ressarch and development of the PIM in the latter half
of the intermediate stage considered not only the inter-
mediste stage goals but also the goal of the final stage
which aims at a parallel hardware system having ahout
1000 PEs,

The flow of the important researeh activities iz shown
in Figure 1

This paper describes how we set up the goals and how
we made many important technical decisions in the re-
search and development of the PIM and PIMOS in the
intermediate stage. Technical details of KL1 language
processors, multi-PST systems, PIMOS and PTM will be
described in other papers also presented st the FEOS'SS
conference (5] [3].

2 INTERMEDIATE STAGE PLAN

2.1 Evaluation of The Inference Machine Re-
search in The Initial Stage

Research on the PIM and KL1:

The research and development of the inference machine
in the mitial stage included research on PIM architec
tures and the development of the sequential infarence
machines,

Research on the PIM architectures was conducied to
find hardware mechanisme that could efficiently exe-

cute logic programming languages in paraliel using such
computational models &5 dataflow, reduction and Kabu-
wake,

The languages used for this ressarch were Pare Prolog
and Concurrent Prolog, {CP) [14]. Several software
and hardware simulators for these languages were built
to analyze the algorithms and implementation mathods
of their interpreters [6],

This research shewed us such problems as the insuf-
ficiency of OH-parallel Prolog in describing communi-
cating processes and the difficulty of implementing the
hardware for the datafiow model, This research made
us realized that the scaree accumulation of parallel soft-
ware would cause o problan in benchmecldng the archi.
tectures,

Research on the parallel logie programming languages
investigated and evaluated such parallel logie program-
ming langueges as OF and PARLOG [4] and alse, an
abstract machine language for Prolog, WAM [21]. Con-
gideration of implementing thess langeages in hardware
maotivated us to design & simpler language and GHC was
born at the end of the initial stage [20].

Development of sequential inference machines:
In the development of PSLI [18]and CHI-I {t1], the
architectures to execute sequential logic programming
languages efficiently and their hardware implementation
techniques were developed with the KL firmware inter-
preter and the operating system, SIMP OS. This made
us decide on the development of the multi-PSI system
and start the design of & smaller version of the PSI, PSL.
I [19],

The development of PSL-IT and alan CHI-II [7) estab-
lished such important techniques as the architecturs de-
sign based on the WAM instruction sel and the code op-
timization technique in compilers. The development of
a new logic programming language, ESF [1] which com-
bined logic programming and object oriented program-
ming features to describe SIMPOS fmpressed us by its
advantages in terms of software produstivity, program
redability and maintainability. This led us o describe
the PIMOS with a single high-level language, K11, and
be make the PIMOS 2 single language system.

Summary of the regonrch in initial stage:
Considering the goal of the intermediate stage, PIM hav-
Ing about 100 PEs, the research achievernents of the ini-
tial stage are summarized as follows:

1. Logic programming is appropriate for parallel pro-
cessing and alse for deseription of nperating systems.

2. Current VLST technology, including CAD tools is
not sufficient to confine all the functions required
by logic programming in one chip, Thus, the fune-
tions implemented in the PE must be restricted, The
code optimization technique in compiless is impor-

R & D plan of H/W and S/W

1982 1983 1984 1985 1986 1987 1988 196% 1990 1991
FIMOS PIMOS pIMOs |
fva) {v1)
SIMPOS sIHEOS A1MPOS
(V1) (v3})
EL1-T >
KL1 . vi) {w2)
Gq ey ELl-G
el XL1-B ELl-B EL1-B
(V1) {vay > (V)
KLQ
_,--"“"
Lo
{vi})
Multi-
PsI
P51
PSI-I —|—.|. PAT-TT
F .,
FiM F PIM-FR : X
Bimulator of PIM | O fpIM- o} PIM
rototypae H/H of B i'e '“t'EE 100 FE o
e N Trotot
e —— - ¥pe
L ERH-PE i L E e
Bimulator of — pn L | E3d
L‘lﬂt‘:t;?-uxﬂﬂi n?“m EEM- H T el]
 Clustes |

Figure 1: Flow of Important Items

tant to reduce the complexity of the PE hardware
and attain the high performance and reliability of
the PIM.

3, The lack of practical parallel programs makes the
srchitecture design difficult. It is an wrgent mai-
ter to encourage parallel software research providing
software researchers with practical parallel hardware
anviranments,

2.2 The Intermediate Stage Plan and Its Im.
plementation

Belore the details of the intexmediate stage goal were
fixed, the following policies were confirmed:

|, The research of the parallel software systems, specifi-
cally, the KL1 languags processor and PIMOS, must
be closely linked to ressarch on parallel hardwere
systems, thet is, the multi-PSTE systems and PIM.
They muet proceed concurrently and stimulate each
ather,

2, The parailel hardware systems nmst be designad to
suppork software resescch and development. This
means that hardware ressarch mmat nob be isolated
from software research,

3. Information on the hehavior of parellel seflware sys-
tems is essentinl for practical hardware design al-
though little work had besn done il. Then, the tools
end the environments to encourage parallel software
research must have the highest prierity in the invest-
ment of human and financial resources.

In line with $he above policies, the following goals were
defined at the beginning of the intermediate stage, in
April 1085, Howsever, the level of these goals had to be
et higher in the middle of the intermediate stage.

1. Experimental building of a PIM having about 1040
PEs which efficiently supparts KL1.

2. Target processing speed of 2M te 5M LIPS

3. Experimental building of sthe PIMOS which is de-
scribed in KL

As the PIMOS was congidered to be the mest difficult
of these items, the development of the mlti-PSI sys-
tem which played a role of the PIMOS research tool wes
begun guickly to stimulate the development of the KLL
language processor, It was decided o develop the multi-
PSI system in two conseculive steps: the development
of the multi-PSI1-V1 using PSI-I and the development
of the multi-PEI-V2, making smaller version of the P8I
{PUs be its PE.

In the spring of 1986, the detailed design of the PE of
the mult-FSl-VE, that is the CPU of PELIT, was com-
pleted and the execution speed of GHO by the multi-FS1-
V49 was estimabed by small sample pragrams. The esti-
mated performance of the firmware interpreter of GHC
on the PE was very impressive. This also indicated that
the performance goal defined at the beginning of the in-
termediate stage would be attained by the mulii-PSI-V2
having 64 PEs although the everhead caused by the FI-
MOS was vncertain.

T'hen, the level of the intermediate stage gowls were sel
higher and defined in more detail, taking the final stage
goals aiming at & PIM of 1000 PEs into account.

1. The performance goal is 10M to 20M LIPS for & PIM
of 108 PTa and 200K &0 500K LIPS for one PE.

2. To reduce the communication overhead between
PEs, & cluster should be intreduced to connect about
eight PEs with a shaved memaory. Then, a PIM with
100 PEa can use several clusters connected by a hi-
grarchical network.

3. The PIMOS should be developed on the multi-P5I-
V. A BL1 distributed langaage processor should be
implemented in firmware. After the PIM hardware
ig completed, the PIMOS is moved from the multi-
PEIVE to the PIM.

4, A KL} cross programming envivonment should be
doveloped on PSL-11 using a KL pseudo parallel Fan-
ghage processor,

With these goals, the development of the PIM and
PIMOS could procesd independently. Thiz enabled as
to avoid the problem where one step of development has
to walt for the completion of another.

