A Logic Programming Approach to Channel Routing

Neng-Fa Zhou
zhou@mse kyutech.ac.jp
Faculty of Computer Science and Systems Engineering
Kyushu Institute of Technology, 680-4 Kawazu, lizuka, 820 Fukuoka

Abstract
Channel routing is one of the key phases in VLSI design. The problem is to find routing paths among
a group of terminals that satisfy a given conneclion requirement without overlapping each other. It
is very simple to describe this problem in a logic programming language like Prolog. However, as
the problem is NP-hard, it is not feasible to use simple backtracking algorithms in case the problem
is big. In this paper, we present a program for the problem in Beta-Prolog, an extended Prolog that
supports state tables. The problem is treated as a constraint satisfaction problem. The domains
of variables and constraints are represented as state tables. By using eperations over the state
tables, the manipulations required on the domains and constraints are described straightforwardly.
Several solutions that are comparable in quality to those obtained by special routers are described
for the Deutsch’s difficult problem obtained by the program on a single workstation as well as 16

workstations.

1 Introduction

Given a channel that consists of twe parallel horizon-
tal rows with terminals on them and a set of nets
each specifying terminals that must be interconnected
through a routing path, the channel routing problem
is to find routing paths for the nets in the channel
such that no paths overlap each other [2]. There are
a lot of different definitions of the problem that im-
pose different restrictions on the chanmel and rout-
ing paths. The problem has been studied extensively

in the VLSI design community since Hashimoto and .

Stevens [7] proposed it in 1971. Lapaugh has proved
that the problem is NP-hard [9]. Many algorithms
have heen proposed for the problem [3, 5, 11, 14, 16).
IMost of the traditional algorithms are based on graph
algorithms. Recently, several modern heuristic search
algorithms, for example, neural networks [14] and ge-
netic algorithms [11], have been proposed.

The channel routing problem is a finite-domain con-
straint satisfaction problem (CSP) [12]. Consider, for
example, the dogleg-free mulli-layer channel routing
problem where the ronting path for every net consists
of anly one line segment parallel to the two rows and
several line segments perpendicular to the two rows,
and the routing area in the channel is divided into sev-
eral layers for horizontal segments and several layers
for vertical segments. For each net, we need to deter-
mine the layer and the track on which the horizontal
segment lies. For this problem, each net to be routed
can be treated as a variable whose domain is a set of

75

all pairs of layers and tracks: It is simple to describe
the problem using a logic programming language like
Prolog. However, as the problem is NP-hard, we can-
not expect to solve it using simple backtracking algo-
rithms if the problem is big. Simonis [13] has applied
CHIP [4], a CLP language, to the two-layer and three-
layer channel routing problems where there is only one
vertical layer involved. Nevertheless, it is diffienlt to-
solve general multi-layer channel routing problems in
CHIP-like langnages because domains of variables in
such languages are restricted to simpele sets of inte-
EOTE, :

In this paper, we present a program for the problem
in Beta-Prolog [18], an extended Prolog that supports
state tables, i.e., relations in which each tuple is given
a truth value dfrue or false. The problem is treated
as a C5P. The domains of variables are represented
as a state table whose tuples are all the combinations,
of nets, layers and tracks. Initially, all the tuples are
set to be true, meaning that each net is possible to
be placed on any track in any layer. In this repre-
sentation, to select a track T' in a layer L for a net
N, we just need to select a tuple (N, L, T} from the
state table whose state is true, and to exclude a pair
(L, T from the domain of a net NV, we just need to set
the tuple (N, L,T) to be false. By using the opera-
tions over state tables, the manipulations required on
the domains and constraints are described straightfor-
wardly. In addition, the heuristice adopted to order
variables are similar to those used for solving general

CSPs [8].

In order to find high quality solutions, we adept
a parallel execution model for executing the program
on multi-sequential computers. The experimental re-
sults for the Dentach’s difficult problem, a well used
benchmark problem, are very encouraging.

