BASIC SOFTWARE SYSTEM

Koichi Furukawa and Toshio Yokei

ICOT Research Center
Institute for New Generation Computer Techuology
Tokyo, Japan

ABSTRACT

The basic software system is a core
software for the Fifth Generation Computer
Systems. A bridge to fill the gap he-
tween a highly parallel computer architec-
ture and knowledge information processing
is strongly needed in order to build a highly
parzllel super computer for knowledge infor-
mation processing. In thiz project, “logic
programming” was selected as a coneep-
tual bridge. The basic zoftware system
is supposed te play the role of an actunal
bridge. For the initial stage of the project,
it has been assigned to design the cntire
system and develop the underlying technol-
ogy necessary for implementing its subays-
tems. Although this project has been in
operation for only two and a half year, and
achieved only a small portion of the en-
tire research plan, we are convinced our ap-
proach based on logic programming is very
promising. This paper describes the current
status on our research and development with
the basic software system.

1 INTRODUCTION

The target of the Fifth Generation
Computer Systems (FGCS3) Project is to
build a highly parallel super computer for
knowledge information processing. In this
project, “logic programming” was selected
as a bridge to fill the gap between a
highly parallel computer architecture and
knowledge information processing, as shown
in Fig. 1.

ICoT TR-085

To implement an aectual bridge, a
sophisticated software system which we will
call the basic software system is required. It
i supposed to be composed of the following
five moedules, as shown in Fig. 2:

{1) Kernel language / Knowledge program-
ming language

(2) Problem-solving and inference software
medule

(3) Knowledge base management soffware
module

{4) Intelligent interface software module
{5) Intelligent programming sofiware module

Knowledge Information

Processing

Logic Programming

Highly Paraliel
Computer Architscture

A

.-"‘"".. e
s "‘x\
VLS| Technology ~

-

Fig. 1 The Fifth Generation Project

— 45—

The initial stage of the project will
be the development of the underlying tech-
nology necessary for implementing each
module. The modules will be developed in-
dependently and will then be integrated to
form a total basic software system.

The integration, which is a crucial
problem in developing the Fifth Generation
Computer Systems, will be achieved by
using a common programming language in
their development. In this project, logic
programming has been selected for this
purpose. The development of a series of
kernel languages, KLO, KL1 and KL2 is
planned. These are logic pregramming lan-
guages which define an abstract interface be-
tween the hardware and the software. As
a first step in 1982, the machine language

KL for the Sequential Inference Machine

{SIM) and its user language ESP {Extended
Self-contained Prolog) were designed as the

L | Appﬁl::atiuns i J

o
Intelligent Interface l Intelfigent Programming
Soltware Module Soflware Module
1 ¢
Problam-solving Krowledge Base
 and lnference Management |
‘q Software Module Softwara Module |
Knowladge Pméi_ramihﬁ'Eéhﬁuage'manﬂa!a i
t Kernel Language KL1|
! 10
i Parallel Infarence Machine /
i Hnowledge Base Machine |

Fig. 2 The basic software system

common languages.

The language pair KLO and ESP is not
sufficient for the development of a final basic
software system which satisfies the target
shown in Fig. 1. KL1 as well as its user
language Mandala are now being designed
for the purpose of developing a firm base to
achieve the target. The eszential extention
of KL1 into Prolog is a stream-and-parallel
function which will be used to describe the
behavior of multiple objects acting in paral-
lel and will be executed in parallel on a
Parallel Inference Machine (PIM). The user
language Mandala (Furukawa, et al. 1983¢)
for KL1 is also intended to be a knowledge
pregramming language for building various
application systems related to knowledge in-
formation precessing. This will enable ex-
traction of a large amount of parallelism.
It is therefore important that each function
in Mandala are implemented with the most
straightforward method possible,

The integration of the problem-solving
and inference software module and the
knowledge base management software mod-
ule into a single framework is planned, and
these two modules will be combined using
Mandala to establish a powerful knowledge
representation system.

As fTar as the problem-solving and in-
ference function is concerned, the greatest
challenge for the next stage is to incorporate
parallelism. Cooperative problem solving
will be the key issue in achieving this goal.
We investigated to implement a few parallel
inference engines in Mandala., Concurrent
Prolog (CP) interpreter written in CP is one
example. Another example iz a pure Proleg
interpreter in CP. The implementation of a
first order theorem prover is planned as well
as a term rewriting system in KL1.

In dealing with knowledge base manage-
ment functions, the areas requiring special
attention are (1) how to deal with very large

knowledge bases, (2) the investigation of the
knowledge acquisition probiem and {(3) the
design of a knowledge representation sys-
tem.

With regard to (1), the newly developed
Prolog machine P31 (Personal Sequential
Inference machine) and relational database
machine Delia are going to be connected via
local area network INI (Internal Network in
ICOT) as a first step toward realizing a very
large knowledge base.

For (2), knowledge acquisition problems
have been approached from a logical point
of view. Formulation of consistency check-
ing, rule induction from a set of facts and
truth maintenance in a logical framework

were implemented in Prolog using the meta

programming feature.

For {3), these two systems will be
rebuilt in KL1 and will be combined using
Mandala to realize an ultimate knowledge
representation system in the next stage.

Intelligent man-machine interface func- -

tions and intelligent programming functions
have also been studied within the basic
software system’s research. 'This research
plays a double role in the FGCS project:
the establishment of techniques for building
parts of the basic software system and the
evaluation and increase of the usefulness of
the logic programming approach.

For the intelligent man-machine in-
terface function, we concentrated on
natural language understanding research
and pursued three subjects: (1) the develop-
ment of a powerful parsing system, (2) the
investigation of the discourse understand-
ing problem, and {3) the design of a2 set of
machine readable dictionaries.

For the intelligent programming func-
tion, many rather independent research
activities were being performed to deter-
mine the key issues required for realiza-

AND Paraflal -Stream/Sat OR Parallal

Funelion Furtction

ﬂ |

Modularizetion Function / Meta-inferenss Functisn

Fig. 3 Conceptual conflguration of K11

tion of the function. They ineclude soltware
specification, program understanding, pro-
gram verification, program transformation
and automatic programming.

In the following, more detailed deserip-
tions will be given for the above five modules
of the basic software system.

2 KERNEL LANGUAGE

The kernel language for the Fifth
Generation Computer Systems will evolve
from KLO, the machine language of SIM de-
veloped in the initial stage of this project.
It will be further developed through KIL1,
which is being developed for use in the inter-
mediate stage and beyond with primary em-
phasis placed on the extension of the parallel
execution function, and will become Kernel
Language version 2 (KL2), which will have
knowledge representation support function
and will be developed in the intermediate
stage and used in the final stage.

This paper will concentrate on KLI1.
KL1 has four major functions as shown in
Fig. 3. They are the and-parallel function,
the or-parallel function, the modularization
function (Furukawa, et al. 1983b) and the
meta-inference support function. In the
foliowing, each funection will be deseribed
briefly.

(1) And-parallel function

The and-parallel function is introduced

to deseribe the behavior of objects in
a problem demain and thereby to sup-
port object-oriented programming (Shapiro
1983a). There are several logic pro-
gramming langnages with and-parallelism;
Relational Language (Clark, f al. 1981},
PARLOG (Clatk, et al 1984) and
Concurrent Prolog (Shapiro 1982b, 1983b,
1983¢c, Takeuchi 1982, 1983, 1984). The
detailed design of KL1 is not finished yet,
but these languages will greatly affect the
degign.

. (2) Or-paralliel function

A very important element of KL1 is the
or-parallel function. Among the many ap-
plications of knowledge information process-
ing, those intended to achieve what might
be considered az artificial intelligence often
deal with problems that can be solved only
by searching for solutions among a num-
ber of possibilities. The or-parallel function
handles such search problems. The rela-
tional database machine developed in the
initial stage of this project can be regarded
as a kind of search-ali-zolutions machine.
Pure Prolog, which is obtained by eliminat-
ing sequential control from standard Prolog,
i3 a language Tor representing the search for
all solutions.