From late LOBT, the study of larger scale network naech-
st veas started fo delermine the important technical
problems in connecting around 1000 PEs ar around 100
clusters. The technical problems were divided among the
PIM research groups of the cooperating manufactorers
so that they could be further studied through software
simulation and by building experimental hardware,

This division of the jobs related to the design and im-
plementation of the PIM ameng cooperating manufac-
turers was considered to be essential in the final stage
ta build a larger scale experimental system. Thus, the
preparation for the job division was begun from the lat-
ter hall of the intermediate stage.

The research and development items described above
ara summarizad in Figure 2.

— 24 —

User
[I‘ ovic e Programs

b A
Ly Tl s RS

in;%,ﬁ-ﬁ Fﬂt“i"@% i

Fi

PIM

| ®sx_

bk Pseudo
Micro

PIMOS Multi-PSI

Emulators

KLl

Emulator

S E—

EL1l
Emulator
in C
Paeudo
UIx Multi- —
FSI
- i i Symmetry

Figure 2: Main Research Ilems

KL1-T: User languags

KL1-C: Kernel of KL1| | KL1-P

KL1-B: Base languags

Figure 3: The KL1 Language System

3 KLl LANGUAGE PROCESS0ORS
3.1 KLl Language System

I the design of the language for the PIM, there wers
two cholces: an OR-parallel logic programming language
or & stream-based AND-parallel logic pregramming lan-
guage, Comsiderations of the description of the PIMOS
which required the description of message passing among
many processes and also the simplicity of their hardware
support resulted in the adoption of the latier, GHO was
decided on,

We believe that this cholce was appropriate because
we. had to make a great effert to develop its distributed
languags processor although we designed KLL noi [ully
based an GHO but on a subset of GHO, called Flat GHEC
(FGHC).

GHO 35 not o practical language but defines the com-
putational modsl. A system deseription langnage and
& machine language has to be designed based on this
model. The language system of KL1 was defined at the
beginning of the infermediate stage. 1t had the language
layers shown in Pigure k%

KL1-C iz & system description language which is the
kernel of this language system. 1t has such functions as
medularization and macro-expansion, and many prac-
tical built-in predicates in addition to the POHC fune-
tions, KIL1-O iz used to describe the PIMOS and appli-
cation systems. KL1-C is compiled to KLL-B.

KL1-B is an abstract machine instruction set used in
the same way as WAM s for Profog. It is used as the
common machine language for both the multi-PSI-V2
and PIM,

KL1-F iz a notation used with KL1-C to apecify how
to divide jobs into sub-jobs that can be processed in
parallal or how to distribute jobs.

KLL-T g a user defined language which will be de
signed to fulfill the requirements in o variety of appli-
cation systems. Some examples are an object-oriented
perallel language A'BHA [22] and constraint logic pro-
gramming languages,

3.2 Distributed Language Processors of KL1

The design of PIM primarily. needs informetion on the
spm:iﬁcatiuns of KL1-C and KLI-B and the control

mechanism and behavior of the FIMOS. Thiz means that
the characteristics of the foial system with layers span-
ning from application software to hardware must be es-
timated.

As the estimation of the characteristics of applica-
tion software was almost impossible, the study was be-
gun from the possible configurations of the PIM hard-
wage system, considering a PIM of 1000 PEs. To con-
nect many PEs, the connection mechanism had to use
a loosely coupled mechanism such as a packet switching
network.

On the other hand, it was expected that the sizs of par-
allel processes, that is, the granularity, would be small
in most application software written in KL1. For small
granularity, a tightly coupled mechanism such as & com-
men bus with a parallel cache system and 2 shared mem-
ory was adequate to reduce the communication delay.

Both of these are important mechanisms for large scale
perallel systems. The PIM of the final stoge was ex-
peeted to use a hievarchical network combining both
mechanisms, However, a loosely coupled network could
have different structures such as two-dimensional mesh,
hypercube, or cross bar, depending on the characher-
isties of application software in terms of shructures of
programe and algorithms.

Then, the BL1 language processor had to be designed
independently from the details of the hardware struc-
tures. Befove the design started, we decided to build
thres experiments] KL1 language processors,

1. An intra-FE language processor.

2. A Lighily distributed language processor for the FIM
cluater,

3. A loosely distributed language processor for the
multi-PELVE,

The development of the language precessors (LPz) be-
gan with the design of an intra-PE language processor
(LP} of which the key issues were the design of the KL1-
B instruction sei, oplimization technigques in the com-
pilar, the implementation method of the process man-
agement, and the garbage collsetion (GO) technigue.

The tightly disteibuted LP uses & shared memory,
and thus, a single address space. The key lssuer were

 the communication method between PEas, including the

lock mechanise used for PEs to share the common data
structure and the cache protocal, and the implementa-
tiem of GC.

The loosely distributed [P nesds communications
among multiple address spaces. It contained many difhi-
cult research problems not confined to the LT but related

to the PIMOS functions. For example, a communication
between two different address spaces usually takes much

— 26 —

mere time than the tightly distributed LP. It requires ap-
timization in its implementation such as the caching of
the transferred data, The resource management of both
local and global address spaces needs complex mecha-
nismns including global GC. The observation of the be-
havior of the LF needs also special mechanisms as well
a5 the mechanism for the resource management.

The expamimental intra-PE LPs for FGHC had besn
writien in Prolog and the language ©in the initial stags.
Based on these, the loosely distributed LP was imple-
mested for FGHC on the multi-PET-Y1 to determing the
problems in the design of KL1-C and KLI-B,

In the [atter half of the intermediate stage, the loosely
distributed LY for KLL-B was designed and implemented
in firmware on the multi-PSI-V2, KL1-C was designed
comcurrently followed by the design of the PIMOS, The
design of the tightly distributed LP for PIM wes started
in the middle of 1987 [13).

4 MULTI-PSI 8YSTEM
4.1 Outline of A Research and Development

The purpose of the multi- P51 systemn was to provide soft-
wara researchers with the parallel hardwase environment
very gquickly; hewever, its development contained many
research problems. The reasons for this development ave
summarized ag follows.

1, The development of KL1 language processors and
PIMOS needs many new ideas. Effectivences of the
tdeas must be quickly evaluated by making experi-
mants, The research and development of P51 has de-
veloped many skillful researchers and engineers and
has improved software and firmware tools. It is the
most suitable environment in which to make many
experiments in a short period.

3. It is not sasy Lo make sa experimental pacallel hard-
ware system reliable and maintainable ensugh for
use as & software development tool. Using the PEI
28 its PE greatly redocss this problem.

Before the infermediate stage, discussions were held
on the specifications of the multi-PS1 syatem, sapecially
on ite network mechanism and the architecture of the
smaller version of the P3SL

Their design and implementation starbed just after the
intermediate stage began. The multi-PSI-V1 was come
pleted in the middle of 1986, The QP of the smaller
version of the PST was completed in early 1987 and built
up ag the front end machine of the multi-P3LV2. This
front end machine was also used as a stand-alone work-
station, PSI-IT.

P5L0T employed the instruction set based on WANM
and made full use of the code optimization technigue

Table 1: Main Festures of PSI-T and PSLE-II

PSI-1 PSI-I
Device TTEL (Fast) |CMOS-G.A., TTL
Cyele time 200 nx 200 ns
Ward width 40 bits 40 bits
wos B4b x 16KW | 53b x 16EW
Cache memary AKWx 2 dEKWx 1
Main memory 16MW (Max) | 64MTW (Max)
Memory chip 258 Khit 1 Mhbit
Max, Wo. of Process | 64 8/ W defined
Machine cade Teble type | WAM type
Structure data Sharing Copying
Hixe. spead{Average) |30 KLIPS 150 KLIPS
Exe. spead{Append) |35 KLIPS 333 KLIPS

with its compiler. For compactness, its hardweare used
nine newly developed Bk-gate OMOS gate-array LEls.
FSIIT attained a thresfold to fivefold tmprovement in
AP execulion speed.