In Section 2, we define the channel routing problem .

in detail. In Section 3, we describe the algorithm wsed.
In Section 4, we survey briefly the features of Beta-
Prolog. In Section 5, we describe the pregram. In
Section 6, we describe the parallel execution medel. In
Section T, we give the experimental results. In section
8, we compare our approach with other approaches
and discuss the directions for improving the program.

2 Channel Routing

A channel consists of two parallel horizontal rows with
terminals on them. The terminals are numbered 1, 2,
and so on from left to right. A net is a set of terminals
that must be interconnected through a routing path.
The channel routing problem is to find routing paths
for a given set of nets in a given channel such that
no segments overlap each other, and the routing area
and the total length of routing paths are minimized.

There are a ot of different definitions of the problem
that impose different restrictions on the channel and
romting paths. We consider the degleg-free multi-layer
channel routing problem which impose the following
three restrictions. Firstly, every routing path for ev-
ery net consists of only one horizental segment that
iz parallel tothe two rows of the channel, and sev-
eral verfical segments that are perpendicular to the
two rows. This type of routing paths is said to be
dogleg-free. Ifithas-been known that dogleg routing
problems can be transformed into dogleg-free routing
problems easily: (see for example [6]). Secondly, the
routing area in a channel is divided into several pairs
of layers, oneccalled hortzontal layer and one called
vertical layer: Horizontal segments are placed in only
horizontal layers and vertical segments are placed in
only vertical layers. The ends of segments in a routing
path are connected through vie koles. There are sev-
eral tracks inveach horizontal layer. Minimizing the
routing area means minimizing the number of tracks.
Thirdly, no routing path can stretch over more than
one pair of layers. Thus, for each net, we only need
to determine the horizontal layer and the track for
the horizontal segment. The positions for the vertical
segments are determined directly after the horizontal
segment is fixed.

For example; Figure 1 depicts a set of nets. The
terminals on the ith column of the top and bottom
rows are denoted as #(f) and b(i) respectively. Figure
2 depicts a four-layer channel and the routing paths
for the nets.

76

Ny = {1(2).1(5)}

Ny = {b(1).b(6)}

Ny = {b(2).b(4)}

Ny = {t(3).t(9)}

Np = {b(3),t(4).b(5)}
Np = {1(6),6(7)}

Ny = {1(7).b(11)}

Ny = {b(8).b(10}}

Ny = {b(9).t(10).6(12)}

Moo = {t(11)(12)}

Figure 1: The set of nets in the example problem.

133 41 8T 8RUTR

Tackd LD bortoanim-eyTrd
[T S — SN RO —
i s - ‘|
7 AT wetatinget
£
71. i
er =
1330 @0 F o8 owmn
% 5 4 & & F b iR N
e LT L a.
ki
L e L]
| |
| B
L e L — \I’MI’D—I
- -~ e

T EEAEFT FEEEAN

Figure 2: One solution for the example.

Two constraint graphs are created based on the
given set of nets: one directed graph called a verfical
constraint graph &, and one indirected graph called
a horizontal constraint graph Gy, In G, each vertex
corresponds to a net and each are from vertex u to
vertex v means that net v must be placed sbowve net
v if they are placed in the same horizontal layer. The
relation above does not necessarily reflect the physi-
cal configuration of tracks. The t3th track in a layer is
said to be above the tyth track in the same layer if #;
is greater than ty. In &, each vertex corresponds to a
net and there is an edge between two vertices u and v
if net # and net v cannot be placed on the same track.
Figure 3 depicts the constraint graphs for the set of
nets shown in Figure 1. There is an arc from vertex 1
to vertex § in &, because t(5) is included in Ny and
b{5) is included in Ng. If Ny is placed above Ny or
on the same track as ¥y in the same horizontal layer,
the vertical segments on the fifth column will over-
lap. There is an edge between vertex 1 and vertex 2
in Gy because the segment (2,5) connecting the two
farthest terminals in V) and the segment (1,6) con-
necting the two farthest terminals in Ny overlap each

other. Motice that the relation above is not transi-
tive unless there is only one vertical layer in the given
channel. For example, in a four-layer channel, ¥, can
even he placed below Ny in the same horizontal layer
if Ny is placed in a different horizontal layer.