These two constituent elements of KL.1
- and-parallel function and the or-parallel
function -— are connected by the stream-
set. interface. In other words, all solutions
are obtained as a set in the or-parallel sub-
systemn. This set is then handled in the
and-parallel subsystem as a stream of daia
(Hirakawa, et al. 1983b, 1984a, Yokomori
1084).

{3) Modularization support function

One major requirement of KL1 1is
the efficient implementation of Mandala,
an object-oriented knowledge programming
lanzuage based on KL1. A function to sup-
port modularization and a meta-inference

function are necessary to meet this require-
ment. These two functions are closely re-
lated. The modularization function has
two cobjectives: one ig to improve software
development (program generation, manage-
ment, etc.) at the system program level,
and the other iz to support the structuring
of knowledge intec hierarchies and multipie
worlds. Basic function: are to be imple-
mented in KL1 to attain these goals. These
include localized predicates used exclusively
in modules, the external reference function
required to parameterize modules, and the
hierarchical strueturing of modules.

" (4) Meta-inference support function

Although it iz extremely difficult to
realize efficient implementation of meta-
inference Tunction, such realization is not
only important for the implementation of
Mandala, as described above, but also
greatly infiunences the implementation of an
intelligent editor and debugger, the develop-
ment of interfaces among machines operat-
ing in parallel, and applications of coopera-
tive problem solving. The meta-inference
functions are based on the modularization
support function, which includes operations
for solving given goal by specifyving a com-
piled program (Kunifuji, et al. 1984a,
1984b). Using this function as the core,
it is necessary that control methods be
parameterized to Tacilitate more flexible
control.

The preliminary specification of KLI1
was published in 1982 (Furukawa, et al
1984b) and language details are now being
designed. The previous specification was
reviewed in terms of efficiency by actually
developing a prototype of the language
processor (Miyazaki 1984, Ueda, et al. 1983,
1984). The expressive power of KL1 was
also investipated by writing a simulation
program of a small eslectronic circuit in
Mandala, the user lanpguage of KL1. It
turned out that the efficient implementa-

tion of the modularization function and the
meta-inference function is the key issue in
achieving high efficiency in such complex
programs as those used in real application.

3 PROBLEM-SOLVING AND
INFERENCE ISSUE

The problem-solving and inference
software module and knowledge base
management software module are the two
central parts of the knowledge informa-
tion processing system. Omne of the most
significant research items planned for the in-
termediate stage of the project is the incor-
poration of parallelism with those modules.
Therefore, it iz necessary that the problem-
solving and inference software module as
well as the knowledge base management
software module are designed so that they
can be integrated into a parallel execution
environment.

There are two important factors in
designing a module for a parallel execution
environment. Oune is to achieve parallelism
of the problem-solving function itself. The
other is to control problem-solvers operating
in parallel. In addition, in designing sub-
modules, consideration was given to high-
level inference functions for solving more
fundamental questicns.

The goals for the initial stage were
(1) extraction of the key functions /
components necessary for developing the
problem-solving and inference software
module in the next stage, and (2) the design
of each function / component by prototyp-
ing. Extracted functions / components are
(1] parallel inference function, [2] meta in-
ference function, and (23] powerful inference
engines. In the following, each function /
component will be described briefly.

(1) Parallel inference function

The aims of introducing the parallel in-
ference function are not only to speed up

the inference process but also to enhance
inference capability to realize distributed
problem solving. This function is deeply re-
lated to the problem of parallel execution
of logic programming languages. An or-
paralle] Pure Prolog interpreter called POPS
{Hirakawa, et al. 1983b) was developed in
CP. It performs or-parallel computation by
converting it into stream-and-parallelism in
CP. With POPS, a lary computation was
successlully realized as well as eager one
(Hirakawa, et al. 1984a).

Ag far as distributed problem solv-
ing is concerned, Shogi (a chess-like game
in Japan) was selected as an example
domain and the human problem solving
at the end game of a Shogi game was
investigated. It turned out that dis-
tributed preblem solving pives a global
framework for formulating it and a new
model called knowledge architecturs was
proposed (Kondou 1984), which consists
of field (field functions as communication
media), cognition-type knowledge, memory-
type knowledge, control-type knowledge and
object model {object model corresponds to
the game board in Shogi).

(2) Meta-inference function

Inference processes may be controlled
by directly atiaching rules to be applied
after to each rule or by constraining the
use of rules by more general (e.g., gram-
matical) rules. The meta-inference func-
tion controls inference using such control in-
formation (Kunifuji, et al. 1984a, 1984b,
Nakashima, et al. 1984).

The demo predicate is well known as
a tool for implementing the meta-inference
function in a sequential execution environ-
ment, The demo predicate has the function
of demonstrating that the given goal state-
ments can be proved in a set of axioms, using
the given control information. We have de-
veloped a predicate called simulate, which

performs the same function in a parallel ex-
ecution envircnment. The simulate predi-
cate is also used to implement the Mandala
interpreter (Kunifuji, et al. 1984a, 1984%).

(3) Powerful inference engines

Since the built-in inference engines in
KL1 are Horn clause deduction engines
for Pure Prolog and Concurrent Proleg {or
similar stream-and-parallel language), more
powerful inference engimes are needed for
many purposes such as natural language
understanding, formula manipulation, game
playing, program synthesis and so on.

Two inference engines were investigated
for that purpose: a first order theorem
prover and a term rewriting system. Two
types of first order theorem provers were
designed and implemented based on linear
resolution (Mukai, et al. 1984) and lock
resolution. In addition, it was expected
that another possible inference mechanism
would be found which could be applied to
build PIM (a Parallel Inference Machine).
It turned out that lock resolution is a
suitable strategy to incorporate parallelizm
in theorem proving.

To extract an actual requirement from a
real world application, an antomatic layout
problem in electronic circuits design was
investigated (Koseki 1984, Mitsumoto, et
al. 1984b, Mori, et al. 1984a, 1984b).
The research revealed that we need special-
ized inference components for dealing with
lower level processing such as performing
a fast systematic algorithm in wiring and
displaying an obtained layout on a graphic
terminal. K may be a temporal situa-
tion that such extra components other than
logic programming are needed. However,
at least currently, the connection between
Prolog and Fortran turned out to be quite
useful in developing real world applica-
tion systems (Goto 1984, Mitsumoto, et
al. 1984a). Two-dimensional programming

was also investigated aiming for providing
a basic technique to deal with spatial prob-
lems (Furukawa, et al. 1983a).

4 KNOWLEDGE BASE
MANAGEMENT ISSUE

The knowledge base management soft-
ware module constitutes a central part
of the basic software module as well as
the problem-solving and inference software
module. This issue was approached by
studying four topics: (1) realization of a
very large knowledge baze, (2) formula-
tion of knowledge acquisition in logie, (3)
design of a knowledge representation sys-
tem, and (4) development of expert sys-
tems. These studies will be reflected to build
the knowledge base management software
meodule in the next stage, The following are
descriptions for each topic.

4.1 Very Large Knowledge Base

As a first step toward comstructing a
very large knowledge base, combining a
Horn clause deduetion system with a rela-
ticnal database in both the hardware level
and the software level has been attempted
(Kitakami, et al. 1984e).

For the hardware level connection, a
method for combining the newly developed
Frolog machine P8I with the very large rela-
tional databasze machine Delta via the local
area network INI is being investigated. At
the same time, the mechanism for directly
connecting those two machines is also inves-
tigated.

For the software level connection
(Kitakami, et al. 1984¢), a new method
for linking Horn clause deduction with rela-
tional algebra was proposed (Kunifuji, et
al. 1982, Yokota, et al. 1983a, 1983b). It
is based on a so-called compiled approach
and it generates a sequence of relational al-
gebra formulas to handle queries on recur-
sively defined relations.