The network of the multi-PSY system has a twe-
dimensional mesh structure. Fach node of the network
has a function to relay the packets from one node to an-
other. The routing control mechanism in the node was
extended and implemented in two 20k-gate LSIs for the
multi-PSLVE, Development was completed in the spring
of 1988, but the inspection of the bardware consisting of
Bt PEs took a long time bacause of the connestion of the
front end machine, and preparation of test programs and
ohservation programa. The preparation of the inspection
waz mich mors complicated than had been anticipated.
The total hardware system began opecation in the sum-
mer of 1983,

The design of the loosely distributed language proces-
sor of KL 1-B was started in 1986, Iks specification was so
complex that its verification had to be made by writing
it in the language C. The firmware implermentation of
the language processor was begun in late 1987 and par-
tially completed in the summer of 1938, It was huriedly
provided to develop the PIMOS on PSL-IL

On PELTL, the KL1-B ficmware resides with the KLO
fizmware which runs the SIMPOS. Programs written m
K11 are ron as processes under the SEIMPOS as well as
the programs writken in KL (or ESP). The SIMPOS

switches the firmware depending on whether the process
ig writlen in KLO or HL1-B.

In 1988, the hardware of the multi-PST-V2 iz heing
reproduced to diztribute i€ to many sdftware research
groups so that they can start parallel soffware vesearch
from the beginning of the final stage.

The development of the multi-P31 svatem made fuli
uge of experience and item that bad already been devel-

aped, such as microprogramming toaols, evaluation tools
and the SIMPOS.

Without these, we could net cope with the scale and
complexity of each part of the system, for example, the
large and eomplex hardware, complex firmware for KL1-
B, and cbservation and diagnosis functions of the front
end machine.

4.2 Muhi-PSI-V1

4.2,1 Funetions and Organization of The Sys-

tem

The multi-PS1-V]1 consists of six PSLIs as itz PEs
which are connected by a two-dimensionzl mesh net-
work. The reason why a lwo-dimensional mesh netwaork
was adopled was that it was considered to be appropri-
ate as the firgt step in studying the load balancing of
application software systems.

To solve the load balancing or load distribution prob-
lem, we first adepted the policy that programmers must
explicitly specifly how to divide their jobs info sub-jobs
that can be processed in parallel &t the system program-
mmng level.

This wes diffevent fvem most past proposals on this
problem made after past parallel architeciure reseanch
which tried to provide automatic mechanisms o sxplail
parallelism in users' programs. We concluded that this
method was ideal but too difficnlt to attain, especially
for the PIM and PIMOS.

Owir proposal is that cne job written in KL1-C be di-
vided fnto many sub-jobs specified by the programmers
using KLI-P. Furtharmore, the programmer should be
able to apecify explicitly the amount of computational
rgsources and the pricrity given to each sub-job., This
spocification, however, may not be accurate, something
like &first order approximation. The actnal beads of sub-
jobs on PEs will accordingly be unbalanced sanong Pis,
Thus, the PIMOS tries to compensate dynamically for
this imbalance as mmch as possible,

We examined a model in which compufational re-
sources were uniformly distributed on a two-dimensional
plane. When a programmer tried to specify the how jobs
are divided and the amount of resources of each sub-job,
the position and the amount of space were used a5 the
parameters. An overbead caunsed by a commumnication
between PEs was proportional to the distance befween

i
-——

&l

L)

Figure 5: Network of Multi-PSI System

two points on the plane, Thus, the loeality of communi-
cationa is represented.. This model was named the Pro-
cessor Power Plane model [2).

A dynamic job reallocation method based on this
model was created. As this methed was considered to
cause boo much overhead if implemented only by the
PIMOS, its hardware support mechanism was designesd
and implemented in the network node of the multi-PSI-
V2 [16}.

The network of the multi-PS] system was designed
based on the above. The appearance of the multi-PSI-
¥1 is shown in Figure 4. The structwre of the network
is shewn in Figure 5.

Fach node of the network has five channels. One of
them is connected to the PE of its node and the other
four are connected to four neighbors. Bach channel has
independent input and output circuits, each of which
containg 10bit dats and signal lines and dk-byte FIFO
buffers, so that multiple communication paths can be

opened. Each node alse has a simple routing mecha-
miam controlled by a table in which control instructions
are kept. The data transfer rate of each channel is 300
Kbytes fsee,

Packel transfer is comtrolled by the PSI micropre-
gram and the SEMPOS device handler. The FGHG dis-
tributed langoage processer implements inter-PE com-
munications using this handler.

£.2.2 Research on The KI1 Language Proces-

Sor

The purpose of the mult-PSEV] was to develop a
longely distributed LP for FGHOC to study the imple-
mentation of distributed unification betwisen PEs, the
control method of the load distribution, the observation
mechanism to watch the behavier of the PEs, and the
debugzing support mechanism.

The development of this LP started with the devel

opment of a pseude parallel LP for FGHC on & single

PELL This pseudo parallel LP simulated the parailel ex-
ecuiion of FGHC programs under the control of the S1M-
POE. Tt had a simple tracer and debugger and also some
measusement functions for eomputation time, number of
reductions, and communication delay.

Adter the multi-PSEY1 hardware was completad, this
peeudo paraliel LP was moved on to it and extended
to execite the programs in parallel among six PEs. As
this LF was built to evaluate the implementation meth-
ads of the mechanisms described abowve, the execulion
spesd was about 1K LIPS, However, it ran several snuall
scale programs such as the eight quesn problem and the
boal path problem and contributed o the study of job
distribution and the parallel algorithms [17].

Among the achievements of this experiment, the most
walpable was the methed to implement the ebservation
and maintenance mechanisma fo conirel and messure

Lhe distributed execution of programs. This experience
was reflected in the design of the multi-PS1-V2.

4.5 Multi-PSI-V32

4.8.1 Functions and Organization of The Sys-
tem

The multi-PE1-V2 containg up to 64 PEs, Its appearance
is shewn in Figure 6. The organization of the system is
as follows.

1, Bach PE consists of three CPU boards, one nel-
warlt board and four memory boards containing 80M
by tes.

2. Tts network has the same structure as the multi-PSI-
W1. The functions of each node are sugmented using
two 20-gate LEIs to abinin the data fransfer rate of
§ Mbytes/sec and to contain the circuit to support
the load balancing mechanism described in 4.2.1,

3. The main part of the system consists of eight cab-
inets, each of which comtaing eight PEs. The mini
mum configuration of the system is one cabinet,

4, The front end machine, PSI-11, has such functions as
input and output, observalion and maintenance for
the main part. Up to four front end machines can
be connecied to the 64 PE system.

5. The front end machine has two logicelly indepen-
dent functions which are called the front end pro-
ceseor (FEP) and the console processor (C3F). The
FEP performs input end output operations for the
PIMOS, the CSP performs the functions for obser-
vation and maintenance.

fi. The front end machine is connected to sach PE of
the main part with & 10-bit-wide common bus, Using
this bus, the front end machine loads fismware and
software and monitors and diagnoses all the PEs.

The scale of the hardware of the main part 1 very
large. The hardware containg 512 peinted cirenit boards
and a 5C byte memory. s testing and debugging re-
quired many frmware and safiware tools. Many of them
woere prepared as (5P lunctions. Most of the test pro-
grams were written in BSP. In its havdware debugging,
the KLD firmware and the kernel part of the SIMPOS
were loaded in each PE to run the test programs writ-
ten in E5P This made the debugging very efficiont and
helped us to keep to the development schedule.

