SEQUENTIAL INFERENCE MACHINE: SIM
[TS PROGRAMMING AND OPERATING SYSTEM

Toshio Yokei, Shunichi Uchida, and IGOT Third Laboratory

ICOT Resgearch Center
Institute for New Generation Computer Technology
Tokyo, Japan

ABSTRACT

Az the first major preduct of Japanese
FGCS (Fifth Generation Computer Sys-
tems) project, Personal Sequential Inference
Machine (PSI) is under development. The
whele system including the software system
is called SIM. Here we describe the design of
the 5IM’s programming system and operat-
ing system SIMPOS, its major language ESP
(Extended Self-contained Prolog), the devel-
opment tools, and the history of research
and development,

The major research theme of SIMPOS
iz to develop a logic programming based
programming environment including system
Programs.

The basic design philosophy of SIMPOS
is to build a super personal computer with
database features and Japanese natural lan-
guage processing under a uniform frame-
work (logic programming) based system
design (Yokol et al. 1983a,b).

1 PREFACE

As the first major product of Japa-
nese FGCS project, SIM is under develop-
ment. Here we describe the overall design of
SIMPOS, its major language ESP, develop-
ment tools, and the history of research and
development.

The major SIMPOS research themes
are to develop:

ICOT TR-087

— 70—

» System programs in logie programming,

* A programming environment for logic
programming.

SIM is the pilot model of the FGCS
software development,. It iz a high-
performance personal machine and will be
used as the research too! for the middie stage
of the FGCS project.

SIMPOS has 5 basic design principles.
They are:

¢ Uniform framework-based system design

A single uniform PROLOG-like logic
programming based framewerk covers all
of the machine architecture, language
system, operating system, and program-
ming system.

+ Personal interactive system

We hope SIM will be one kind of per-
sonal and very highly interactive com-
puters similar to many kinds of super
personal computers.

o Database features

PROLOG has database facilities that
can easily conform to relational database
systems. We hope to construct a new
programming system and a new operat-
ing system that fully uses the database
features.

o Window features -

In order to facilitate high level interac-
tion, SIM uses a bitmapped display and

a pointing device.
» Japanese language processing

All computers until now have been based
on Western culturez. Thiz is a major
disadvaniage for peoples of other cul-
tures when they want to use computers.
Everyone should be able to use com-
puters in his own tongue. So, the Japa-
nese should be able to use computers in
Japanese.

SIMPOS consists of & programming sys-
tem (PS) and an operating system (08). 08
consists of a kernel, a supervisor, and I/O
media subsystems. PS8 consists of subsys-
tems called experts. PS subsystems are con-
trolled by users, but there is a need to coor-
dinate the subsystems or processes. This
task iz accomplished by the coordinator sub-
system.

All the other subsystems are:

Window (O8),

File (08),

Network {08),
Debugger/Interpreter (PS),
Editor /Transducer (PS),
Library (PS).

2 DESCRIPTION LANGUAGE: ESP
2.1 Language Overview

SIMPOS is written in a user program-
ming language called ESP (Chikayama et
al. 1983) (Chikayama 1984a). ESP is spe-
¢ially designed and implemented for writing
SIMPOS, but is found to be useful also for
writing various application programs, espe-
cially those requiring hierarchical knowledge
representation.

Almost all of the features of KLO, the
machine language of PSI, are directly avail-
able from ESP (Takagi et al. 1983). As based
on a PROLOG-like execution mechanism of

KLO, ESP naturally has many of the fea-
tures of logic programming languages. The
important ones ameng them are the use
of unification in parameter passing and the
AND-OR tree-search mechanism based on
backtracking.

The main features of the ESP language,
except for those of logic programming lan-
gnages, are:

s Objects with siates,

o Object classes and inheritance mecha-
nisms, and

s Macro expansion.

See (Chikeyama 1984b) for further
details of the features of ESP.

2.2 Implementation

Currently, all the object-oriented fea-
tures of ESP are implemented using features
of KLO. Programs written in ESP are com-
piled into KLO. Object-oriented calls are
translated into calls to a runtime subrontine,
which implements the mechanism. In this
way, such object-oriented calls are three to
Tour times slower than ususl predicate calls
of KLO.