Figure 3: Constraint graphs.

The depth of & net w in Gy is computed as [ollows:
If u lies at the top of Gy, then u's depth is 0; other-
wise, suppose u has n predecessors vy, v2, ..., Un, then
u's depth is max({d.1,...,dvn }) where d, denotes the
depth of v. There may exist eyeles in G, In this case,
all the vertices in a cycle have the same depth. The
length of a routing path is the sum of the lengths of
the horizontal and vertical segments in the path. For
a horizontal segment whose left-most terminal num-
ber is ! and whese right-most terminal number is r,

the length of the segment is r —[+1. Let ¢ be the num- |

ber of tracks in each horizontal layer. The length of
a vertical segment between the ith track and the top
row is £ — i 4+ 1 and the length of a vertical segment
hetween the ith track and the bottom row is 1.

3 Algorithm

We treat the channel routing problem as a C5P and
use the forward checking algorithm [8, 15] to solve it.
Each net is treated as a variable whose domain is the
set of all pairs of layers and tracks. The constraints
are represented by the two constraint graphs G, and
Gh.

The forward checking algorithm is & backtracking
algorithm where constraints are used actively to re-
duce the search space. It solves a CSP by repeating
the following steps until all the variables get values:

1. Choose a wvariable ¥ that has not yet been as-
signed a value.

2. Select a value v for the varable V' from its do-
main.

3. Exclude all those values from the domains of the
remaining variables that canse inconsistency in
the constraints after v is assigned to V.

77

When the domain of a variable becomes empty, the al-
gorithm backtracks to the previous variable that has
just been assigned a value. It undoes the assignment
and assigns the next alternative value to the variable.
If the next alternative value is not available, it contin-
ues to backtrack to the previous variable. If no vari-
able exists to backtirack to, the algorithm terminates
reporting & failure.
We use the following rules to choose a variable.

1. Choose first a variable whose corresponding net
lies at the bottom in &y

2. Choose first a variable with the smallest domain,

3. Choose firsi a variable whose corresponding net
has the greatest degree in (7.

4. Choose first a variable whose corresponding net
has the greatest degree in Gp.

5. Choose first a variable whose corresponding net
lies at the deepest position in &,

The first rule ensures that the nets at thie boftom of
{7, are placed before those above them. All the other
rules are comsistent with the first fusl prineiple [15].
Choosing first a variable that has the smallest domain
and participates in the largest number of constraints
can usually make a failurve occeur earlier.

4 Beta-Prolog

The novel feature of Beta-Prolog [18] is that it pro-
vides predicates for defining and manipulating state
tables. In this section, we describe the motivations
for introducing state tables into Prolog and the se-
mantics of the predicates for state tables,

4.1 Motivations

Beta-Prolog is motivated by the following observa-
tions. Most combinaterial search problems can be for-
mulated as state transition problems. Although Pro-
log is well used for search problems, it is unsatisfactory
for solving many state transition problems due to its
lack of appropriate data structures for representing
states, An ideal data structure for representing states
should meet the following three requirements: (1) it
is fast to test conditions on states; (2) it is fast to up-
date states; and (3) it is fast to backtrack to previous
states.

In Prolog, a state can be represented as a list of
facts that are true in the state. However, it is expen-
give to update or test the state. A state can also be
represented as dynamic relations and updated uwsing
the predicates assert and retract. However, as updates
performed by assert and retract are not undone upon

ba.c]i.t,rm;:king, we have to handle the restoration of the
state in the programs explicitly. This will certainly
make the programs obscure, In addition, accessing
dynamic relations is not fast because the tuples in
them are usually indexed only on the main functors
of the first arguments. Another alternative is to rep-
resent a state as compound terms and use setarg, a
predicate capable of updating a component destruc-
tively, to update the state. As the updates are undone
upon backtracking, we need not handle backtracking
explicitly in the programs. However, selecting & com-
ponent from a compound term requires scanning the
componnd term.