4.8.2 Loosely Distributed KL1I Langnage Pro-

CesROT

The develepment of the loosaly distributed KL1 LP be-
gan with the design of the KL1-B specification. The
design of the KL1-C specification was also started by
extending the s_pqr.iﬁr.atiun of FOHO.

At the beginning of the design, the level of KL1-B was
roughly set to the level of WAM and then extended o
cover distributed implementation. The architecture of
the PE based on this level can be seen in Figure 7. [8)

The execution of KL1-B is performed using several
gueues such as a ready-guene, suspension records and
& goal quene. The PE takes ons goal (process) from the
ready-qrueue and prepares the environment in registers
to executs the poal, The execution produces new ready
goals. They are put in the ready queus again. [some
variable iz not instantiated, the new goal is added to the
suspension record. This is a very rough sketch of basic
KLI-B execution.

In addition to the basic exeoution functions based on
PGHC, many important funciions to make KL1-B prac-
tical were added, as described below,

Incremental garbage collaction (GC):
One of the major problems in executing KL1-B in a PE

Figure 6 Multi-PS1-V2

A regs Controi —_
Registers

RQHP IE’ Ready Goals

HP %\ Variable Cells Free Susp.

Suspension PC Record list
— Suspension
ALU, etc e ; Record

HOOK ™™

m; Suspended
Goal

Figure T: Abstract Architecture of PE

ig GC. In emecuting KL1-B, data areas are mads for vati-
ables, lists and se on. These avess are made in the heap
area in the memory. Some parts of these areas are re-
ferred to by several parallel processes. '

Languages lile K11 need & method to reclaim the data
areps after they become unnecessary. In Prolog, two
different methods are used to reclaim unnecessary used
areas, One is & stack mechanism which reclaima them
on the way of program execution, Another is GO, which
usually stops the execution during the GO process,

KL1-B alse needs a method Lo reclaim used memory
arens. However, it cannot employ an sfficient method
like & stack mechanism because the areas can be re-
ferped ta by several processes. If no sueh mechanism is
employed, reclamation of the used areas relies solely on
GO, If wsual non-incremental GO0 is vsed, the execuiion
will stop very often. Furthermore, non-incremental GC
accesses memory almost rendomly. Thus, it causes cache
mig-hit often and degrades the execotion perlormance,

Incrementzl GC can be used to solve this problem.
However, its naive implementation is very heavy and
greatly degrades the performance. We found a method
ta reduce the heavy overhead of incremental GC. This
method was named multiple refevence bit (MRB)-GC.
MRE-GC uses one additional bit in the tag field of sach
memaory word Lo indicate whether there are one or more
thes one references to the word. This made ik I}D%ibkl ta
uge the tag handling hardware so a8 to athain reasonable
execubion speed.

In the execution of KL programs, one memory word
is referred to by only one process in many cases. Thus,
MREB-GC works very effectively and reduces cache mis-
kit ratio and the occurrence of non-incremental GO,

Inter-process communication for distributed uni-
fication:

Clontrel of communication among parells! processes is
hidden under the KL1-B level. This is useful to male
the KL1 languags processors common to the multi-FSL
V2 and the PIM.

Unifications among the PEs on the multi-PSI-V2 and
the clusters of the PIM are implemented using global
paclel communication, Implementation of this global
communication needs some memory areas in the PE or
the cluster. These memory areas should also be re-
claimed, A naive solution for this is global GO which
must stop all the PEs or the clusters at one fime,

Ta perform GO separately in each PE or eluster, dif-
ferent address spaces have to be provided for each FE
or cluster to make a distribuied environment, A paclst
transferred among the different address spaces nesds its
identifier. A memory address cannot be used for this
purpese because the data address is changed by GO,
Then, & table is used to convert local addresses to global
addresses or vice versa. This table is called an im-

portfexport table. This method iz often used for high-
level language paraliel processors,

As the mumber of entries of this table is Hmited, used
entries have to be reclaimed by GC. The naive sclution of
bhis is again global GC. Tncremental GO can be applied;
however, its ordinary implementation in a distribubed
environment cansés a problem called racing. Racing is
cavsed by delay in packet transfer. I racing occors, an
entry i reclaimed eventhough & packet which refers to
that entry still exists.

To solve this problem, we designed a new methad

called weighted export count (WEC), in which a weight
is given to each enfry of the table and referenced data (8],
PIMOS support functions:
Many functions were added for supperting the PIMOS.
Some examples are functions for program execotion
management, computetional resource management, de-
bugging and maintenance,

including the functions deswaibed above, & KLL-B in-
terpreter which is the kernel of a loosely distributed KTL1-
B LP was implemented in firmware. To avoid low pro-
ductivity of firmware development, the interpreter was
primarily written in the language C to verily its spec-
ification and algoeithm of implementation. This inter-
preter was next used a3 o specification of the firmwars
interpreter.

The size of the firmware interpreter iz shown below,

Basic instructions 38K
Basic built-in predicates 16 K
IMemory managernent, network contral, ete. 44 K
Hardware control 4.2 18
Total microprogram steps 141

Observing this table, the size of the memory manage-
ment and network control part s lacger than that of
the basic instruction part which conirols the execution
of KL1-B in one PE. The basic instructions have been
studied in detail in the past. However, the merory man-
agement and network combrol has not. Iis instruction
design, especially its assigninent of required functions to
each of the instruckions is not optimum. This makes the
structure of its firmware implementation complex, This
part is most closely related to the control of distributed
unification, thus , requiting farther study in the future.

A PSLIE which s used as the front end machine of
the multi-P8I-V2 or a KLI cross programiming emvirse-
ment must have beth KLI and KL1-B firmware systems.
Az the total capacity of both firmware systems excesds
the capacity of PSL-I microprogram memory, a firmware
overlay function was added. The execution speed of the
EL1-B interprater was 50K to L100IC LIPS,

In the development of this interpreter, firmware de-
bugging tools which had been developed for the KLO
firmware were used very effectively. The kernel part of
the FIMOS which was being built concurrently was used
az o tesh program for this interprefer.

Experience in the design and implementation of this
interpreter is now used as the solid base for the develop-
ment of the tightly distributed KL1 LP vsed in 2 PIM
chuster and also the loosely distributed KL1 LP wsed for
communication among the clusters,

i PARALLEL INFERENCE MACHINE: PIM

5.1 Outline of Research and Development
5.1.1 Design of The Basic PIM Structure

The PIM intermediate stage research began substan-
tiatly from 1886 after its intermediate stape goals were
defined based on the evaluation of the research results
abtained in the inital stage,

Discusgions on the bagic design policy of the PIM cov-
eved many aspects such as target performance, basic
architecbure, available device technelogy, CAD design
tools, development period and development cost,

Ore important discussion was held on circuit density
of the device and development period, It proposed tws
alternative policies on PIM hardware building.

1. To redwee rishs, the design of PIM hardware should
limit its scale up to 100 PEs. Low density devices
which have well prepared CAD toals should be used
0 2% to make the development period short and ces-
tain.

2. Although the risk iz high, high density devices
should be used to confine one PE to cne printed
board. The PE should have continuity Lo a PIM in
the final stage, which should have abeut 1000 PEs.
The PE should be superiority in performance to the
bechnical standard in the final stage.

Being influenced by the estimated performance of the
mult-PEI-V2, the natural conclusion of the discussion
was ta choose 2. The research goals based on this policy
were considered to be very difficult to attain. However,
this choice was thought to be more suited to the philos-
ophy of this project.