Implementing several built-in predi-
cates especially designed for speeding up the
execution of ESP are being planned. With
such firmware supports, the execution of
object-oriented calls is expected to be only
slightly slower than usual KLO predicate
calls.

Another approach iz alse taken for
speeding up the execution, i.e., introducing
general source program level optimizations
(Sawamura et al. 1984).

3 OPERATING SYSTEM

The SIMPOS operating system con-
sists of three layers: kernel, supervisor, and
I/O media subsystems (Hattori and Yokoi

1983} (Hattori et al. 1984a d,e) (Takagi et al.
1934).

3.1 Kernel

The kernel manages the hardware
resources to fill a gap between the PSI
hardware and the supervisor (Kawakami
et al. 1984). The processor manage-
ment realizes multiple process environments,
the memory management manages memory
space and performs garbage collection, and
the I/O device management controls the
inputfoutput devices,

3.2 Supervisor

The supervisor provides the basic ex-
ecution facilities of object storages, process
interactions, and execution environments
(Hattori and Yokoi 1984c). Note that these
facilities can be extended and modified as a
user chooses.

A pool i3 a container, which is also an
object, of objects of any class. A list and an
array are examples of pools. An object can
be put into or taken from a pool [Saltn et
al. 1984).

A directory iz a pool of objects which
are associated with a name. An object can
be bound and retrieved with a name in a
directory. Since a directory can contain
another directory as well, a tree of direc-
tories is formed, where an object is identified
with a pathname.

A stream is a pipe through which ob-

jects flow (Shimazu et al. 1984). An object-

which is put into one end of a stream, will
be retrieved at the other end. When no ob-
ject is in the stream, a retrieve operation is
suspended until some object is put into the
stream. A stream is used for synchroniza-
tion and communication among processes.

A channel is defined on top of a stream
to allow message communication among

processes. A message is sent to and received
from the channel. A port is a message
box for two-way communication, being con-
nected to another port with channels. A
message sent through the port will arrive at
the connected port to be received there.

A process executes a given program,
which is an instance of a program class. The
main goal of the program is defined as an in-
stance predicate, and the slots of a program
instance hold objects local to the program.

An execution environment consists of a
program, a library, a world, and a universe
(Watanabe et al, 1984). They can be
referred to at any peint of the program. A
world is a sequence of directories, and each
process keeps one as its working world. A
universe is a system-wide directory tree.

3.3 1JO Media Subsystems

I/O media subsystems manage the in-
terfaces with the outer worlds. This subsys-
tem consists of three subsystems: wmduw,
file, and network.

3.3.1 Window Subsystem

The window subsystem supports high-
level man-machine interface of SIM (Tsuji et
al. 1984) (lima et al. 1984). It supplies mul-
tiple logical displays (windows) on a single
physical display and primitive functions on
them. Other funetions like echoing or cursor
control are supported by other subsystems,
transducer and coordinator.

In the window subsystem, windows con-
struct a hierarchy. The most superior win-
dow is the logical screen, and usual windows
are inferior windows of the logical screen.
Fach window may have inferior windows
(sub-windows) within it. For example, an
editor window has a command sub-window,
a text sub-window, ete. A window iz shown
as a rectangular area on the physical screen,
and sub-windows must be inside of its supe-

rior window. Windows can be overlapped on
the screen.

Each window is dedicated to one
process as its own display, and it serves as a
communication channel between the process
and the user at the machine, An output ona
window is displayed at an appropriate posi-
tion on the screen by the window subsystem.
On receiving an input from the keyboard,
the window subsystem decides which win-
dow, called the selected window, the input
should be sent to. The mouse, a pointing
device, can move anywhere on the display
sereen, and the window manager sends the
mouse click either to the selected window
or the background window, according to the
mouse position. The process reads keyboard
and mouse inputs through its window.

3.3.2 File Subsystem

The file subszystem provides permanent
storage both for data and objects (Hattori
and Yokoi 1984b) (Komatsn et al. 1984).