An experimental database management
system supporting the actual combination
of PSI with Delta has been designed and
is being implemented on PSIL It is called
KAISER (Knowledge Acquisition-oriented
Information SuppliER) and it also includes
such functions as user friendly interface and
knowledge acquisition support.

The knowledge acquisition issue will be
discussed later in more detail. KAISER
also provides a prototype of a digtributed
knowledge base system since it manages a
local database of PSI as well as the global
database in Delta. A relational database
system on PSI's file system was also dezigned
and is being implemented te realize the local
database.

As far as the user friendly interface
is concerned, the main emphasis was put
on conversation control such as recognizing
the change of topics and guessing elliptical
input. The target is the construction of
a rather domain independent conversation
contrel system which will be used in many
different actual situations {Miyachi 1984c).

4.2 Knowledge Acquisition

The knowledge acquisition problems
have been approached from a logical point of
view. As a consequence of the epistemologi-
cal analysis (Kunifuji, et al. 1984c, 1984d),
it was found that the knowledge acquisi-
tion process consisted of the knowledge as-
similation process (Miyachi, et al. 1983a,
1983b, Kunifuji, et al 1683a), the
knowledge accommeodation process and the
knowledge equilibration process. Therefore,
KAISER has the knowledge acquisition
functions (Kitakami, et al. 1983¢, 1983e,
Kunifuji,et al. 1984c) which support the
above-mentioned processes. Using a meta-
inference function, all of them have been
systematically implemented in Prolog. The
conceptual diagram of these functions is
shown in Fig. 4 (Kitakami, et al. 1983,

Deduetion
machan]sm

Inference
mechanizm

Praleg Syslem

Fig. 4 The knowledge nequisition module

1984a). The diagram consists of several
functions such as, the meta-inference func-
tion, the knowledge assimilation function,
the kmowledge accommodation function,
and the knowledge equilibration function.

The meta-inference function controls
(monitors) information about how to wuse
object knowledge. The meta-inference
mechanism (Kunifuji, et al 1983b,
Kitakami, et al. 1983¢) is essential for the
implementation of the knowledge acquisi-
tion process. In short, the “demo” predicate
suggested in (Bowen, et al. 1982) is used as
the primitive in this function, and is imple-
mented by extending a Prolog interpreter
written in Prolog.

The knowledge assimilation function
(Miyachi, et al. 1984a, 1684b, Kitakami, et
al. 1983a, 1983b) systematically assimilates
knowledge from the external world that does
not. contradict the requirements of the in-
tegrity constraints (Kitakami, et al. 1983d)
specified in the knowledge base. At the same
time, the function is optionally provided
with a mechanism to remove redundancy
(Miyachi, et al. 1984b).

In the knowledge accommodation proe-
ess, an erroneous piece of knowledge in the
current knowledge base is corrected to avoid
inconsistency assuming that new facts are
true. An experimental knowledge accom-

modation system (Kitakami, et al. 1983d,
1983e, 1984a) was developed by enhancing
Shapiro’s Model Inference System (Shapiro
1982a} using the idea of integrity constraints
which deseribe general conditions that a
class of models has to satisfy. By this en-
hancement, we succeeded in reducing the
amount of negative examples given to the
system for locating bugs.

The knowledge equilibration funetion
(Kitakami, et al. 1984c, 10984d, 1984e)
has a function to adjust consistency be-
tween premise-type knowledge and assume-
type knowledge (belief) (Kitakami, et al.
1984b). It provides a function to revize
a belief in a truth maintenance system
(Doyle 1979, Goodwin 1982, Martins 1983).
Belief revision is realized by constructing a
proof-tree through a meta-inference process
and replacing the most uncertain piece of
knowledge in the proof-tree by the alterna-
tive given by the user, if any, or the negation
of the original one.

In KAISER, these functions were real-
ized elegantly by enhancing the “demo”
predicate refered to above (Kunifuji, et al.
1984b). This demonstrates the advantage
of the choice of logic programming. In the
future, an integrated knowledge acquisition
system on KL1 will be developed to inerease
efficiency by making it to run in parallel,
and also to combine with Mandala,

4.3 Knowledge Representation

Knowledge representation is a major
challenge for research in artificial intel-
ligence. Since it iz an extremely diffieult
problem to invent a single formalism to rep-
resent all kinds of knowledge, a knowledge
programming language which can be used to
build specialized knowledge representation
systems was designed and implemented.
At Working Group 4 (chairman: Prof.
Mizoguchi, F., a committee in charge of in-
vestigating consultation systems), a prelimi-

nary study was made for designing such a
language (Mizoguchi, et al. 1984). The lan-
guage ig called Mandala (Furukawa, et al.
1983c, 1983d, 1984a) and a detailed deserip-
tion is given in (Furukawa, et al. 1984c).
Mandala is expected to play an impor-
tant role in the Fifth Generation Computer
System, as shown in Fig. 2. The features
are summarized as follows:

1. It is not only a knowledge programming
langnage but also a basis for a knowledge
base management system. The nature
of thiz duality comes directly from the
capability of double interpretaticns of Horn
clauses: procedural interpretations and dec-
larative interpretations.

2. It incorporates parallelism both in prob-
lem description due to its ability to support
object-oriented programming, and in execu-
tion due to the property of its base language
KL1.

3. It provides a variety of program-
ming styles, thus becoming a powerful tool
for describing knowledge information sys-
tems. Particularly, it enables dynamie
behavioral description as well as static
preperty description,

Strong programming support is neces-
sary to allow the user to utilize Mandala
as a knowledge programming system. The
knowledge base editor plays the role of
such a support system. Az indicated
by the dua! nature of Mandala, the
knowledge base editor is analoguous to a
support environment for normal program-
ming functions, such as tracer, debugger,
and editor. Parallelism has become more
important as the base programming lan-
guage evoives from KLO to KL1. An ap-
proach utilizing the knowledge program-
ming system may be more successful in
implementing these features. In Mandala,
knowledge is formalized in predicate logic,
which facilitates knowledge base manage-

—-_52 —

ment functions, such as consistency check.

The knowledge base editor edits pro-
grams representing knowledge written in
Mandala. Here, editing not only means the
editing of static programs but also editing of
worlds manipulated by programs after these
worlds have been changed. Therefore, the
knowledge base manager and the user inter-
face, which are both required at the time
of program execution, are also regarded as
constituents of the knowledge base editor.
The unit-world and the instance editor edit
basic elements of Mandala - unit worlds
(fragments of KL1 programs, modules) and
instances (runming processes of KL1 pro-
grams), respectively. A prototype of a
knowledge representation system for natural
language understanding research was imple-
mented in Prolog (Sugiyama, et al. 1983).
It was utilized to design the knowledge base
editor for Mandala as well as the one for
E&P.

4.4 Expert Systems

In this section, the experimental
knowledge utilization system is described.
The aim is to clarify what function is needed
for actual use, and therefore, what ability
is required for the knowledge utilizing com-
puter system.

Starting from preparatory investiga~
tions in fiscal 1982, two experimental sys-
tems, a Japanese proofreader system and a
logic design support system were selected.
Now, both experimental systems are under
implementation.

4.4.1 Japanese proofreader system

The Japanese proofreader system is a
knowledge utilization system which finds er-
rore in Japanese text and corrects them
when possible. This system is assumed to
form a part of a computerized Japanese
documents preparation system.

First, proofreading techniques were
studied and computerization capabilities
were congidered using about 4,000 lines of
data obtained from a Japanese newspaper
company. Results showed thai 56% of the
corrections needed in-depth zentence or text
understanding to computerize. This is left
as a future problem.

On the other hand, 44% of the correc-
tions were relatively easy to computerize un-
der present conditions, using knowledge in
dictionaries and a stylebook, and by con-
sulting directories (Ishii 1983h, 1984). Thus,
the system was designed to handle such
knowledge effectively. The knowledge struc-
ture is an important problem and has been
studied carefully (Ishii 1983a).