4.2 State Tables

A state table is a relation in which each tuple is given a
truth value true or false. It can be just considered as a
relation of Prolog for which updates are backtrackable.
When execution backtracks to a previous point, all
updates on the state tables performed since that point
are undone. .

A state table or a part of a state table is declared
by the following goal:

bt(p(X1, Xa,..., Xn),S)

where p is an atom which denotes the name of the
table, each Xy{1 < ¢ < n) is a set ezpression, and
& is either #rue or false which is the truth value of
the tuples. This declaration says that the Cartesian
product Xy % X3 x...x X, is a part in the state table
named p and all the tuples have the truth value §.

A set expression is a variable, an atomic term, a list
of different atomic terms, a range L. or an interval
{l,u}. The range l..u and the interval (I,u) both de-
note a set of consecutive integers I, I + 1, ..., and .
Internally, the former is represented explicitly, while
the latter is represented implicitly.

For example, the following call

bt{p([a.b].1..2),true)
specifies the state table shown in Figure 4.

| A1] A2 | State |
a 1 true
i 2 true
b 1 frue
b 2 true

Figure 4: Example state table.

4.3 Manipulations

The predicates on state tables take one or more tuple
patterns and manipulate the tuples that mateh the

78

patterns. A fuple patlern is a compound term in the
form p(X),Xs,....X,) where p denotes the name of
a state table, the first & (k>0) arguments are atomic
values or intervals and the remaining arguments are
distinct variables,

The predicate select{T) selects a true tuple that
matches the tuple pattern T nondeterminately. When
the predicate select(T) is invoked, it selects the first
true tuple matching . When the execution back-
tracks to the predicate, it will select the next true
tuple matching T antomatically. When no true tuple
exists, the predicate fails.

The predicates first{T) and last(T) get respec-
tively the first and last true tuples that match the
tuple pattern T. The predicates prev(T},T2) and
next(T],T5) get respectively the previous and the
next tuple T3 of T3, The predicates true(T) and
false(T) test the truth value of the tuples match-
ing the tuple pattern T. The predicates set_true(T)
and set_false(T) update the truth value of the tu-
ples matching the tuple pattern T, These updates are
undone on backtracking, The predicate count{T,N}
counts the number N of the true tuples that match
the tuple pattern T

For example, for the query

bt(p{fa.b] 1..2),true) select{p(b,X}}.
X first gets 1. On backtracking, X gets 2.

5 Program

In this section, we present the program that specifies
the forward checking algorithm for the channel routing
problem. :

The domains of variables are the sets of all pairs of
layers and tracks. They are specified by a state table
as follows: '

bt{domain(1..N,1..L,(1.T)).true)

where N is the number of given nets, L the number
of horizontal layers in the given channel, and T the
number of tracks in each horizomtal layer. Initially,
all the tuples are set to be true, meaning that each
net is possible to be placed on any track in any layer.

The variable for each net is represented as a com-
pound term in the following form:

dvar(N, Layer, Track}

where N is the number of the net, Lager and Track
are two variables that will hold respectively the layer
and the track to be assigned to the net.

The constraint graphs are important both for choos-
ing variables and excluding values from domains. We
use Lwo state tables called gv_above and gv_below to
represent Gy, For every two nets w and w, if u is
above v in &, then the tuples gv_above{u,v) and

route(M L, T}:-
build_constraint_graphs(N},
gen eratg_vaml_'ﬂ.‘lfam}_
bt{domain{1..N,1..L{1,T)) true},
label(Vars),
eutput(Vars).

label([]):-!.

label{Vars):-
choose{Vars dvar{M, Layer, Track), Rest},
select{domain(M, Layer, Track)),
update(M, Layer, Track),
lzbal{ Rest].