A permanent storage of data (records)
is a file, which resides in a disk volume
and consists of dispersed disk pages. Three
types of files are available; binary files, table
(fized length record) files, and heap (variable
length record) files. A record is identified
with its stored position and/or its associated
key through an index file. A binder mech-
anism will be supported so that a virtual
file with many data and index files can be
constructed. A relational database manage-
ment may be built on these facilities.

A permanent storage of objects is an
instance file, where each object is stored as
an instance record. It is one of the major
features of the file subsystem, which is not
provided by crdinary file systems on other
machines.

A directory file is a file which associates
an instance record with a name. A per-
manent directory is a directory which has

a directory file as its permanent storage.
When included in a permanent directory, a
permanent object is stoered as an instance
record in an instance file and ineluded in the
directory file with a paihname. Therefore,
it can be restored even when the system is
rebooted.

3.3.3 Network Subsysiem

The network subsystem provides three
types of interfaces to communicate with
other machines {Takayama and Hattori
1984).

Inter-machine communication Tacility
supports data transfer between one SIM
with another SIM or other different ma-
chines. The network subsystem defines the
classes node, socket, cable, and plug to
impiement the communication.

Inter-precess communication facility al-
lows two processes on different SIM nodes to
communicate with each other, just az if they
exist on the same node. A remote channel
is defined to represent an original channel
on the other node. A process can send a
message Lo the remote channel and another
process on the remote node can receive it
from the corresponding eriginal channel.

Remote object operation facility pro-
vides a means of dealing with cbjects on
a remote node. A remote object on a lo-
cal node represents an object on the remote
node, and can be manipulated just as an or-
dinary object to operate on the original ob-
Ject. The network subsystem will support

- this facility to make SIMPOS to be a net-

work operating system.

4 PROGRAMMING SYSTEM

The programming system of SIMPOS
is a collection of expert processes. An ex-
pert process is a process which has an in-
dependent communication window (called
e_window) with the user. It performs the

special action upon the usger's request.

This view is different from the views
such that the programming system is a col-
lection of dumb software tools, nor is it a
collection of programs fo support the pro-
gram production. Our view frees us from
the overhead of the controlling process to
manage the available tools or the informa-
tion between the programs.

From the wser's viewpoint, he can in-
voke, control, and terminate any expert
through the expert’s e_window. He need not
navigate the complicated process invocation
tree to accomplish his task. He need not
bother about the unexpected destruction of
his work through wrong navigation.

4.1 Coordinator

In SIMPOS, there iz no explicit su-
pervising process such as Shell in UNIX.
However, there is a work-behind process
named Coordinator. Coordinator itself is
not an expert process but a processz that
manages the set of experts {(Kurokawa and
Tojo 1984).

As noted above, the user may think that
he controls the expert directly through the
window, but actually, eoordinator helps the
user’s control via the window interface that
is the associated key command table of the
window.

The details of Coordinator are found in
(Kurokawa 1984). The principal functions
of coordinator are simply described below:

& Send a user’s key command through the
window to an expert,

¢ Create, delete, and activate an expert via
system menu,

* Get and manipulate special commands
from an expert, and

¢ Help communications between experts via
the whiteboard.

The whiteboard is just like a black-
board where an expert puts a message to
ancther expert, who in turn picks up the
message by the user’s instruction.

The other way to solve this communica-
tion problem is fo set a communication
channe! with another expert. But, in this
case, the channel should be set between the
experis before the user decides the partner
of the expert. It is not easy to tell who
talks to who before communication becomes
LMEecessary.

The ultimate solution in this line would
be to set a communication channe] between
any two experts, even though the cost be-
comes very high as the pumber of experts
grows. And still, a few problems remain.
The user may change the partner after he
ordered the expert to put the message. [t
may difficult to denote both the partner and
the message using only the mouse click.

Using the whiteboard, we can set vir-
tually complete communication channels be-
tween experts. The user can select any ex-
pert after he has ordered one to put the mes-
sage. This operation will be realized with
one mouse click,

Each user has a directory to create ex-
perte. It contains the experts’ names and
the program names to create experts. The
uger can change the directory and the com-
mand table as he likes.

A user has his own directory which is
inherited from the system’s common direc-
tory, i.e., the standard set of experts.