4.4.2 Logic design support system

The logic design support system is a
knowledge utilization system that processes
the logie design of computer hardware.
This system converts design specifications
provided as hardware operation algorithms
into connections among existing circuit com-
ponents.

Using only mechanical converzion proe-
esses, redundant design would be obtained,
rendering the system useless. Conversely,
human beings use various types of know-
how accumulated through sxperience to get
a good design.

The logic design support system aims at
incorporating such know-how in Prolog and,
thus, at achieving greater sophistication in
logic design by computer (Maruyama, et al.
1984). It turned out that such know-how is
well described in Prolog. Use of a structured
knowledge representation system will also be
a future problem.

5 INTELLIGENT MAN-MACHINE
INTERFACE

5.1 Parsing System

The purpose of this research is to de-
velop a parsing system which provides users
2 high level grammar description language
and an efficient syntactic analysis facility.

Our approach is based on logic pro-
gramming language. As already pointed
out, legic programming language and the
Context Free Grammar (CFG) have a cloge
relation, i.e. a Horn clauge can be seen as
providing the procedural interpretation of a
CFG rule. It is natural to take the CFG as
the basiz of our syntactic analysis. Our main
concerns are the development of an efficient
analysis method for CFG on logic program-
ming language and the design of a flexible
and powerful grammar deszcription system.
There are two major parts in the research |
iL.e. asyntactic analysis method and a gram-
mar deseription system. Following is a short
report on their current status.

3.1.1 Syntactic analysis method

We developed an augmented CFG
parsing system, called the BUP system,
in cooperation with ETL (Electrotechnical
Laboratory) and TIT (Tokyo Institute of
Techuology) (Matsumoto, et al 1983,
Tanaka, et al. 1984a, Yokoi, et al. 1982a,
1982b). The parser employes a bottom-up
depth-first algorithm and is naturally em-
bedded in Prolog. This feature makes the
parser efficient. Furthermore, the BUF sys-
tem employes the optimization method by
recording the intermediate results of a pars-
ing process. It also comprizes several tools
for grammar development; the BUP tracer,
the BUP translator, the epsilon reducer, and
50 Q0.

Besides the development of the BUP
system, we developed a method for ap-
plying parallel execution mechanisms to
syntactic analysis. The parallel parsing
system is based om the chart parsing al-
gorithm, and implemented in Concurrent
Prolog (Hiralkawa 1983a, Hirakawa et al.

1983b, 1984b). The parsing model comprizes
the multiple processes and message transfers
between them.

In connection with a parsing system,
a morphological analysis system has been
developed for analyzing Japanese sentences.
Since it is an agglutinate language, the mor-
phological processing of Japanese is more
complicated than English. The morphologi-
cal rules include word-inflection infermation
and word-connection conditions. The mor-
phological rules are represented by DCG
descriptions [Miyoshi, ef al. 1983).

5.1.2 Grammar deseription system

The main concern is the research on the
formal system for representing grammatical
relations. The system iz indispensable in
checking the grammaticality of a sentence
and in maintaining a large-seale grammar.

In practice, the new grammatical
theories in current linguistics, LFG and
GPSG, are adopted as candidates for our
system. They provide universal aceounts for
linguistic phenomena and a powerful gram-
mar description system with a highly un-
derstandable form. Hence they are useful
in syntactic analysis. The LFG system is
implemented in DEC-10 Prolog (Yasukawa
1983, 1984). The computational mechanism
of LFG can be realized by intreducing
the equality on f-structures into Prolog.
The grammar rules of LFG can be trans-
lated into DCG rules. Both top-down and
bottom-up parsing strategies are applicable
to them. The implementation method of the
GPBG system is currently being discussed
by ICOT’s Working Group 3 (chairman
Prof. Tanaka, H.). The research topics
are an efficient parsing algorithm for the
GPSG framework and development of a
basic Japanese grammar in GPSG.

From the view of the refinement and
extension of DCG, the GDLD (Grammar

Description Language 0) is designed and
implemented in DEC-10 Prolog (Morishita,
ef al 1984}, The GDLOD introduces
the data structures for grammar category
definition and macro facilities for improving
the readability and medifiability of gram-
mar, Also, a grammar deseription sys-
tem based on the concept of an object-
oriented programming language is developed
{Miyoshi 1984). This system introduces the
notion of class in defining grammatical rela-
tions such as Head feature Convention and
Contrel Agreement Principle.

In the future, we will continue the
research and development concerning the
grammar deseription system. It is neces-
gary to refine and extend the system, includ-
ing the intreduction of a parallel execution
mechanism.

5.2 Diseourse Understanding System

To establish a computational model for
discourse understanding is an important and
challenging problem in natural language un-
derstanding. The model has tight connee-
tion to the problem of building a flexible
and user friendly natural language interface
(Joshi, et al. 1984) into FGCS. In this
subsection, we will describe a brief outline
of our approach to discourse understanding
and then describe our current research ac-
tivities.

5.2.1 Basic ideas

There are at least four important fac-
tors in a discourse model. They are called
speech act, coherency, presupposition, and
mutual beliefs. The speaker and the hearer
compute these factorz by using so called dis-
courge maxims, i.e., the principles of con-
sistency and optimality for communication.
This implies that the system must have a
powerful inferencing ability.

We adopted the following views on dis-

course understanding:

{1} discourse understanding is a dynamic
precess where the computational prin-
ciples are consistency and optimality for
comiunication,

{2) the goal of the process is to construct a
world model for the (written) utterances
and mutual beliefs between the par-
ticipants,

(3) the process repeats cycles of generat-
ing hypotheses about a partial model
of the world and testing them using
knowledge about the world or the dis-
course partner,

(4) the real world consists of events and
objects which stand in various relation-
ships with each other, and

{5) the world model under construction is
fed back to the knowledge component
of the zystem,

{8) the theory of a mental model and action
have a cruecial role in discourze under-
standing.

Our basic tool is situation semantics
{(Barwise, et al. 1983) developed at Stanford
University by J. Barwise & J. Perry as a new
paradigm for model theoretical semantics of
natural languages. The theory scems to be
well fitted to the above views. During the
first stage, efforts will be directed toward
analyzing discourse in Japanese.

5.2.2 Current netivities

In the current state, we are designing a
prototype for a discourse understanding sys-
tem influenced by situation semantics., The
system will read a story written in Japanese,
construct situations described in it, and then
answer to various types of guestions about
them.

As a case study, we chose a portion
of a story text in Japanese, It describes a
dangerous situation in a fiying air craft with

many passengers which has engine trouble.
In the story , there are zeveral occurrences
of action including speech acts between the
captain and a stewardess of the air eraft who
are trying to do their best in the difficult
situation.

We have been trying to analyze the
meaning of the sentences for nearly one year.
We found that there were many dificulties
in giving complete meanings to all the sen-
tences in the text.

The difficulties are in the following
areas:

(1) the meanings of quantified noun phrase,
adverb phrase, auxiliary verb, and
speech act verb,

(2) sentence or phrase ellipsis,

{8) the representation and use of various
types of knowledge to control sentence
interpretation, and

{4) the dynamics of the focusing process.

We think situstion semantics iz surely
a promising theory for discourse computa-
tional models. To solve these difficulties,
we are trying to recapture the framework
of language understanding in the light of
situation semantics. This is necessary be-
cause it is one thing to define the meaning
of a natural language sentence and another
to understand its meaning.

Following are a few related technical
memos (Mukai 19844, 1984, Suzuki 1984).
Case anpalyses of real discourse texts is a
current topic at our working group WG3,

5.3 Machine Readable Dietionary

For the Fifth Generation Computer
Project, it iz extremely important to de-
velop a sufficient amount of language data,
above all - machine readable dictionaries
which can be utilized freely. They are
the fundamental database for the research
on natural language processing and on

the knowledge base, etc. These machine
readable dictionariez will be transformed in
the future intc a number of application-
oriented dictionaries, e.g. a transfer diction-
ary for machine translation and a semantie
dictionary for text understanding.