The basic architecture of the intermediate stage PIM
was determined in order to employ a tag architecture
which could maintain continuity from the nul4-PSEVE,
The performance goal was defined to be 200K to 500K
LIFS for one PE, including the overhead caused by in-
eremental GC. This performance goal implies that if this
FE is used for Prolog, it will attain more than 1M LIPS,

Ingtruction sat for KL
Pipaline

VLEI - 200 — 500 KLIPS

Processar
Tightly-coupled econnectiosn
Ceherent cacha and

loek mechanism for KL
=P 1.5 ~ 3 MLIPS

B [S —

High-speed packet communication networlk
== 10 -~ 20 MLIPS J

PIM

Fignre 8: Target execution speed of PIM

To implement one PE on & single board and attain
200K to B00K LIPS, the PE needed not only high den-
sity chips and & highly optimized architeciure to make
its cycle time short but also a sophisticated code ppti-
mization techoique with its compiler,

The connection mechanism of the PE needed to realize
& short response delay for communication betwesn PRa,
This delay was considered to determine substantially the
lower limit of process’s granularity. If the delay is mads
shorter, the size of processes can be smaller. Then, the
number of processes that can be processed in parallel
will incrense,

The connection mechanism which made this delay
shortest was considered to be a common bus with & par-
allel cache and a shared memory. Then, a cluster was
intraduced in the PIM. The performance goals of the PT,
the cluster and the total system are shown in Figure 8.

5.1.2 Simulators for PIM Design

The design of the PE began with an analysis of the KL1
program’s behavier. The primary intention was design
of & cache mechanism including its protocol design. This
was made through soffware simulations.

The first simulation was made on VAX 117785 using a
KL1-B interpreter and a paraliel cache simulator, both
of which were written in the language C. The KL1-B in-
terpreter generated address patterns, by executing small
benchmark programs such as the N-queen program. The
cache simulater analyzed ihe address patterns and eval-
nated the cache mis-hit ratio and traffic on the commen
bus.

In late 1986, Sequent's Symunetry system was intro-
duced to extend the scale of simulation and to make the
simuelations more precise. The Symmetry system is a
mnlti progessor wsing conventional microprecessors. On
this system, the KL1-B simulafor ran at 2 to § K LIPS,

Tlrough the simulations, the characteristics of EL1
programs gradually becams clear. For exampls, execu-
tion of KL] programs consumes a heap avea very auickly.
The locality of its memory accesses was worse than that
of usual Prolog. Many memory calls are written and
read only once These facts meotivated us lo create the
MEB-GC methoed.

For communication ameng PEs, the commumication
rate bebwesn PEs for KL1 programs is higher than that
for conventional language programs. PEs lock memory
wards bafore they write them. These write operstions,
in most cases, do not caunse accesz contention for KL1
PrOgrams.

With these results, the number of PEs in the clus
ier was determined to be eight. The KL1-B simulaior
was extended to have MRB-GC and thes modified fo
run in parallel using several processors of the Synunetry
systerm. It is now nsed as a base for designing tightly
distzibuted language proceseora [13], [10].

5.1.3 Design of The PIM hardware System

PE Design:

The design of FE hardware began with the design of
an instroction set. This instruction set may be called
a concrete machipe instruction set, by contrast with an
abstract instruction set like KL1-B. It can approximately
bea one of two different types as followa:

1. A high-level mstruction set which 15 similar to KLL-
B is employed and iz implemented in firmware. This
instruction set has characteristics like CTSC.

2. A Jow-level instruction set which iz directly imple
mented in hardware, This instruction set has char-
acteristics like RISC. In this case, KL1-B mnstruc-
tions are inlorpreted by run-time routines writfen in
these low-leval instructions.

Each of these cholees had both advantages and disad-
vanbages. As deseribed in 4.3.2, the basic instructions
of KL1-B had been studied in detail and well optimized.
However, instructions for memory management and net-
work contral nesded further study and were possibly to
e changed for better optimization in their implementa-
tion,

The advantage of the high-level mstruction set with
firmware implementation is its flexibility of changing the
instruction design and thus, suitable for experimentsl
machines. Ity disadvantage is obvieus in chip design. Tt
tends to need a long cyele fime and large chip area bo
implement its MICrOPIOETAN THIMOCY.

The advantage of Jow-level instruction set, however,
is its simplicity of instractions which results in a short
cycle time and small amount of hardwara. This fea-
ture snables us to improve the execution time i code
optimization by compilers works effectively. I the code
optimization does not werk well, resull is dreastic, lang
chains of instructions and slow execution time.

Roughly speaking, the high-level instruction sel is suit-
ahle for a flaxible conirel oriented design, and the lowe-
level jpstruciion set is for a fast execotion oriented de-
sign. Both of these are worlth lurther study and evalue-
tion totally in the framework of the PIMOS implemen-
tation,

Inter-clusker network design:
The network hardware design has many problems. Most
of them are derived from the fact that its performance re-
quirements are very vague. This is because no large scals
parallsl software has ever run anmywhers in the world.
Thus, no one can imagine how it will behave and what
p-erfnm:lancc mq_ui:ﬂancﬂ.ts Bre,

We are trying to desiga the network herdwars bottom
up and are holding discussions on the following issues.

1. Contrel methoeds and their hardware support of the
inter-cluster network

2, Strucbures {or topology) of the inter-cluster network

O the first item, the target of the design is to atiain
fast response time or shortest delay for message transfer
between two clusters. One idea is hardware support for
management of the impaort fexport table and caching of
fransferred deta,

{n the second Hem, several important network sieae-
tures have been proposed. Some examples are the tweo-
dimensional mesh of the multi-PELVE, hyperoube prd
cros-bar.

Howsaver, no detailed discussion has bean held on the
structures ln connection with o module structure of par-
allel programs, distribution of parallel jobs and locality
of comonunication among parallel processes, bacauwse the
characteristics of large scale parallel programs are not
known vet. At this level, software simulation is not as
reliable as the simulation of a KL} program's behavior
insicle the cluster. Mo appropriate benchmark program
i available. This is something like outer space in the
research of parallel processing,

We axpect that the PIMOS and some parallel applica-
tion soffwars ranning on the multi-PSLV2E will give os
gome new knowledge on the above issues,

Current plan of the PIM irmplementation:

Adter the design of the PIM cluster was completed in the
spring of 1988, the design of the PIM total system which
included 16 clusters hegan in parallel the chip design and
production.

— 833 =

The design of the PIM fotal system made us realize
that it wenld contain many difficult problems and several
technieal alternatives to be furbher studied, as described
above,

We have decided to deal with these problems inclad-
ing many alternative choices by dividing them among
research groups at I00T and cooperating manufactar-
s,

First of all, the PIM for the intermediate stage goals
adopted the low-level instruction set for its PE and &
hypereube netwark for its inter-cluster network. It was
designed to be extensible up to sboot 500 PEs. An at-
tempt was made to construct & hardware system having
128 PEg around the end of the infermediate stage. As
this development will be continued in the final stage, we
named it FIM/p to distinguish it from other FIM modals
fio be developed also in the final stage.

We now plan to develop several experimental hardware
syslems based on different models such as the PIM/c
which will adopt the high-level instroction set for its
PE and a cross-bar network, and the PIM/m which will
ke an improved and extended version of the nulti-PSI-
V2. All of these will uee the PIMOS as their commeon
operating system and many seitware experiments will be
made on them.

5.2 Functions and Organization of The PIM/p
§.2.1 Configuration of The Hardware System

The PIM/p, whose hardware system will be constructed
around the end of the inlermediate stage, consists of 2
main part which contains 16 clusters, o front end me-
ching, PSI-11, and an SVP which performs maintenance
of the main part as shown in Figurs 9.