An expert has its own set of key com-
mand table associated with its window,
However, Coordinator permits the user to
change the key command table of the win-
dow only when that window accepts the
change key command table command from
the uzer.

This fresdom is achieved at the leasi

cost of execution, This minimum overhead
and the maximum provision of user control
iz the main achievement of Coordinator.

4.2 Debugger/Interpreter

This subsystem interprets programs
and provides information concerning the
control flow of the programs. The basic
facilities of the Debugger/Interpreter sub-
system is similar to the debugging facility
of DEC-10 PROLOG (Bowen et al. 1981}
MNew features are:

s« Procedure and clause box comntrel flow
model,

Calls between interpretive and compiled
codes, and

w Multi-window user interface,

: DEC-10 FROLOG uses Box Centrol
Flow Model for its debugger. It comnsiders
that each predicate 1s the debugging unit.
In this view, each clause looks like a black-
box and cannot be traced whether the
unification of its head or body fails. The
predicate call simply failzs in both cases.
However, it iz often the case that the
clauze head iz correctly selected, but the
definition of the body iz erroncous. When
the Procedure and Clause Box Control Flow
Model is used, it is possible to check whether
unification of the head or that of the body
failz (Figure 1).

In 5IM, it is possible for interpretive
and compiled codes to mutually call each
other. However, Debugger cannet trace in
the compiled code. Debugger treats the in-
vocation of compiled codes just like a simple
built-in predicate invocation. If interpre-
tive codes are invoked frem compiled codes,
there is no way to pass the trace information
to the interpretive codes. In such a case,
Debugger restarts tracing with no trace in-
formation,

SIM has a bitmapped display screen.
Debugger uses the window subsystem that

procedure
clausa
head body
Unify Pick Exit
- aa et .
b <
Call Next Miss Redo Fxit
Unif: k
nify Pic Hoxit
_ T
{.....u...
<— | Next Mias_{_ Redo |<—
Fail Redo
Uniiy Pick Exit
T _‘}
< s e
.{:—.—..- E
MNext Miss Fedo
Figure 1, Procedure and Clause

Box Control Flow Model
for interpretive code

offers a multi-window waer interface with the
mouse. A user can select one of the control
options at break points, look at ancestors or
spy points, check the values of slots, or see
the class definitions using the library sub-
system. This information is shown in sub-
windows of Debugger and all the selections
can be done using the mouse click.

4.2 Editor and Transdueer

An editor iz a typical component of a
programming system and an indispensable
software tool in using & computer system.
Though there can be editors to manipu-
late abstract structures completely different
from texts, here we limit our discussion to
the editors which edit texts or data ex-
pressed in texts,

Even text expressions usually have
negted structures and the editor for SIM

8"[

(called Edips) is designed to manipulate
structured texts generally. But we do not
believe that there can be a general purpose
editor which iz convenient for every strue-
ture. A good gemeral editor iz one that ig
convenient for a specific purpose and can be
used for general purposes even if less power-
ful. Under this criterion, Edips is designed
to be especially convenient for editing ESP
programs and can manipulate other struc-
tures. In addition, Edips has the following
features:

¢ Customization with macro definition

s A small number of commands easy to
memorize :

= Failsoft with many recovery environments

To make Edips general, we allow users
to define the syntax. Though other general
structure-editors usually use BNF, we do
not adopt it because usual editing opera-
tions are meither to trim a branch of
the syntax tree mor to traverse the tree.
Editing operations are more closely related
to the text expression of edited data. So
we adopted an operator precedence gram-
mar with user definable parentheses. An
operator precedence graminar is more simple
and has better correspondence to the text
expression.’