Figure 5: Program lor channel routing.

gv_below{v,u) are set to be true. Gy is represented
by a state table called gh. For every twe nets u and
v, if there is an edge between w and v in &y, then the
tuples gh{u,v) and gh{w,u) are set to be true.

Figure 5 depicts the main part of the program.
The first clause defines the predicate route(N,L,T) that
rontes & set of V nets on a channel with L horizontal
layers each of which has T tracks. It builds constraint
graphs, generates vadables, builds the domains for the
variables, calls label to assign values to the variables,
and outputs the solution.

The predicate choose(Vars,Var,Rest) chooses a vari-
able Var from Vars. All the information required for
choosing variables is available from the four state ta-
bles: domain, gv_above, gv.below, and gh. For a net
u, if first{gv_above{u,.)) fails, then u is at the bot-
tom of G, The call count(gv_below(u,)N} computes
the degree of u in G, the call count{domain{u,_,-).N)
computes the size of the domain of w, and the call
count{gh(u,.),N) computes the degree of u in Gy,

The predicate update(M,Layer, Track), whose defini-

tion is shown in Figure 6, removes the net N from
hoth &, and &y and excludes unsatisfactory val-
ues from the domains of the remaining variables.
The call findali{A, select(gv_below(N,A))As) finds all
the nets As that are directly above N in G.. The
call update_w{N, As,Layer Track) removes N from G,
by removing the arcs from every net in As to N,
and ensures that no net in Az can be placed be-
low N in the same horizontal layer. The call find-
all{H,select(gh{N,H)),Hs) finds the neighbors Hs of N
in Gy. The call update_h{N Hs Layer, Track) removes
N from &y, by removing the edges between N and ev-
ery net in Hs and ensires that no net in Hs can be
placed on the same track as N.

79

update(M, Layer, Track):-
findall{ A select{gv_below{ N, A)).As),
update v M, As, Layer, Track),
findzll[H,select{gh{N,H])},Hs),
update_h{ N, Hs Layer, Track).
vpdate_w(M,[],Layer, Track).
update_v{ M, [A|As] Layer, Track):-
set_false(gv.below({N A)), % remove W from G,
set _false(gv_above(4,N)),
set_false[domain{A Layer (1, Track)}), % A is above N
cotnt({demain{A,..,.), Count),
Count =0,
updateviM, As, Lever, Track).
update_h{N,[], Layer, Track).
update_h{N,[H|Hs], Layer, Track):-
set_false(gh{N.H}}, %remeove N from Gy
set_false[gh{H,N}).
set_false(domain(H,Layer, Track)).
count{domain{H,_,_},Count},
Count=0,
update hi{l, Hs Layar, Track).

Figure 6: Update constraint graphs and dé-maiﬂs.

6 Parallel Execution of the

Program

In order to find good selutions, we adept a parallel ex-
ecution model similar to that proposed by Ali [1] and
Lin [10] for runing the program on multi-sequential
computers in parallel. ‘

Before execution, each machine has a copy of the
Prolog system and also the program to be executed.
All the machines begin te execute the program from
the same start point. When a machine reaches a goal
select(T), it determines the part of the true tuples that
will be treated as candidates for the tuple pattern T
All the tuples ignored will be explored by some other
machines. This decision is based on a strategy known
to all the machines.

Each machine keeps a list that contains the names
of all the machines that are participating in the search
of the same path. Initially, the list in every machine
contains the names of all the machines, meaning that
all the machines start from the same point. After
reaching select(T), each wachine deletes from the list
the names of those machines that are assigned differ-
ent tuples from that assigned to the machine.