The Research Group on Machine
Readable Dictionary {chairman: Prof.
Ishiwata, T.) has planned the dictionary
developroent. The development process is
divided into two stages. In the first stage
(three years from 1984), we will develop four
general purpose master dictionaries as fol-
lows (Ishiwata, et al. 1984) :

s Japanese dictionary

+ English-Japanese dicticnary
= Japanese-English dictionary
» English dictionary

Fach master dictionary will contain the
grammatical information described in stand-
ard published dictionaries and also that in
the cne oriented for computer processing.

In the second stage (two years from
1987), information about semantics and
deep cases will be added and transformed
into various application dictionaries such as
the one for machine translation,

One of the purposes of the machine
readable dicticnary development iz to
provide the tools for deep semantic analysis.
In Working Group 3, as an approach to
achieve high quality natural language trans-
lation, the features of an actual translation
by a professional translator have been inves-
tigated (Tanaka 1984b). As a preparatory
experimental dictionary system for seman-
tic analysis, a small scale dictionary is being
developed with an entry number of 5000, It
will contain a thesaurus and deep case infor-
mation. This will be used for the text un-
derstanding system. In order to investigate
the context where a specific word is used, an
on-line KWIC (Key Word In Context) sys-

tem has been developed. Thisg is a useful tool
which provides a user with a lot of linguistic
information. -

6 INTELLIGENT PROGRAMMING
SYSTEM

6.1 Programming Fnvironments for Logie
Programming

An advanced programming system on
SIM iz now under development, Its details
are reported in another paper (Takagi ef al.
1984). This activity seeks to get an actual
base and experience for the study of an in-
telligent programming system.

A brief sketch of the SIM programming
system follows:

It is designed as a collection of expert
processes. A special expert Coordinator
manages these expert processes. Typical
experts are Debugger/Interpreter, Editor,
and Library. Debugger/Interpreter inter-
prets programs and provides debugging in-
formation concerning the control flow of the
programs on the Procedure and Clange Box
Control Flow Model. Editor (named Edips)
Is a structure-editor designed to be espe-
cially convenient for editing ESP programs.
Library supervises class registration, loading
program files, compiling, and building class
objects by inheritance analysis.

Currently, these expert processes are
not very intelligent. However, their intel-
ligence will become gradually higher by ad-
ding problem-solving and knowledge-base
functions to their internal mechanisms.

6.2 Program Specifleation, Verification and
Transformation

In the intelligent programming research
field, there are three major research com-
ponents:

e program specifieation

¢ program verification

s program transformation -

6.2.1 Program specification

One of the most difficult parts of
Software Engineering Research is the pro-
gram specification system. (Staunstrup
1981) In general, we are interested in
both the informal (easy to understand)
specification and the formal (logically estab-
lished) specification.

e Natural language specification: For in-
formal specification, we are interested in
natural languages, especially in Japanese,
In this regard, we are cooperating with
the TELL project of Tokyo Institute of
Techneology, led by Prof. Enomoto, I,
where both English and Japanese are
considered in a limited syntactical form
(Enomoto et al. 1984a).

There are two approaches for formal
specification:

e IMirst-order predicate caleulus: This is a
reasonable approach as logic program-
ming has been adopted in our research
base. The verification system is developed
in this approach. :

* Temporal logic (Enomoto et al. 1984b):
‘The predieate calculus approach has the
problem that it cannot describe the
dynamic behavior of the system. The
temporal logic framework is being inves-
tigated to fill the gap.

There are also other approaches, for ex-
ample,

» Programming language itself: Prolog it-
sell can be regarded as a workable
specification

On the other hand, a support system
for specification should be developed. In
this line, several attempts were made. e.g.
(Enomoto 1983, Sugimoto 1984a, 1984b)

6.2.2 Program verification

A verification system for Prolog pro-
grams iz now under development. It
is expected to be a foundational weork
for research of “Intelligent Programming
Systems”. In the design of our verification
system, we tried to clarify the poessibility
the paradigm of logic programming provides
us and to take advantage of Prolog charac-
teristics as far as possible. It iz especially
ugeful that Prolog execution iz a kind of in-
ference and that Prolog semantics is formu-
lated very simply and succinctly in the first
order semantics.

First order inference in our verification
system takes an extension of execution style.
The main inferences are done like Lhe execu-
tion of positive geals or like the “Negation
as Failure” for negative goszls. These rules
plus the case splitting and the simplification
rule are powerful enough to prove many
properties of Prolog programs (Kanamori
1984a).

The application of computational in-
duction to Prelog is much simpler than
that to functional programs, because it can
be done staying within the simple first
order semantics that Proleg is based on.
Induction formulas generated is alzo simple.
This makes the verification efficient and it
complements the overhead of the first order
inference. (Kanamori 1984b).

Many BMTP(Boyer Moore Theorem
Prover)-like heuristics controlling the ap-
plications of inferences and lemmas are in-
tegrated inte the system. Especially a newly
developed type inference method for Prolog
15 used effectively. (Kanamori 1984c).

6.2.3 Program transformation

Program transformation is a promising
methodology for producing a correct pro-
gram from a given (valid) specification.

From the theoretical viewpoint, it is
necessary to verify the “correctness® of
the transformation steps. Tamaki provides
the framework for this equivalence preserv-
ing transformation (Tamaki 1983, 1984a,
1984b). Fuchi exemplifies the transforma-
tion technique to generate the pure Prolog
interpreter (Fuchi 1984).

6.3 Specific subprojects, CAP and ACT ™!

Working Group 5 (chairman: Prof.
Hirose, K., a committee in charge of fun-
damental theory) has been investigating
the current status and future trend of the
theoretical aspects of computer science. On
the basis of the results obtained from the
Investigation, WGS5 set two specific research
projects. They were named CAP (Computer
Aided Proof) and ACT™' (Theoretical
Computier Architecture).

6.3.1 CAP

The CAP project is an attempt to
create prool checkers for some concrete
theories in order to investigate artificial in-
telligence for solving mathematical prob-
lems and the ideal man-machine interface
in such activities. We selected the following
three target theories for the CAP project.

¢ Linear algebra
¢ Symbolic arithmetic
e Synthetic differential geometry

The first, linear algebra, is the most
familiar of the three and need mnot be ex-
plained. The first target of proof checking
is a textbook for a freshman course.

The second, symbolic arithmetic, is
originated from a series of works by Sato
(Sato, et al. 1983a, 1983b, 1984a, 1984b,
1984c). Programming language Qute, which
itsell is based on this theory, will be used
for the implementation of the system. The
appealing point of this theory is that the
theory allows sgelf reference az with the

Peano arithmetic. Therefore, the final goal
will be the proof of the incompleteness
theorem of the theory.

The last, synthetic differential geometry,
iz a very new area of mathematics originated
by Kock (Kock 1981). This theory intends
to study differential geometry in a synthetic
manner by introducing infinitesimal objects.
The project is still in the stage of basic
theoretical survey and actual implementa-
tion will start next year.

6.3.2 ACT !

New programming paradigms zuch as
logic programming, functional program-
ming and object criented programming
are providing impetus to the researches
of ACT™'. Currently, the above three
paradigms provide the separate conceptual
framework within which we reason about al-
gorithms. Moreover, each has an underlying
computational model; e.g. first order predi-
cate logic for logic programming, lambda
ealeulus for functional programming and ac-
tor model for object oriented programming.

Onar research hence consists in:

o identifying the differences and similaritjes
of the three paradigms at the level of the
eomputational medel;

e seeking, if possible, the methods of unify-
ing the above three paradigms at the com-
putation level, or at a lower implementa-
tion level:

exploring the means for exploiting paral-
lelism (either implicit or explicit) in the
above paradigms;

* evalualing programming techniques de-
veloped in each programming paradigms,
e.g. lazy evaluation and stream com-
munication using d-list;

+ analyzing the complexities involved in the
several implementations of the computa-
tion models;

reviewing the current technology (of both
hardware and software) for the realization
of the computation models;

 relating the computation models (in the
sense of points 1 and 2 above) to the
more specific implementation oriented
computation models such as the data fiow
model and the packet reduction model.