Every token in the text expression of
edited data is classified into six categories:
« Atom
= Prefix operator
» Infix operator
Postfix operator
Lelt parenthesis
» Hight parenthesis

Each operator has a precedence. For edii-
ing purpose, however, too many precedence
levels should not be adopted, because
precedence introduces structures without
direct correspondence to the text structure.
As for an ESP editor, two or three levels are

necessary and sufficient. They are for:

 logical symbols such ag “»? = &~

rorr

» function symbols such as “47, -7
K*i’J k‘fﬁt

If necessary,

» predicate symbolz such as

u{u, ar:}n,

will be added,

In addition to the operator precedence
grammar, we adopt the usual regular ex-
pressions for defining the tokens. The text,
which is a sequence of characters, is first
transformed to a sequence of tokens by
antomata and then parsed to a structure.
Thus the grammar is two-leveled. However,
since the both levels are very simple, it is
easy to treat the grammar, but it has enough
expressive power to define the syntax of al-
most all the structured programming lan-

guages.

It ig desirable that the parser and the
pretty printer for the grammar can be used
by other programming tools such as com-
piler, interpreter and debugger. Therefore,
those tools are made as utilities (named the
transducer) separate from the editor. Thus
Edips consists of the editor kernel and the
transducer.

4.4 Library

The library subsystem manages all the
classes and predicates on SIM. It controls the
registration of classes, loading program files,
compiling, and building class objects by the
analysis of inheritance.

Each class has a class source file, a
clags template file, and a class object file
on some secondary storage. Class templates
and class objects exist only in the main
storage, but are saved to and restored from
the secondary storage.

Class zource files are text files coded

by the users. A class source file can have
just one clags definition. Like source files,
template files and object files also have just
one class information in each.

A class template is built from a single
source file. It holds all the information
of that elass except those from inheritance
analysis. The predicates of that class are
kept as interpretive codes when the template
is bumilt. They are compiled when the
user reguests. After the compilation, both
interpretive and compiled codes are kept.
Templates can be saved or restored before
compiling the predicates.

Clazz objectz are built from some class
templates. In a class object, all the in-
heritances are analyzed and szolved. It is an
executable image of an object oriented pro-
gram.

Another feature of the library subsys-
tem is to manage predicates. It contains
the features of referring to one predicate of
a clasgs, L.e., object oriented invocation, and
the invocation from compiled codes to inter-
pretive cedes or the converse. This mecha-
nism is implemented by indirect references.
All the invocation of predicates are done via
indirect references. When some interpretive
codes are invoked, that indirect word points
the entry of the interpreter. This mech-
anism cauges a2 uniform invocation scheme
even if both the interpretive and compiled
codes are mixed.

For object oriented invocation, it is
necessary to find which method should be
invoked during the execution time. Here,
the library has to distinguish those predi-
cates that have the same predicate name but
are defined in different classes. In the com-
piled codes, all the references are processed
and changed to the direct invocation of the
specific predicate, but in the interpretive
codes, the library has to zearch the predi-
cates during the execution time.

The compiler iz simply a subroutine of
the library subsystem. It compiles a single
predicate from interpretive codes. This
process is done only in main storage. After
the compilation, library helds both inter-
pretive and compiled codes. The user can
specify which code should be used for build-
ing up a new class object. The template file
is automatically rebuilt after the compila-
tion.

4.5 Exception Handling and Help System

Generally speaking, the exception is
one of the important concept in the sofbware
system. For example, the followings are
included in the exception: the various er-
rors such as hardware-detected sero divi-
sion, device-detected I/O errors, software-
detected errors, and the global exits in the
complicated nested procedure invocations,
and the various help facilities provided for
the user at his work.

In the traditional system, those ex-
ceptions are not well treated. They are
handled at each subsystem and/or system
level separately and independently.

In SIMPOS, the exception handling sys-
tem is provided throughout the all com-
ponents and all the system levels. Our prin-
cipal target and the basic frame are as fol-
lows:

e Uniform framework

An exception is generated and signalled
by a part of the software/hardware.
This action-taking part is called detec-
tor. The signalied exception must be
handled by some process with a excep-
tion handling program. This processing
part is called handler.

* No limitation for exception registrations

In the evolving system such as SIMPOS,
it cannot be forecasted how many kinds
of exceplions are used. Instead, it

should be provided the way to register
any number of exceptions with as fine
clasgification as possible. The multiple
inheritance mechanism should support
the above target.

» Flexible exception handling

The same exception has the wvarious
meanings depending on the environment
when and how it occurs. And each oc-
currence must be handled differently aec-
cording to the meaning.