Eight PEs are connected in a cluster. Eight clustess
ars contained in one cabinet. Then, & PIM/p having 128
Pls consists of two cabinets.

5.2.2 PE and Cluster Architecture

The design of the PE stacted with the employment of &
low-level instruction set and a four stage pipeline hard.
ware for instruction execution, However, it was realized
that the complexity of some KL1-B instructions needed
too many low-level instructions to be descaibed, Then,
goime macro instruciions were added to the PE's instruc-
tion sef. A macre instroction is interpreted by dedicated
low-level instructions stored in & special internal memory
which contains about 8K instructions. The instructions
stoved in this memory are called inferpal instructions,
Ordinary instriuctions are read fram an instruction cache
and called external mstructions. Infernal instructions
can be regarded as a kind of microprogram [15].

The width of the external instruction is either four,
3% or eight bytes. The function of aach of these insirue-
tions is much more sophisticated than the uswal RISC

instruetion of a conventional microprocessor. KLL-B in-
structions are too complicated to be interpreted only by
the external instructions, Thuse, macro instructions have
to be added.

In execution of KL1-B instructions, a conditional
branch eperation depending on data types appears very
often, To perform this operation quickly, delayed branch
instruetions are provided to reduce vseless exesnbion cyp-
cles by augmenting the instroction execution pipeline.

A CPU of the PE has thirty-two 40-bit peneral regls-
ters and other dedicated registers for tag checking, float-
ing point numbers and s0 on. The contents of these reg-
isters must be saved for process swilching, In execution
of KL1-B, process switching bappens very frequently, To
peclorm process switching quickly, & gpecial instruckion
called slit-check is infroduced using the characteristies
of ELL-B instructions. The slit-check instruction is a
kind of optimized interrupt checking instruction. It can
be executed in one cycle,

A PE cache is a coherent cache with a write-back
mechanism. It hax iwo independent buffers for data and
instructions. The size of sach buffer is G4K bytes, The
block size of the data buffer s four words.

In addition to the fonctions described above, the PE
has functions for connecting it te the frant end machine

and the inter-cluster network,

The PE is implemented on a single printed board using
five 80k-gate LSIa. The cycle time of the CPI is 50
ng. The execution speed of an append operation which
g written in KL1-B as high as about 600K LIFS. The
structure of the PE is shown in FiEHI‘E 10.

In a cluster, eight PEs and a shared memory are con-
neched vie a §4-bit wide commeon bus. Tts address space
s 403 bvtes, The current imp]umr.:nl,ah'un of the cluster
includes 2560 byles for the shared memory.

One unit of the PIM network system is & four dimen-
sional hypercube network. Bach node of the network has
four channels. Each channel has a ene-byte dats lins. Its
throughput is 20 Mbyte/sec.

The current implementation vses two units of the net.
work systems to increase the throughput. Each cluster
is connected to fonr other clusters using two channels
per cluster.,

5.2.2 Program Execution in The Cluster

The tightly distributed KL1-B language processor uses
the cluster described above. This language processor
implements inter-PE comonunication vsing the shared
memory. Thus, it can make the communication delay
mmch smeller than that of the multi-PSEVE, It iz ex-
pected that the time for one transfer of message from one
PE to another can be reduced to & few microseconds or
less,

Multiple I:]].rjgerfube Network
| Router |

.

FEP
Inpaut
Chatput

—_— e e e EmEm s - -

Clustery

Figure 8 Configuration of PIM/p

KL1-B programa are execufed in the environment de-
seribed in 4.3.2, using such data structures as gqueues
and trees. Heady queves and goal records are impoe
tant data structures. The goal vecords which are a tree
structure contain the history of program execution and
aye sharad by ali PEs in & clester,

I one PE throws one goal to another and this posl is
roady to be executed, it 38 put in a ready quens attached
te the PE. Each PE has its own ready quene. As each
goal hes its own priovity for its execution, each ready
quene is divided inte many subqueues according to the
priovity. There are several other data struetures vaed for
exscubion.

Gd-bit data path

NI
{metwork

interface unit)

[Network router
b Inpuet f Orkput (FEP)

FPU
(fioating
point unit)

Some of these datz structores ave shared among PEs
in & cluster, If one data structure is accessed by many
PEs very often, it needs to be duplicated and allocated
in separate memory areas to avoid access contentions.

CPU

inf-addr

int-code

Instroction

___t Insteuction
cache

1M
{internal
instruction
meTnory)

Cacha address

Qo
{rache
controller

Data cache

units)

g T
ks

Figure 10: Structure of PE

Allocation of these data structures is vary important to
reduce bus traffic end cache mis-hit ratio. An imperiant
design criterion e to raise the locality of accesses by the
optimiged allocation. This enables us to make full use
of the cache mechanism.

The language processor for & eluster currenily has the
follewing data structure allocation:

1. A total memory area in the shared memory is di-
vided into several loca] memory areas and a common
memory area. Bach local memory ares is assigned

to cach PE. The commen memory area is shared by
all the Plis

2. A separste veady queue 35 attached to each PE and
put in itz locel memory ares because ready quenes
are mast fraquently accessed,

3. The goal records ave connected by pointers and from
& trea sbructure. Thiz free structure exfends itz
branches (subtrees) according to program execution.
If one goal is dispatched form one PE to another, a

new subroot is made and a new subtres grows up.
In the current design, the goal record subtres is at-
tached to each PE as shown in Figore 11.

Goals are distributed when a busy PE throws o goal
when it recelves & request from a non-busy PE.

The tightly distributed KL1-B language processor 1s un-
der detailed design. The design is evalusted using the
simulators deseribed in 5.1.2.

& PIM OPERATING SYSTEM: PIMOS

8.1 Outline of Research and Development

From the intermediate stage, the PIMOS was included in
the plan as an important research target of this project.
Befors that, its role and position in the praject were not

clear,

Generzlly speaking, many researchers of parallel pro-
ceszing had reaized thet management of computational
respurces in connection with job distribution and load
balancing was an indispensable funetion of parallel ma-
chines,

Hawaver, it was difficult to tell which layer of parallel
machines should mainly perform this function: machins
architectures, language protessors, operating systems, or
application programs. In research of dataflow machines
for scientific computing, this functicn was mainly treated
as & problem of machine architecturss, Some hardware
mechanizms wers proposed for this.

In ressarch of parallel inference machines for knowl.
cidge information processing, it seemed that machine
grchiteciures could play only a subsidiary role for this
prablem. Forthermors, considecing the difficulty in the
use of parallelism from application programs by compil-
ars, langoage processors did not seem to be appropriate
to embed this function in themselves. This made us de-
cide to develop a paralle] operating system for the FIb,
namely, the PIMOS, although we did net have any con-
crete idea of embedding this function in the PIMOS.
Even now, this situation has not yet changed greatly.

T starl the research and development of the PIMOS,
the fallowing design policies ware made:

1. A practical operating system used for large scale
software experiments,

2. A stand-alone self-contained operating system.

3. A single operating system showing a parallel ma-
chine as one system.

4, To be descriled in KL1 and be independent from
architectural details,

The PIMOS research goal in the intermediate stage
was defined to have two basic management functions.
One was a funetion for program execution management,
which introduced a layered structure in program execu-
tion using mete-programming. This function is called
“Sho-en”. Another was a function for ressurce manage-
ment, which manages sweh computational resources as
CPUs, memneries and input foutput devices.