At the present research stage we are
concentrating cur effort on the theoretical
aspects of computer architecture rather than
the implementational aspects.

6.4 Transfer to Existing Technology

For research on intelligent program-
ming, it is very important to keep tight
contact with existing software technol-
ogy. Therefore, a special Working Group
(chairman: Prof. Saito, N.) was organized
to study opinions, expectations and re-
quests by the software industry to the FGCS
praject. This group investigates such sub-
jects as how to apply new technologies to im-
prove software development environments.

As another activity for this purpose, de-
velopment of a conerete system for applying
results of thig project to problems in actual
software development is being tried. Study
and development of the system for reusing
Cobol programs is an example of this ac-
tivity.

T CONCLUSION AND
FUTURE DIRECTION

Although this project has been in opera-
tion for only two and a half year, and
achieved only a small portion of the en-
tire research plan, we are convinced our ap-
proach based on logic programming is very
promising.

The fruitful results obtained so far are
due to the concentration on logic program--
ming. The basic research strategy is to retry
difficult problems in terms of logic program-

ming. This approach may not give the best
solution for each problem, but it will provide
a mechanism for integrating all the results
inte a single system for the basic common
programming framework.

The target of the next four-year stage
of the project is to build each subsystem by
putting ideas and/or components so far de-
valoped together. Although there is much
work to be done before proceeding to the
next subsystem building stage, we have been
able to describe a global picture for each
subsystem preperly and thus to proceed fur-
ther.

The main research issue in the next
stage is incorporation of parallelism. This
issue is a very difficult problem, which is
the reasen efforts have been concentrated on
the design of KL1, a logic programming lan-
guage with inherent parallelism.

System integration is also a difficult and
challenging issue which will arise in the next
slage.

ACKNOWLEDGMENTS

This research was carried out by the
sccond and third laboratories of 1COT
Research Center in very tight cooperation
with eight manufactures. Many fruitful
discussions were done at the meetings of
Working Groups 2, 3, 4, 5 and 6.

REFERENCES

Barwise, J., Perry, J., Situations and Attitudes.,
MIT Press, 1983,

Bowen, K. A, Wowalski, R. A., Amalgamating
Language and Meta-language., In Logie
Programming., Clark, K. L., Taernlund, 8. -A.,
(Eds.), Academic Press, pp. 153-172, 1982,

Clark, K., Gregory, 8., A Relational Language
for Parallel Programming., In Proe. Conf,
on Functional Programming Languages and
Computer Architecture, ACM, 1981,

Clark, K., Gregory, 8., PARLOG: Paraife]
Fregramming in Logic.,, Research Report
DOCS4 /4, Imperisl College, 1984,

Doyle, J., Truth Maintenance System., Artificial
Intelligence, Vol. 12, No. 3, 1979.

Enometo, H., Yonesaki, N., Saeki, M., Kunifuji,
5., Paradigms of Knowledge Based Software
System and Its Service Image., ICOT TR-030,
1983,

Enomota, H., Yoneszki, N., Saeki, M., Chiba,
K., Takizuks, T., Natural Language Based
System Development System TELL., 1COT
TR-087, 1984a.

Enemote, H. Yonesaki, N. Saeki, M., Formal
Specification and Verification for Concurrent
System by TELL., ICOT TR-068, 1984h.

Fuchi, K., Logical Derivation of Prolog
Imterpreter., To appear in FOCS'84, 1984,

Fujita, H., Horiuchi, K., Automated Verification
System of Programs., [COT TM-0049, 1984,

Furukawa K., Kondou, H., Two Dimensional
Programming in Proleg., Proc. of the LPC'83
{in Japanese), 1983a.

Furukawa, K., Nakajima, R., Yonesawa,
A., Modularization and Abstraction in Logic
Frogramming., ICOT TR-022, 1983h. {Also in
New Generation Computing, Vol 1, No. 2,
1983)

Furukawa, K., Takeuchi, A., Kunifuji, &,
Mandala: A Knowledge Programming Language
on Concurrent FProlog., 1ICOT TM-0028 (in
Japanese), 1983¢. -

Furukawa, K., Takeuchi, A., Kunifuji, 8.,
Mandala: A Concurrent Prolog Based Knowledge
Programming Language/System., 1COT TR-
029, 19334,

Furukawa, K., Takeuchi, A., Kunifuji, 8.,
Mandala: A Knowledge Programming. System
on a Logic Programming Language., ICOT TR-
043 (in Japanese) 1984a.

Furukawa, K., Kunifuji, 8., Takeuchi, A., Ueda,
K., The Conceptual Specification of the Kernel
Language Version 1., ICOT TR-054, 1984k,

Furukawa, K., Takeuchi, A., Kunifuji, 5.,
Yasukawa, H., Ohki, M., Ueda, K., Mandala: 4
Logic Based Knowledge Programming System.,
1984¢. (Also o appear in FGCS'84)

Goodwin, J. W., An Improved Algorithm
for Non-monotenie Dependency Net Update.,
Link&ping Institute of Technology, Technical
Report, 1982,

Goto, 8., A Language for Building Expert
Systems in CAD —CADLOG—,, PINEL, Vol.
24, pp. 134-138 (in Japanese), 1984. {Alse in
ICOT TM-D08T)

Hikita, T., Average Size of Turner’s Translation
to Combinator Program., ICOT TR-017, 1983,

Hirakawa, H., Chart Parsing in Concurrent
Prolog., ICOT TR-008, 1983a,

Hirakawa, H., Furukawa, K., Onai, R,
Implementing an OR-Parallel Optimising Prolog
System(POPS) in Concurrent Prelog., 100OT
TR-020, 1983b. {Also to appear in “Proceedings
of RIME Symposium on Software Science and
Engineering”, 1984, Springer-Verlag)

Hirakawa, H., Chikayama, T., Forukawa, K,
Eager and Lasy Enumerations in Concurrent
Prolog., ICOT TM-0038, 1984a. (Also in Proe.
of Second International Legic Programming
Conference held at Uppsala)

Hirakawa, H., Furukawa, K., Syntactic Parsing
with POPS —Its Parsing Time Order and the
Comparison with Other Systems—., ICOT TM-
0073, 1984b.

ICOT Study Group on New Language
Dissemination, FGCS and Software., ICOT
TM-015 (in Japanese), 1983.

ICOT WGS, Several Aspect of Unification.,
[COT TM-0048, 1984,

Ida, T., Kurokawa, T., Sakni, K., Sato, M.,
Toyama, Y., Hagiya, M., Hayashi, 5., Hikita, T.,
Futatsugi, K., Matsuda, T., Higher Order: Its
Implications te Programming Languages and
Computation Models.,, [COT TM-0029, 1983,

Ida, T. Konagaya, A, Comparison of
Closure Reduction and Combinatory Reduction
Schemes., ICOT TR-0T2, 1984,

Ishii, 8., Handling a Bit-Table in Prolog., ICOT
TM-0013 {in Japanese), 1983a. (The abstract is
aleo in “Proceedings of the 2Tth [PS.J National
Conference” (in Japanese), 1983)

Ishii, 8., Study of Proofreading Technigues
Used at a Japanese Newspaper., ICOT TR-
039 (in Japanese}, 1983b. (The abstract is
also in “Proceedings of the 28th IP8J National
Conference”, 1954}

Iehii, 5., Study of & Newspapor's Treatment of
FProper Names., ICOT TM-0062 (in Japaneze)
1984. {The absiract is alse in “Proceedings of
the 20th [PSJ MNational Conference™, 1984)

Ishiwata, T., Tanaka, H., Miyoshi, H., Tanaka,
Y., Amane, §., Uchida, H., Ogino, T., Yokoi, T.,
The Basic Specification of Machine Readable
Dictionaries., 100T TM-0072 (in Japanese),
1584,

Jeshi, A. K., Webber, B. L., Weischdel, R.,
Living Up to Expectations: Computing Expert
Responses,, Proc. of AAAT'E4, 1084,

Kanamori, T., Seki, H., Verification of Prolog
Programs Using an Extension of Execution.,
ICOT TR, 1984a.