When a machine reaches a goal select(T), it deter-
mines the tuples that will be treated as candidates for
T. The schednoling strategy is based on the follow-
ing three parameters: (1) the number of participating
machines that will reach the same point; {2} the num-
ber of true tuples matching the tuple pattern T'; and
(3) the parallel branching factor, ie., the maximum
number of tuples that are explored in parallel at o

time.

A very simple scheduling strategy is adopted.
Suppose the set of true tuples matching T is
{tp,t1.. .., ta1 }, the Hist of machines participating in
the search of the same path is mg, ™, ..., My, and
the parallel branching factor is b. Let & be the min-
imum of n and b The machine mi(i = 0,...,1 = 1)
treats the following set of tuples as the candidates for
T

{t; |jmodl=imodk (j=0,...,k=1)}

If &k = I, this strategy divides the k tuples evenly
among the | machines; if & < I, this strategy divides
! machines evenly among the k tuples. If b < n, then
the tuples {t3,...,ta_1} will be rescheduled for the
participating machines. For example, Figure 7 shows
how a search tree is divided among four machines by
the scheduling strategy. The parallel branching factor
is assumed to be two.

WY EL B ml =) =m0 B =] =% =l

Figure 7 An example of parallel execution.

This execution model is very simple becanse nei-
ther communidation nor copy is reqnired. Unlike those
maodels proposed by Ali [1] and Lin [10], this model
place high pridrity on the left part of the search tree,
For example, in: Figure 7, the four machines will first
concentrate om: the left halfl part of the tree. If no
solution is found, they move to the right part.

7 Experiments

In this section, we describe the experimental results
for the Deutsch’s difficult problem.

7.1 Environment and Benchmark

Beta-Prolog issan emulator-based Prolog system. The
undeslying abstract machine and the compiler are de-
scribed in [17; 19]. In order to support the manipula-
tions on state tables, we modified the trail stack such
that when ancupdate of a data cell needs be saved,
both the address and the content of the cell are pushed
omto the trail stack.

The program is of about 300 lines long excluding
comments, blanks, the data for the nets, and the code
for displaying a solution. It can minimize the number
of tracks and the total length of routing paths by using
branch & bound.

80

Order | HV(40) | ZHV(20) | 3AV(14)
1-2 31 14 9
1-3-4 3 13 9
15 29 13 8
1-2-34 | 30 13 8
1534 | 28 13 8

Table 1: The best results found by sequential execu-
tien in 30 minutes.

The Deutsch’s difficult problem is used as the
benchmark problem. The benchmark suite described
in [16] are well used in the VLSI design community,
among which the Dentsch's difficult problem is'a rep-
resentative cne. The problem is to route a set of 72
nets on a channel where there are 174 terminals on
each row. There are 117 ares in the constraint graph
&y and 846 edges in Gy,

7.2 Sequential Execution

We first run the program on a single SPARC-10 us-
ing different combinations of the heuristics listed in
Section 3. Table 1 shows the best results found in 30
minutes (CPU time). The column Order denotes the
combination of the heuristics used. The colimns HV,
2HYV and 3HV denotes the numbers of tracks in each
horizontal layer for two, four and six layer channels
respectively. The numbers in the parentheses denote
the initial bound of the number of tacks.

The last combination 1-5-3-4 of heuristics shows the
best performance. It found the best solution for HV
that requires 28 tracks, which is known to be optimal,
in only 19 seconds (see Figure §). The CHIP pro-
gram described in [13] found an optimal solution for
the same problem in less than 30 seconds. The best
result found for 2HV requires 13 tracks and that for
3HV requires 8 tracks in each horizontal layer. The
optimal numbers of tracks for 2HV and 3HV are not
vet known. The router described in [5] found in less
than one second a solution for 2HV that requires 10
tracks, but it does not require segments in a routing
path to be in only one pair of layers.

Figure 8: A solution found in 19 seconds.

Order | HV | 2HV | 3HV
1-2 30 13 5
1-3-4 33 12 8
1-5 29 12 5
1-2-3-4 | 30 12 8
1-5-3-4 | 28 12 8

Table 2: The best results found by parallel execution
in 30 minutes.