Before the PIMOS staits to run, it s loaded from the
front end machine using the CSP functions. After 1t
starts, it contrels the entive havdware systemn. The front
eind machine is regarded as a special PE which controls
impulfouiput devices (FEP functions). The PIMOS may
imagine that FEP is also tunning as a part of PIMOS.

To make the scope of its development as small as pos-
gible, it was decided o buid its programming environ-
ment on 8 PSIL A psendo parallel KL language pro-
cessor and PIMOS wore built on FSLIL however, most
inputfoutput operations including man-machine inter-
face were performed by the SIMPOS,

This programming environment including the FIMOS
built on the SIMPOS is called the PIMOS-Z {PIMOS on
a single processor). It is not easy for us to make many
copies of the mulil-P31-V2 to distribute them to software
researchers, The PIMOS-5 on PSI-IL will be the most
popular parallel programming tool in the beginning of
the final stage.

The PIMOS-5 has & debugging {ool that can change
the order of process scheduling by random numbers so
Lhal programmers can defect bugs caused by a different
sxecution opder. The development of the programming
environment described above was also included in the

research goals.

Hesearch on the PIMOS began with the design of its
funetional specification. As the funetions of the PIMOS
ware closely related to that of KL1-C, the design of KL1-
(G was carried out concurrently. In the spring of 1987,
their conceptual design was completed.

The functional design of the PIMOS and KLI-C pro-
ceeded with experimental software building so that the
design could be verified. This software was built on Se-
quent’s Symmetry system using the language O and or-
ganized into ansther KLL-C programming environment
called the PIMOS development support system (PDSS).
The PIES has a KL1-C language processor including
the She-en function &nd micra-PIMOS, both written in
the language O, The functional design was completed in
the spring of 1988,

In the summer of 1928, the kernel part of a KL1.B
firmware interpreter began operation on a PSI-IT as de-
seribed in 4.3.2. The PIMOS-5 alao started running on
the PSIIL for debugging and also for development of
demonstration programs for the eoming FOUS'SE con-
ference. The PIMOS-M (The PIMOS on the Multi-

Processing Elements in A Cluster

PE PE

(T

‘| GR

GR

GR

GR

GR

GR

J(Lo cal Areas)

Goal
environment

Goal
environmant

i{Cnmmnn Area) Heap Area

GR: Goal Record

Figure 11: Execution of a [{L1 program

F31-V2) is still under development. The PIMOS-M and
PIMOS-8 are almost the same except that the PIMOS-
M runs on a real parallel environment and will produce
meore bugs than the PIMOS-8 because of real parallel
execution of its program. These two versions of the PI-
MO are planned to be released in the summer of 1989,
The PIMOS-M and PIMOS-5 are shown in Figure 12.

8.2 Function and Organization

6.2.1 Main Features of The PIMOS

The main mole of the PIMOS i to provide jts users
with an efficient and safe program exeousion snviron
ment by managing « vaclety of computational resources
such a3 computing resouress, memory resources and in-
put foutput deviees,

The most basic and important function of manage-
ment s protection of the operating system against user
program bugs. Reflecting on this function, user pro-
grams ate also protected. To implement the manage.
ment, sbructuring of program execution is indispensabls.
For instance, some conventional operating systems use
a layered sing structure for program execubion manage-
ment to protect themselves {rom user program bugs.

In the PIMOS, this structuring mechanism was imgle.
mented a2 one of the progeam execution contrel fune-
tions. It was named “Sho-en”. Using this function, re-
source management functions were implemented.

Funections for program execution control:
FIMOS neaded the structuring of program execution to
implement management mechanisms as described above.

However, FGHC, which was the base of KL1.C, lacked
any structuring mechanism, Ifs execulion structure is
Hat. Then, this mechanism was added as an execution
mechanism of KL1-C using meta programming . Meta-
programming separates program execution into two lev-
els, a meta level and an ohject level, using 2 spesial
program call called a meta-call,

In KI.1-C, this call was named a “Sho-en¥eall. “Sho-
an” in Jepaness corresponds to “manor” in English, Ex-
ecation of KIL1-C programs repeats 2 call of & goal which
iz gomething like & subsouling call. The Sho-en call ia
a special goal call. Program execution being expended
under this call is treated as a unit of computation be-
ing managed separately. This unit is called & Sho-en, A
Sho-en crll seems like the entrance to a Sho-en.

A She-en call can be made in any Sho-en recursively,
Thus, this call makes & tres-like structure in program ex-
ecution. [n this case, Sho-ens are nested making a parent
Sho-en, childven Sho-en and grandchildren She-en. Us-
ing this stracture, program execution contrsl functions
of the PIMOS are implemented,

[f a program executed in a Sho-en fails or encounters
an unexpected event, it i reported to its parent Sho-

Operating System
(meta-leve

Sho-en call

nErel

aport

. User Program
object-level)

)

Figore 13: An image of Sho-en

en. The parent Sho-en can contrel the execution of the
children Sho-en in many ways such as continuing and
abvorting. With this mechaniem, protection function s
roalized in the PIMOS, A Sho-en is shown in Figure 13.

Another important function of the progrem execution
management is priority comirel. In the PIMOS, each
parallel processe made by goal calls iz given some priority
in execution. This priority is used to conirol the order
of mxecution. It s given to each process in two ways,
One is to give it to each poal call using KL1-P. This is
fing-grained control, Another is to give it to each Sho-en
using a Sho-en call. This is coarse-grained control.

Functions for resource management:

The purpose of resource management of the PIMOS is
to prevent unnecessary consumption of computational
vesources, for example, caused by program bugs such as
an endless loop.

This mansgement is performed for the following re-
sources. One is the management of computing resources
snd memory resources. This is implemented using the
Sho-en mechanism. Another is the management of in-
put/output devices. They are managed by the PIMOS
uging & resouce tree.

A Bho-sn or wsage of & device i treated as a unit of
management and called a task, A Sho-en is a task. For
a Sho-en, the resources are managed as follaws. When a
Sho-en call is made, the amount of computing resources
and memory resourees can be specified by the parame-
fers in the call. If this amount is used up in the Sho-en,
it is reported to its parent Sho-en, Then, the program
of the parent Sho-en can make it start, suspend, resume
or abort.

Current implementation of the PIMOS:

PIMOS-M on Multi-I'SI-V2

PIMOS-5 on PSI-II

s .
T ap PIMOS

(> " <\s

r“_"‘ B] l (:}-—I TMOS
S[rmt | § S
s & Usar B

ng.tan & FEF e
@/_/ 5 FregTas
Front End Machine
Mulii-PSLI-V2 Main Part P5I-IT

Figure 12: Urganization of PIMOS

A total PIMOS system consists of a PIMOS main med-
ule, an FEP module and a C5P module,

When the PIMOS is used on the multi-PSEVE, the
main module is loaded to all the PEz before the PIMOS
sterts. Users programs can be loaded in two ways. One
iz 1o load & program which has been linked statically be-
forehand. Another is lo dynsmically link programs in a
module database and load i to specified PEs. The con-
tents of the moduls database are dynamically changed,
Thus, effictent implementation is used for this.

While & user program is being executed, many Sho-
ons are made, Some Sho-ens are made spanning teo or
more PEs. In this case, & foster parent is made in each
PE in which a descendant Sho-en is mads. When the
program terminates, its Sho-ens alen disappear. Becanse
of the delay in packet transfer, racing will acour just as
the case of reclaiming of the impeort fexport table entriss
in 4.3.2. This problem is solved by a method called
weighted throw count [WTC) [12]

Currently, the PIMOS iz designed as 2 single-user
multi-task operating system, To exlend i to a multi-
user syzbem, additional functions must be added for ap-
propriate distribution of computational resources among
users, reschition of resource access conflict, and so on.
This needs further study.