The detector-handler scheme is power-
ful in this sense of the context mecha-
nism. Defector need not concern about
the environment. And hazndler also need
not concern about the context, only if
the choice of the handler iz performed
depending on the context.

The implementation is done as below.

There are two basic clazzes: event and
situation. Event is the name of the ex-
ception in general. There are two basic
subelasses in event: error and help. Error
has several subeclasses such as warning, fa-
tal error, and normal error. Help has also
several subclasses such a3 help in general,
and keyboard help and so on. Situation is
the name of the context for the exception
handling. The handler for the possible (or
dangerous) exceptions are set in situation.
Bituation has a stack like structure where
each program can set the necessary handlers
for its process and delete the useless hand-
lers when the process normally ends.

One of the problem in this scheme is
that there is a case when the several hand-
lers can be invoked for a zingle event. The
situation has a mechanism to sort the hand-
lers and apply them just in the mode of non-
determinizm.

The help facilities are investigated in
the broadest sense. Not only the comven-
tional on-line manual lookup facility but

also the completion mechanism for keyboard
or the limited spell correction are included.

The global exit such as catch-throw or
errset in Lisp language 1s also realized with
the use of thiz event-situation mechanism.
Also a command-loop which is common in
the application programs is provided.

5 BOFTWARE DEVELOPMENT TOOLS
5.1 ESP Cross System

All of BIMPOS is written in ESP. Since
they were designed and coded before the
hardware had become available, we needed
a crosg system of ESP for sofiware develop-
mant.

Most of the programs are written in
FPROLOG and some are in PASCAL on a
main-frame machine, They are:

« ESP interpreter,

« ESP cross compiler (to KLO),
« KLO cross compiler,

KLO cross linkage editor, and

Miscellaneous utility pregrams for in-
specting database of the linkage editor.

5.2 Runtime Support System

The object-oriented calling mechanism
of ESP is realized by translating them
into calls to runtime subroutines by the
ESP compiler. The runtime support sys-
tem of ESP 15 a set of such runtime sub-
routines. The runtime support system is
written directly in KLO and provides the fol-
lowing features:

» Basic object-oriented calling mechanism
of ESP.

e Mnemonimnemonic tracing of object-
oriented calls. It is based on the proce-
dure box control flow model and various
interactive control (skip, redo, etc.) are
posazible.

—RT=—

» Inspection of object slot values in mne-
monic form.

All the input and output required for
the above features are implemented using
the built-in “read_coneole” and “display_
console” predicates which utilize the I/0Q
devices of the console processor. The console
processor is provided primarily for hardware
and firmware debugging and was ready with
the P51 hardware. Thuz, mnemonic debug-
ging of ESP programs was made possible sl-
most directly after the firmware of PSI had
been completed.

When the firmware execution support
for ESP gets ready, it will be responsible for
the basic calling mechanism. The runtime
gupport will be a package for treating trace
exceptions generated by the firmware.

5.3 IPL

When debugging of SIMPOS first
began, programs to be debugged must be
compiled and linked completely on the
main-frame machine, transferred to a mini-
computer through a network, and then
loaded down to PSI. The network transfer
and down-loading took almost unbearably
long time.

When several parts of the kernel and
the supervisor of SIMPOS got ready, a
rather flexible initial program loader was
implemented in ESP. Using this IPL,
modules of programs to be debugged are
gseparately compiled, partially linked and
stored in flexible disks (Ueda et al. 1984).
Loading from the flexible disk and the final
linkage are done by the IPL on PSI itself.
This sped up debugging considerably.

5.4 System Tracer

The system tracer is a program also
writien in ESP. It runs as a separate process
and traces the execution of other processes
in the mnemonic form. The system tracer

was implemented for tracing KLO level ex-
ecution while the runtime support system
can only trace ESP-level execution {Sato et
al. 1984).

Currently, an effort to unify these two
debugging tools, the runtime support system
and the system tracer, i5 in progress.