7.3 Parallel Execution

We then run the program on 16 SPARCs using the
same combinations of heuristics. Table 2 shows the
best results found in 30 minutes. The best result
found for 2HV requires 12 tracks, one less than that
required by the solution found by sequential execu-
tion,

We finally run the program on 16 SPARCs to min-
imize the total length of routing paths. The heristics
1-5-3-4 is used and the time limit is set to be 30 min-
utes. Figure & depicts the best solution for 2ZHV.

Figure % The best 2HV solution {length=4164)

& Discussion

In this section, we compare our approach with other
approaches and point out some directions for improv-
ing the approach.

8.1 Comparison with Traditional Al-

gorithmic Approaches

There are a huge number of algorithms proposed to
solve the channe] routing problem. Recent algorithms
tend to be very complicated and thus are very dif-
ficult to implement. Furthermore, when the restric-
tions on the channel or routing paths change, the al-
gorithms must be redesigned. Compared with these
traditional algorithmic approaches, the logic program-
ming approach presented in this paper is very simple.
It treats the channel routing problem as a CSP and
solves it by using the forward checking algorithm, We
can implement new heuristics for ordering variables by
modifying the definition of the choose predicate and
adapt the algorithm to other types of routing prob-
lems by modifying the definitions of domains and the

8l

update predicate. The state tables provided by Beta-
Prolog makes it very easy to implement the algorithm.

8.2 Comparison with CLP Approaches

Because the channel routing problem can be treated
as a finite-domain CSP, one wonld naturally think of
using CLT languages like CHIP to solve the problem.
The advantage of this approach is that the program-
mer does not need to program the procedure for up-
dating domains explicitly. Simonis [13] has applied
CHIP to the two-layer and three-layer channel ront-
ing problems where there is only one vertical layer
involved. The relation abowve is represented as dise-
qualities. However, as we have described in Section 2,
the relation abowve is not transitive for general multi-
layer channel routing problems and thus cannot be
represented as disequalities:

The formulation described in this paper does not
suit CHIP because the domains in CHIP are restricted
to sets of infegers. To make the formulation suitable
to CHIF, we can use [+ 1 variables L., Ty, Tus,
«.., and Ty for each net u where I is the number of
horizontal layers, L, holds the layer, and each T,
{i =1,2,,..,0) holds the track in the ith layer. Be-
cause each net is placed in only one horizontal layer,
only one variable in T, Tye, ..., and T will be in-
stantiated. For two nets ¢ and v, if u is above © in
7y, the fellowing implication constraints must be sat-
isfied:

LII=LI‘J=1_]TN!:$'I‘II!-

LH=LV=I_'|'T1|!}T1I!'

It is possible for the constraint solver to reduce the
domains of the variables on the right-hand sides if the
left-hand sides of the implication constraints become
true. However, checking constraints is expensive he-
cause a constraint need be checked every time when a
participating variable in it is instantiated,

8.3 Improvements

The program can be improved in several directions.
Firstly, the current program only uses general heuris-
tice for ordering variables. It would be more efficient
to use some problem specific heuristics used in tra-
ditional algorithms. For example, such information
about nets concerning the lengths of nets, types of
nets (two-terminal nets, multi-terminal nets, nets con-
necting only terminals at the top, nets connecting only
terminals at the bottom, ete.) can be used to choose
variables. Secondly, the program can be improved by
introducing heuristics for choosing appropriate val-
ues for selected variables. These two improvements
should be justified by experiments. For this purpose, a
large number of benchmark problems must be tested.

Thirdly, on a networlk of computers, much better so-
lutions can be obtained if computers are able to com-
municate each other. With communication, a global
bound can be established for branch & bound search
which iz used in the program to minimize the total
length of routing paths.