Kanamori, T., PFujita, M., Formulation of
Induction Formulas in Verification of Prolog
Programs., 1ICOT TR, 1884h.

Kanamori, T., Horiuchi, K., Type Inference in
FProlog and Its Applications., ICOT TR, 1084c.

Kitakami, H., Asou, M., Kunifuji, 5., Miyachi,
T., Furukawa, K., A Method of Realizsing
a Knowledge Assimilation Mechanism., 1COT
TR-010 (in Japanese), 1983a.

Kitakami, H., Miyachi, T., Kunifuji, 8.,
Furukawa, K., A Method of Realising a
Knowledge Acquisition System., ICOT TM-
0017 {in Japanese), 1983b.

Kitakami, H., Kunifuji, S, Miyachi, T.,
Furukawa, K., A Methodology for Implementa-
tion of 2 Knowledge Acquisition System., ICOT
Thi-0024, 1983¢.)

Kitakami, H., Hirakawa, H., Purukawa, K,
Knowledge Acquisition and DCG., ICOT TM-
0032, 1983d.

—G1—

Kitakami, H., Kunifuji, 8., Miyachi, T.,
Furukawa, K., A Methodology for Implemen-
tation of a Knowledge Acquisition System.,
ICOT TR-037, 1983e. (Also in “Proceedings
of International Sympoeium on Logic Program-
ming”, Atlantic City, 1.8.A., 1984, IERE
Computer Society Press)

Kitakami, H., Forukawa, K., A Consideration
on Debugging of Logic Frogram., ICOT TM.
0033 {in Japanese), 1984a.

Kitakami, H.,, Kunifuji, 8., Furukawa, ¥,
Miyachi, T., A Method of Implementing a
Belief System in Prolog., ICOT TM-0052 (in
Japanese), 1984b.

Witakami, H., Miyachi, T., Furukawa, K.,
Kunifuji, 5., An Architecture of KAISER /KIM.,
1C0OT TM-G068 (in Japanese), 1984c.

Kitakami, H., A Knowledge Acquisition System
which Supporte a Knpowledge Adaptation
Frocess,, ICOT TM-0084 [in Japancse), 1984d.

Kitakami, H.,, Kunmifuji, 8., Miyachi, T.,
Furukawa, K., An Architecture of a Large-Scale
Knowledge Base Management System., ICOT
TM-00T0 (in Japanese), 1984e.

Kack, A, Synthetic Differential Geometry.,
London Math. Soc. Lecture Notes Series 51,
Cambridge University Press, 1981,

Kondouw, H., Plan for Constructing Knowledge
Architecture., Preprints of 36th WGAI Meeting
of TPEJ {in Japanese), 1084

Koseki, Y., Prolog in CAD Applications —
Case Study in PLA Design-—, The 28th
IPSJ National Conference, pp. 1479-1480 (in
Japanese), 1984. [Also in ICOT TM-0037)

Kunifuji, 5., Yokota, H., Prolog and Relational
Data Bases for Fifih Generation Computer
Systems.,, ICOT TR-002, 1982. (Also in
“Proceedings of CERT Workehop on Logical
Bases for Databases”, Toulouse, France, 1982)

Kunifuji, 8., Takeuchi, A., Mipachi, T.,
Kitakami, H., Yasukawa, H., Furukawa, K.,
Amalgamation of Object Knowledge and Meta
Knowledge and Its Application., ICOT TR-009
{in Japanese}, 1983a.

Kunifuji, 8., Miyachi, T., Kitakami, H,
Furukawa, ¥., Knowledge Acquisition and
Meta Inference., ICOT TM-0016 {in Japanese),
1983b,

Kunifuji, 8., Takeuchi, A., Furukaws, K., Tleda,
K., Meta-inference and Its Applications —a
Meta Predicate Simulate for Parallel Meta-
inference—., ICOT TM-0039 (in Japanese),
1984a.

Kunifuji, 8., Kitakami, H., Miyachi, T.,
Takeuchi, A., Yokota, H., Furukawa, I, Ueda,
K., Meta-inference and Its Applications Hased
on a Logic Programming Language,, ICOT TR-
049 (in Japanese), 1984,

Kunifuji, §., Kitakami, H., Miyachi, T.,
Furukawa, K., A Consideration an Knowledge
Base Mznagement Based on a Logic Program-
ming Language Prolog., ICOT TM-0080 {in
Japanese), 1984c.

Kumifuji, 8., Kitakami, H., Miyachi, T.,
Furukawa, K., Toward a Mechanization of
Deductive, Inductive and Abductive Inference
Functions.,, ICOT TM-0068 (in Japanese),
1984d.

Marting, J. P., Reasoning in Multiple Belief
Spaces., State University of New York at
Buffale, Technical Report No. 203, 1983,

Maruyama, F., Mano, T., Hayashi, K., Kakuda,
T., Kawato, N., Uehara, T., Prolog-based
Expert System for Logic Design., ICOT TR-
058, 1984, [Also to appear in FGCS'84)

Matsumoto, Y., Tanaka, H., Hirakawa, H.,
Miyoshi, H., Yaeukawa, H., BUP: A Bottom-Up
Parser Embedded in Prolog., New Generation
Computing., Vol. 1, Mo.2, OHMSHA-8piringer-
Verlag, 1083,

Mitsumote, K., Mori, H., Fujita, T., Goto,
8., CADLOG: Prelog Interpreter for CAD
Applications., Proc. of the LPC'84 (in
Japanese), 1984a. {Also in ICOT TM-0038)

Mitsumoto, K., Mori, H., Fujita, T., Geoto, 8.,
Al Approach bo VLSI Routing Problem., IREE
Proc. of ISCAS, pp. 449-452, 1984b. (Also in
ICOT TM-0045).

Miyachi, T., Kunifuji, 8., Kitakami, H.,
Furukawa, K., Takeuchi, A., Yokota, H., 4
Proposed Knowledge Assimilation Method for
Logic Database., ICOT TM-0004 (in Japanese),
1883a.

Miyachi, T., Kunifuji, 3., Kitakami, H.,
Takeuchi, A., Furukawa, K., A Knowledze
Assimilation Methed for Logic Databases.,
ICOT TR-025, 1983b. (Also in “Proceedings
of International Symposium on Logic Program-
ming”, Atlantic City, U.5.A., 1984, IEEE
Computer Society Press)

Miyachi, T., Kunifuji, 8., Kitakami, H.,
Furukawa, K., A Consideration on Integrity
Constraint Managing in Knowledge Acquisition
Systeme., ICOT TM-0040 (in Japanese), 1984a.

Miyachi, T., Kunifuji, 8., Furukawa, K.,
Kitakami, H., A Constiraint Based Dynamic
Semantic Model for Logic Databases., 1COT
TM-0056, 1984h,

Miyachi, T., The Conceptual Specification of
Knowledge Conversation Module of KAISER.,
ICOT TM, 1984c.

