A Survey of Current and Future Research Directions in Parallel CAD

Prithviraj Banerjee
Computational Science and Engineering Program
University of Illinois
1308 W Main Street
Urbana IL 61801
banerjee@crhe.uiuc.edu

Abstract

In view of the increasing complexity of VILST cir-
ewits of the future, the requirements on VLST CAD
tools will continuously increase. Parallel computing is
becorning gradually recognized as o populer vehicle to
support the increasing compubing requirements of fu-
ture CAD tools. In this paper, we will provide a brief
survey of parallel CAD research, and discuss some fu-
ture directions.

1 Introduction

Parallel computing is becoming an increasingly
cost-effective and affordable means for providing enor-
mous computing power and represents a challenge to
costly conventional supercomputers. Although it is
relatively easy to build parallel machines whose peak
performance are thousands of MFLOPS and MIPS,
it is extremely difficult to harness the computational
power effectively to actually have the machines de-
liver all those MFLOPS and MIPS to the user. A
major challenge in parallel computing is to design effi-
cient, parallel algorithms that can use the hardware
resources to get the maximum performance. This
paper will discuss the use of parallel processing for
solving problems in a growing application area whose
computational requirements are enormous: very large
scale integrated (VLSI} circuit computer-aided design
(CAD) applications,

In view of the increasing complexity of VL3I cir-
cuits, there is a growing need for sophisticated CAD
tools to automate the synthesis, analysis, and verifica-
tion steps in the design of VLSI systems. Foture CAD
tools have to enable designs that are too large or com-
plex to undertake otherwise, shorten design time, im-
prove product guality, and reduce product costs. Par-

* Acknowledgement: This ressarch was supported in part by
the Semiconductor Research Corporation under Contract SRO
94 DP-109, and by the Advanced Research Projects Agency
edministered by the U.3, Army Research Office under Contract
DA AHM-04-G-0273.

37

allel processing offers an effective solution to handle
the large complexity of VLSI designs of the future.

In this paper, we will provide a brief survey of par-
allel CAD research over the last decade. For more
details in this topic, the reader is referred to a recent
book on the subject [1]. Section 2 provides some mo-
tivation behind why it is important to develop parallel
CAD algorithms. Sections 3 through 9 survey paral-
lel implementations in various CAD applications such
as cell placement, wire routing, layout verification, cir-
cuit simulation, logic simulation, test generation, fault
simulation, logic synthesis and verification. We high-
light various commercial implementations of parallel
CAD tools in Section 10. Finally, we conclude with a
look at the future of parallel CAD in Section 11.

2 Motivation for Parallel CAD

The use of parallel processing for VLSI CAD appli-
cations is beneficial for the following reasons.
2.1 Faster Runtimes

Almost all the VLSI CAD applications in the syn-
thesis, analysis, and verification tasks at various lev-
els in the WLSI design hierarchy (functional, logical,
circuit, and physical levels) take large runtimes on ex-
isting sequential computers. Future CAD tools will
require even more accuracy and computational capa-
bilities from thess fools. It is clear that CAD tools
that take hours to run on current designs consisting of
tens of thousands of gates, may take weeks or months
to run on future designs consisting of millions of gates.
Given such increased complexity of CAD tools of the
future, one of the effective ways to address the com-
plexity of the problem is to apply parallel processing
to speed up the CAD tasks. Many problems are suit-
able for parallelization, hence parallel processing can
offer faster runtime performance for many CAD appli-
cations,

2.2 Larger Problem Sizes

Very often; a particular CATY fool cannot handle

a large problem because of its unaffordable runtime

requirements or memory limitations. Given the same
amount of design turnaround time from a designer,
parallel processing allows the user to address larger
problems since they are solved faster. Also, since par-
allel machines come with larger memories, one can
solve larger problem sizes than could be solved ear-
lier on conventional machings. For example, it has
heen observed that circuit extractors that cannot ex-
tract large circuits containing millions of rectangles on
a workstation due to memory limitations can be ex-
tracted on a parallel procesaor by suitably partitioning
the rectangles of the chip area among the processors.
2.3 Better Quality of Results

Since many VLSI CAD problems can be formu-
lated as optimization problems that are NP complete,
heuristics are often used to solve the problems, which
often give sub-optimal solutions, By using parallel
search techniques, it has been observed that one can
frequently obtain better quality results. For exxample,
it has been observed that a parallel implementation
of an automatic test pattern generator obtains higher
fault coverage than the corresponding serial implemen-
tation.