9 Conclusion

In this paper, we showed how to solve the multi-
layer channel routing problem using Beta-Prolog, an
extended Prolog with state tables. The problem is
treated as a CSP, and the domains and constraints
are represented as state tables, We also showed how
to execute the program in parallel on multi-sequential
computers, The results obtained for the Deutsch's
diffieult problem are very encouraging,

Acknowledgement

The author is grateful for Dr. Moon R. Jung for
his valnable comments on the presentation. This re-
search was partially supported by a research fund
(No.06750395) of the Ministry for Education, Srience,
and Culture of Japan.

References

[1} Ali, K.A.M.: OR-Parallel Execution of Prolog on a
Multi-Sequential Machine, Int. J. Parallel Program.,
Vol15, No.3, 180-214, 1086,

[2] Burstein, M: Channel Routing, Layout Design and
Verification, North-Halland, pp.133-167, 1986

[3] Deutsch, D.N.: A Dogleg Channel Router, Proc. 13th
Design Automation Confersnce, pp.425-433, 1976,

[4] Dincbas, M., Van Hentenryck, H., Simonis, H., Ag-

goun, A., Graf, T, and Berthier, F.: The Constraint -

Logic Programming Langnage CHIF, Proe. FGCS'88,
G33-T02, 1988,

Fang, 5.C., Feng, W.5., and Lee, S.L.: A New Effi-
cient Approach to Multilayer Channel Routing Prob-

lem, Proe. of the 20th ACM/IEEE Design Automa-
tion Conference, 379-584, 1992,

Gao, 5. and Kanfmann, M.: Channel Routing of Mul-
titerminal Nets, J. ACM, Vol.41, No.4, pp.T91-818,
1984,

Hashimete, A and Stevens, 5.: Wire Routing by Opti-
mizing Channel Assignment within Large Apertures,
Proc. 8th Design Automation Werlkshop, pp.165-169,
1971,

[8] Kumar, V.: Algorithms for Constraint Satisfaction
Problems: A Survey, Al Magazine, Spring, 1992

{8] LaPaugh, A.5.: Algorithms for Integrated Circuits
Layout: An Analytic Approach, PhD Dissertation,
MIT Lab. of Computer Science, 1980,

(5]

(6]

(7

82

110] Lin, Z.: Self-Organizing Task Scheduling for Parallel
Execution of Logic Programs, Proc. FGCS™2, 8530-
a6s, ICOT, 1992,

[11] Liuw, X., Sakamoto, A. and Shimamoto, T.: Genetic
Channel Router, IEICE Trans. Fundamentals, E77-
A, pp492-501, 1994,

[12] Mackworth, A.: Constraint Satisfaction, Encyelope-
dia of Artificial Intelligence, John Wiley & Sons,
pp.205-211, 1986.

[13] Simomis, H.: Channel Routing Seen as a Constraint
Problem, Tech. RHep., TR-LP-31, ECRC, Munich,
July, 1990,

[14] Takefuji, : Newral Network Parallel Computing,
Kluwer Academic Publishers, 1992,

[15] Van Hentenryck, P.: Constraint Satisfaction in Logic
Programming, MIT Press, 1080, :

(18] Yoshimura, T. and Kuh, E.5.: Efficient Algorithms
for Channel Routing, IEEE Trans. CAD, Vell,
pp.25-35, 1082,

[17] Zhou, N.F.: Global Optimizations in a Prolog Com-
piler for the TOAM, J. Logic Programming, Vel 15,
pp.265-294, 1993,

Zhou, N.F.: Beta-Prolog: An Extended Prolog with
Boolean '_I‘abl.es for Combinatorial Search, Proe. 5th
IEEE International Conference on Tools with Artifi-
cial Intelligence, IEEE Cumpnt.l;_r Society, pp.312-314,
16493,

Zhou, N.F.: . On the Scheme of Passing Arguments
i Stack Frames for Prolog, Proc. Eleventh [nterna-
tional Conference on Logic Programming, MIT Press,
Pp-158-165, 1904,

18]

{19]