Miyazaki, T., Sequential Implementation of
Concurrent Prolog Interpreter., ICOT TM-0071
(in Japanese), 1984. :

Miyeshi, H., Mukai, K., Hirakawa, H.,
Yasukawa, H., Furukawa, K., Generation of
DCG Rules for Analysis of Japanese Bunsetsu.,
ICOT TM-0010 (in Japanese), 1983,

Miyeshi, H., Object-Oriented Parsing in the
Logic Programming Language ESP., 1COT
Th-0053, 1984,

Mizoguchi, F'., Furukawa, K. (eds.), Proceedings
of W4 Workshop '83 on Knewledge Represen-
tation {in Japanese), ICOT TR-070, 1954,

Mori, H., Mitsumoto, K., Fujita, T., Goto, §.,
LS8I Wiring Design Expert System., The 28th
IPSJ National Conference, pp. 1072-1073 (in
Japanese), 1984a,

Mori, H., Mitsumoto, K., Fujita, T., Goto,
3., Knowledge-based VLSI Routing System —
WIREX—., To appear in FGCS5'84, 1984h.

Morishita, T., Hirakawa, H., GDL0: Grammar

Description Language based on DOC., ICOT
TR, 1944,

Mukai, K., A Unification Algorithm of Infinite
Trees, ICOT TM-009 (in Japanese), 1983a.
(Also in Proc. of IICAI '83)

Muleai, K., Prolog Interpreter Accepting Infinite
Trees Implemented in DEC-10 Prolog., ICOT
TM-011 {in Japanese), 1983b.

Mukai, K. TFurukawa, K, An Ordered
Linear Resolution Theorem Proving Frogram in
Prolog., ICOT TM-0027, 1983¢.

Mukai, K., An Experiment of Agent-based on
Modal Propositional Logic, ICOT TM-0030 (in
Japanese), 19534,

Mukai, K., Yasukaws, H., Miyoshi, H,
Hirakawa, H., Toward a Cemputational Model
of Situation Semantics and Its Implementation
in Prolog., ICOT TM-0051 (in Japanese), 1984.

Nagai, Y., Chigira, H., Kobayashi, M,
FProblems in Developing an Experimental
System Able to Reuse Existing Frograms.,
ICOT TM-0059, 1984,

Makashima, H., Ueda, K., Tomura, 8., What is
a Variable in Prolog?, To appear in FGCS'84,
1584,

Sakai, K., Miyachi T., Incorporating Naive
Negztion into Pro!ng., ICOT TR-(28, 1983,

Sakai, K., An Ordering Method for Term
FRewriting Systems., ICOT TR-062, 1984,

Sato, M., Theory of Symbolic Expressions, 1.,
Theoretical Computer Science 22, 1953a.

Sato, M., Sakursai, T., Qute: A Prolog/Lisp type
Language for Logic Programming., ICOT TR-
016, 1883b.

Sato, M., Sakurai, T., Qute: A Functional
Language Based on Unification., To appear in
FGCS'84, 19844,

Sato, M., Theory of Symbelic Expressions, IL,
to appear, 1984b.

Sato, M., Theory of Symbolic Expressions, 111,
in preparation, 1984c.

Shapire, E. Y., Algorithmic Program Debugging.,
The MIT press, 1982a.

Shapiro, B. ¥., A Subset of Concurrent Prolog
and Its Interpreter, ICOT TR-003, 1982b,
revised in 1983,

Shapire, E. Y., Takeuchi, A., Object Oriented
Programming In Concurrent Projog., COT
TR-004, 1883a. (Also in New Generation
Computing, Springer-Verlag Vol. 1 No. 1, 1983)

Shapiro, E. Y., Systems Programming in
Concurrent Prolog.,, 1ICOT TR-034, 1983b.
(Also in “Proceedings of 11th ACM POPL
Symposium®, 1084)

Shapiro, I8, Y., Lecture Notes on the Bagel:
A Systolic Concurrent Prolog Machine,, ICOT
Th-0031, 1983¢.

Staunstrup, J. (ed), Program Specification —
Proceedings of a Workshop , Aarhus, Denmark,
August 1981, Lecture Notes for Computer
Science Vol. 134, Springer-Verlag, 1981

Sugimoto, M., Software Development Support
System., ICOT TR-051, 1984a.

Sogimoto, M., Kato, H. Yoshida, H., Design
Concept for a Software Development Consulta-
tien System., ICOT TR-07T1, 1684b.

Sugiyama, K., Kameda, M., Akiyams, K.,
Makinouchi, A., A Knowledge Representation
Systerm in Prolog., ICOT TR-024, 1983,

Suzukl, H., MAIL: a MAn-machine Interface for
Domestic affairs., ICOT TM-0058, 1984,

Takagi, S., Chikayama, T., Hattori, T., Tsuiji,
J., Yokoi, T., Uchida, 8., Kurckawa, T., Sakai,
K., Overall Design of SIMPOS., Proceedings
of Second International Logic Programming
Conference, 1984. (Also in ICOT TR-05T)

Takeuchi, A., Let’s Talk Concurrent Prolog.,
ICOT TM-0003 (in Japanese), 1982

Takeuchi, A., Furukawa, K., Interprocess
Communication in Cencurrent Prolog., I1COT
TR-008, 1083. (Also in *Proceedings of Logic
Programming Workshop ‘83", Portugal)

Takeuchi, A., Logic Based Paralle]l Programming
Language Concurrent Prolog., Computer Soft-

ware, Vol. 1, No. 2, pp. 25-37 (in Japanese),
1984. (Also in ICOT TM-0043)

Tamaki, H., A Transformation System for Legic
Programs which Preserves Equivalence., ICOT
TR-018, 1983.

TamakiH., Sato, T., Unfoid/Fold Transfor-
mation of Legic Programs, Froe, 2nd

International Logic Programming Conference,
1984a, -

Tamaki, H., Semantics of a Logic Programming
Language with Reducibility Predicate, in
Froe. 1984 International Symposium on Logic
Programming, pp.259-2684, IEEE, 1984b.

Tanaka, H.,, Takakura, 5., Konne, M,
Development of English Grammar on BUP
Systern and Its Performance., Proceedings of
the Logic Programming Conference '84 (in
Japanese), 12-2, 1984a.

Tanaka, H., Tsnjii, J.,, Yokoyama, 8., Yasukawa,
H., Buzuki, K., Isahara, H., Sirauss, M., An
Approach to High Quality Natural Language
Translation., 1COT TR-073 (in° Japanese),
1084b.

Ueda, K., Takeuchi, A., Kunifuji, 5., Furukawa,
K., Slring Manipulation in Concurrent Prolog.,
ICOT TR-036 {in Japanese), 1983,

Ueda, K., Chikayama, T., Efficient Stream/Ar-
ray Frocessing in Logic Programming Lan-
guages.,, [COT TR-065, 1984, (Also to appear
in FGCH'84)

Yasukawa, H., LFG in Prolog ~Toward a
Formal System for Representing Grammatical
Relations—., ICOT TR-019, 1983.

Yasukawa, H., LF'G System in Prolog., Proc. of
COLING'S4., 1984,

Yasuura, H., On the Parallel Computational
Complexity of Unification., ICOT TR-02T,
1983,

Yokei, T., Mukai, K., Hirakawa, H., Yasukawa,
H., Miyoshi, H., Advanced High-Performance
Parsing System., ICOT TM-005 (in Japanese),
1982a.

Yokoi, T., Mukai, K., Hirakawa, H., Yasukawa,

H., Miyoshi, H., Bottom-up DCG Parser
Manual., ICOT TM-006 (in Japanese), 1982b,

Yokomori, T., A Note on the Set Abstraction in
Logic Programming Language., ICOT TR-060,
1984. (Also to appear in FGCS '84)

Yokota, H., Kunifuji, 8., Kakuta, T., Miyazalki,
N., Bhibayama, 8., Murakami, K., An Enhanced
Inference Mechanism for Generating Relational
Algebra Queries., ICOT TR-026, 1983a. (Also
to appear in “Proceedings of Third ACM
SIGACT-5IGMOD Symp. on Principles of
Database Systems”, Waterloo, Canada, 1984)

Yokota, H., Kunifuji, §., Shibayama, §.,
Miyasaki, N., Kakuta, T., Murakami, K., How
Can We Combine a Relational Database and a
Prolog-based Inference Mechanism?, ICOT TR-
031 (in Japanese), 1983h.