However, the eurrent PIMOS has a function to divide
PEs logically into several groups and sssign them o mul-
tiple users. This function is currently sufficient to use the
ol 6-PBI-VE for software experiments,

T CONCLUSION

This paper describes the research activities of the par-
allel inference sysiem in the intermediate stage. They
include the multi-PST system, the PIM, KL langnage

processors and the PIMOS.

The problems to be solved to develop these hardware
and software systems were not clear at the beginning
of the intermediate stage. Az they appeared, we solved
themn one by one, repeating many experiments.

In this problem solving, the multi-PS1 system played &
rouch more important role than had been expected. This
mennt that the development of the loossly distributed
KL1 langusge processor was much mere difficult than
had besn anticipated.

As we tried to make the hardware systems tools for
software development, their specifications had to be con-
servative, However, we had many diffienlt problems
in building the hardware, especially in chip design and
hardware inspoction.

Finally, the PIMOS-S has partialy begun operation on
a PSI-IT with many bugs. Although we are still doing
our best to make the PIMOS-M start on the multi-PSL-
V2 befops the FOOS'SE confersnce, we are quite sure
that it will be completed and released to oue users at
the beginning of the final stage.

The PIM/p is now under production. 1t is & very com-
plex havdware system although it consista of only two
cabinets. Mo serious technical problems are left; how-
evar, we have to create efficient methods for its debug-
ging and testing, Then, we shall have the fastest and
the most sophisticated inforence machine in the world.

The muiti-PEI-VE and the PIM/p will enable us to
make much larger scale paralle] soltware experiments in
the final stage.

ACKNOWLEDGMENT

This research was conducted jointly by many re-
searchers at JOOT and cooperating mamifacturers, We

would like to express our gratitude to Dr. K. Fuchi,
the director of the ICOT research center, Dr. K. Fu-
rukawa, the vice divector of the ICOT research center,
and Prof H. Tanaka of the University of Tokvo, who is
alse the chaivman of the PIM working group of ICOT,
for their support and encouragement. We would also lile
to thank all the members of the fourth vesearch labora-
gory of IGOT including Dr. E. Tick and many people
at the cooperating mannfacturers in charge of joint re-
search worl: Mr. Usda and Mr. Hirafsuka at Mitsubishi
Electric Co., Mr, Haltori at Fujitse Limited., Me, Sugle
at Hitachi, Iimited., Mr. Hayashi and Yamamoto at Oki
Electric Industry Co., and many others,

REFEREMNCES

[1] T. Chikayamea. Unigue features of ESP. In Proc. of
the Infernational Confersnce on Fifih Generalion
Computer Systems, pages 202-268, Tolom, 1584,

[2] T. Chikeayama. Load balancing in & very large scale
mnlti-processor system. In Procesdings of Fourih
Japanese-Swedish Workshop on Fifth Generniion
Compuler Systeme, 5105, 1986,

(3} T. Chikayama, H, Sato, and T. Miyazaki, Overview
of the Paralle]l Inference Machine Operating Sys-
tem (PIMOS). In Prec. of the Infernational Clonfar
ence On Fifth Generation Computing Systems 1988,
Tokyo, Japan, November 1888,

[4} Keith L. Clack and Steve Gregory. Parlog: A par.
allel logie programming language. Research Heport
TH-§3-5, Imperial College, March 1983,

[3] A. Goto, M. Sato, K. Nakajima, K. Taki, and
A, Matsumoto, Owverview of the Parallel Inference
Machine Architecture (PIM). In Proc. of the fnler
noatisnal Cenference On Fifth Generation Clamput-
ing Systems 1088, Tolye, Japan, November 10988,

[ﬁl A, Goto and 8. Uchida. Current Ressarch Status of
PIM: Parallel Inference Machine. TH 140, ICOT,
1985, [Third Japan-Sweden workshop on Logic Pro.
gramming, Tokyo).

[7] 5. Habata, R. Nakazaki, A, Konagaya, A. Atarashi,
and M. Umemira. Co-operative High Performance
Sequential Inference Machine: CHI In Proe of
[ERE International Conference on Computer De-
sign: VLS in Oomputer end Processors, Oct 1987,

[8] M. Ichiyoshi and K. Rokueawa. A New External
Reference Management and Disteibuted Unification
for KL1. TR 260, ICOT, 1985, (Also submitted to
the FGCS'EE).

[9] ¥. Kimura and T. Chikayama. An Abstract KL1
Machine and its Instruction Set. In Proceedings of

the 1987 Symposium on Logic Programming, pages
468-477, 1947.

[10] A. Matsumoto et al. Lecatly Parallel Cache De
signed Based on KI1 Memory Access Character-
estics. TR 327, 10OT, 1987,

[11] R. Makazaki, A. Konagaya, 5. Habata, H. Shimizu,
M. Umemura, M. Yamamote, M. Yolots,
T. Chiksyama. Design of A High-speed Prolog
Machis (HPM). In Proc. of the 12th Annual In-
ternational Sympesium on Compuier Architecturs,
pages 191-197, June 1985,

[12] K. BRokusaws, N. Ichiyoshi, T. Chikayama, and
H. Makashima. An Efficient Termination Detection
and Abortion Algerithm for Distributed Pracessing
Systems. In Proceedings of dhe 1988 Mnternational
Conference on Porallel Processing, volume 1 Archi-
tecture, pages 18-22, August 1988,

[13] M. Sate, A. Goto, et al. KL1 Execution Model for
PIM Cluster with Shared Memary. In Proceedings of
the Fourth Iniernational Conference on Logic Pro-
gramming, pages 338-355, 1087,

[14] B.Y, Shapire. A subset of Concurrent Frolog and
Ita Interpreter. TR 003, IOOT, 1983,

[15]1 T. Shinogi, . Kumon, A. Hatteri, A. Coto,
Y. Kimura, end T, Chikayama. Macro-call In-
struction for the Efficient KL1 Implementation on
PIM. In Proc. of the nternationad Conference On
Fifth Generation Computing Systems 1988, Tokye,
Japan, November 1588,

[18) Y. Takeada, H. Makashima,
K. Masuda, T. Chikayama, and K. Taki. A Load
Balancing Mechanism for Large Scale Multiproses-
sor Svstems and its Implementation, In Proc. af
the Inlernational Conference On Fifih Genereiion
Compuling Systems 1988, Tokyo, Japan, November
1585,

[17] K. Taki. The parallel software research and devel-
opment tosl | Multi-PS1 system. In France-Japan
Artificial Intelligence and Jompuler Sclence Sym-
postum 88, pages 365-381, Oetober 1956.

[18] K. Taki et &l Hardware Design and Implementa-
tion of the Personal Sequential Inference Machine
(PSI), In Proc. 'of the Infernational Conference
on Fifth Generation Compuler Systemes, pages 308~
409, Tolyo, 1084,

[15] 8. Uchida. Inference Machines in FOOS Project.
TR 278, 20T, 1987,

[20] K. Ueda. Intreduction to Guarded Hom (lauses.
TR 208, ICOT, 1986.

— 4 -

[21] DLH.D. Warren. An Abstract Prolog Instruction
Set, Technicel Note 300, Artificial Intelligence Cen-
ter, SRI, 1983.

[22] K. Yoshida and T. Chikayama. A'UM-a atream
-based concurrent object-oriented language. In
Proc, of the International Conference On Fifth Gen-
erntion Computing Systems 1988, Tokye, Japan,
November 1988,