6 BRIEF HISTORY

The design of SIMPOS was begun at
ICOT in the fall of 1982, and the func-
tional specification was prepared at the end
of fiscal 1982. In June 1983, a software
group of abeut 20 members, excluding the
ICOT members, was established for the
detailled functional specification and im-
plementation. After several modifications,
the class specification was finally completed
at the end of fiscal 1983,

In parallel with these activities, the re-
quirement specifications of ESP were dis-
cussed and finalized by the summer of 1983,
The language design and implementation of
ESP was then started. The ESP support
system is now operational on a development,
system. It includes an ESP cross compiler,
an ESP cross linker, and an ESP simulator.
SIMPOS has been coded in ESP from the
class specifications and cross-debugged on
the ESP simulator since Qctober 1983,

The first PSI was produced in December
1983, and firmware debugging was up at the
end of February 1984, PSI was made avail-
able to the software group in March 1984,
and other PSls later,

Single-process environment supports
were made available in April and enabled
simple program debugging on PSI. In May,
the IPL became operational, so as to
allow linking programs directly on PSIL
With multiple-process environment facilities
which were supported in June, each subsys-
tem was able to be fully debugged. The
major parts of the I/O media systems were

operational in September. The program-
ming system is now under debugging on PSI.

The preliminary version of SIMPOS
will be ready for internal uses in Dct-uber
and the first version of SIMPOS will be com-

pleted at the end of the current fiscal year. -

7- CONCLUSION

About 40 guys from ICOT, Mitsubishi
Electrie Co., Ltd., NEC Corp., Oki Electric
Industry Co . Ltd Matsushita Electric
Industrial Co., Ltd., and Sharp Co., Ltd.
are engaged in thJe develupment of SIMPDE
Their effort has made clear the powerfulness
and generality of logic programming. The
current status of SIMPOS wili be shown in
the demonstration at the conference hall of
FGCS5'84 and ICOT.

- Improvements and enhancements of
SIMPOS will be continuved in parallel with
other research activities and SIM will grow
into a main r:.umpunent in the infra-structure
of this project.

REFERENCES

Bowen, D. L., Byrd, L., Pereira, F. C. N,,
Pereira, L. M., Warren, D. H. D. DECsys-
tem-10 PROLOG User’s Manual. ‘Dept. AL,
Univ. of Edinburgh, p. 101, 1983.

Chikayama, T., Takagi, 8., Sakai, K.
Personal Sequential Inference Machine PSI
- Its Language System -. Proceedings of
The 2Tth annual conference of Information
Procesging Society of Japan, 1983 Also
in ICOT. Technical Memorandum TM—ﬂﬂEE
1983,

Chikayama, T. ESP Reference Manual.
ICOT Technical Report TR-044, 1984a.

Chikayama, T. Unique Features of ESP.
International Conference on Fifth Genera-
tion Computer Systems 1984 Also in ICOT
Technical Memorandum TM-0055, 1984b

" Hatteri, T.; Yokoi, T. Basic Constructs of
-the 8IM Operating System. New Generation

Computing, vol. 1 no. 1, pp.81-85, 1983
Algo in ICOT Technical Memorandum TM-
018, 1_93&

Hattori, T., Tsuji, J., Yokoi, T. SIMPOS:
An:Operating System for a Personal Prolog
Machine PSI. ICOT Technical Report TR-
055, 1084a,

Hattori, T., Yokoi, T. The Concepts and
Facilities of SIMPOS File Subsystem. ICO'T
Technical Report TR-059, 1984b.

Hattori, T., Yokoi, T. The Concepts and
Facilities of SIMPOS Supervisor. 1COT
Technical Report TR-056, 1984c.

Hattori, T., Kurokawa, T., Sakai; K., Tsuji,
J., Chikayama, T., Takagi, S., Yokoi, T. An

‘Operating System for Sequential Inference

Machine PSI. ICOT Technical Memoran-
dum TM-0085, 1984d and ICOT Technical
Memorandum TM-0061, 1984 (in Japanese).

Hattori, T., Tsuji, J., Uchida, S., Yokoi,
T. Overview of SIMPOS Operating System.

- Proceedings of The 29th annual conference

of Information Processing Society of Japan,
4E-1, 1984e (In Japanese).

lima, Y., Nakazaws, 0., Enomoto, 8., Tsuji,
J. Window Subsystem of SIMPOS. Proceed-
ings of The 29th annual conference of Infor-

‘mation Processing Society of Japan, 4E-6,

1984 (In Japanese).

Kawskami, T., Ueda, N., Horie, M., Hattori,
T. Resource Management of SIMPOS. Pro-
ceedings of The 29th annual conference of
Information Protessing Society of Japan,
4E-2, 1984 (In Japapese).

Komatsu, M., Mano, T., Konagaya, A.,
Hattori, T. File Subsystem of SIMPOS. Pro-
ceedings of The 29th annual conference of
Information Processing Society of .Iapan
4F-8, 1984 (In Japanese). -

—go—

Kurokawa, T., Tojo, 5. Coordinator - a
kernel of Personal Sequential Inference Ma-
chine (PSI), ICOT Technical Report TR-
061, 1984,

Saito, 8., Watanabe, H., Shimazu, H,,
Yoshida, N., Hattori, T. Execution Manage-
ment of SIMPOS - Poel —. Proceedings of
The 29th annual conference of Information
Processing Society of Japan, 4E-4, 1984 {In
Japanese).

Sato, Y., Watunahe, H., Hori, A., Ueda, N.,

Chikayama, T. System Tracer of SIMPOS.
Proceedings of The 29th annual conference
-of Information Processing Society of Japan,
48-10, 1984 (In Japanese).

Sawamura, H., Takeshima, 5., Kato, A.
PROLOG Scurce-Level Optimizer: A Cat-
alogue of Optimization Metheds. ICOT

Technical Report TR-047, 1984 (in Japa-

nesej.

' Shima'w,, M., Yoshida, N., Saito, S§.,
Watanabe, H., Hattori, T. Execution Man-
agement of SIMPOS — Process and Stream .
Proceedings of The 29th annual conference
of Information Processing Society of Japan,
-1E-3, 1984 (In Japanese).

 Takagi, 8., Chikayama, T., Hattori, T.,
Tsuji, J., Yu]mi T., Uehida, E., Kurokawa,
-T.,. Sakai, K. Overall Design of SIMPOS.
Proceedings of Second International Logic
Programming Conference, 1984 Also in
ICOT Technical Report TR-057, 1984.

Takagi, S., Chikayama, T.; Yokota, M.,
Hattori, T. Introduction of Extended Con-
trol Structures for Prolog. Proceedings. of
The 26th annual conference of Information
Processing Society of Japan, 4D-11, 1983 (In
Japanese).

Takayama, Y., Hattori, T. Network Subsys-
tem of SIMPOS. Proceedings of The 2Gth
annual conference of Information Processing
Society of Japan, 4E-7, 1984 (In Japanese).

‘Watanabe,

-Machine (SIM).

Tsuji, J., Kurokawa, T., Tojo, 8., Iims,
Y., Nakazawa, 0., Enomoto, S. Dialogue
Management in the Personal Sequential
Inference Machine (PSI). ICOT Technical
Report TR-046, 1984.

Ueda, - N., Tojo, 8., Kurokaws, T. IPL
Scheme of SIMPOS. Proceedings of The
29th annual conference of Information Proc-

" essing Society of Japan, 4E-9, 1984 (In Jap-

anese).

H., Shimazu, H., Yoshida, N.,
Saito, S., Hattori, T. Execution Manage-
ment of SIMPOS =~ Werld —. Proceedings of
The 29th aunual conference of Information
Processing Society of Japan, 4E-5, 1984 (In
Japanese).

Yokoi, T., Teguchi, A., Kurokawa, T.,
Hattori, T., Tsuji, J., Sakai, K. Structures
and Design Principles of the Operating Sys-
tem for the Personal Sequential Inference
Proceedings of The 26th
annual conference of Information Processing
Society of Japan, 6D-8, 1983a (In Japanese).

Yokoi, T., Taguchi, A., Kurokawa, T.,
Hattori, T., Tsuji, J., Sakai, K. Structures of
an Operating System on a Logic Program-
ming Language. Proceedings of The 26th
annual conference of Information Processing
Society of Japan, 6D-7, 1983b (In Japanese).