2.4 Affordable and Available Technology

Parallel processing has become affordable and avail-
able recently owing to the availability of low-cost, high-
performance microprocessors and memories. Madium-
priced moderately parallel multiprocessors and multi-
processor workstations are now available readily,

2.5 Efficient Paralle]l Algorithm Design

It is often-claimed that, rather than investizating
parallel algorithms, it is perhaps better to investigate
sophisticated technigques to automatically parallelize
programs as<s done by parallelizing compilers, How-
ever, the status of existing parallelizing compilers is
such that they can only work on programs in lan-
guages such -as FORTRAN with large numbers of in-
dependent DO LOOPS working on array-type data
structures. While these technigues are appropriate
for structured numerical applications involving dense
matrices, they will not be able to extract sulficient
parallelism automatically from VLSI CAD applica-
tions. By nature, algorithms for VLSI CAD appli-
cations are highly unstructured (for example, they do
not have well-structured DO LOOPS and array data
structures). Hence, to speed up VLSI CAD applica-
tiong, it is necessary to investigate parallel algorithms
for them.

In the following sections, we will briefly review par-
allel implementations of VLSI CAD tools across a large
variety of applications including placement, rowting,
design rule checking, cirenit and logie simulation, test
generation and logic synthesis.

58

3 Parallel Placement

The VLSI cell placement problem involves placing
a et of cells on a VLSI layout for a given netlist that
provides the connectivity between each cell and a li-
brary containing layout information for each type of
cell; The primary goal of cell placement is to deter-
mine the best location of each cell so as to optimize
one or more ohjectives, such as minimization of the
total area of the layout or minimization of the delays
on intercomnect lines. Since these problems are NP
complete to begin with, heuristic approaches are used
to solve such problems. Newer heuristics are being
continually developed. Numerous parallel algorithms
have been developed for the placement problem. We
now summarize the basic features and advantages of
each parallel algorithm.

The parallel algorithm based on iterative pairwise
exchange assigns a cell or a group of cells to each pro-
cessor of a IV processor system, and considers the ex-
change of N /2 pairs of adjacent cells simultaneously. If
the total wirelength associated with a pair of cells can
be decreased by the exchange, these two cells are ac-
tually exchanged. Otherwise, they are not exchanged.
During each proposed exchange of & cell pair, it is as-
gumed that the other cells are all fixed in their current
positions. The parallel algorithm is suitable for exe-
cution on SIMD and MIMD parallel machines. The
advantage of this algorithm is that it has a large de-
gree of parallelism. The main disadvantage is that the
quality of the solutions produced by this algorithm is
quite poor. A second disadvantage is that due to in-
teraction among paratlel moves, there is a chance of
oseillation around the placerment solution.

The parallel algorithm based on force-directed
placement is based on the notion of using forces to
bring cells with greater connectivity closer together.
Cells are assigned to different processors, and at each
step, a cell’s new position is computed on the basis
of the current positions of the cell's logical neighbors.
The algorithm is suitable for SIMD parallel machines.
The advantage of this algorithm is that there is a large
degree of parallelism, and the solution quality obtained
from the algorithm is fairly good, better than the pair-
wise exchange algorithm, but inferior to simulated an-
nealing,

Several parallel algorithms based on sirmlated an-
nealing have been proposed. At each iteration, a cell is
randomly selected, and moved to or exchanged with a
cell at another random location. If the resultant meve
decreases the overall cost function, the move is ac-
cepted. If the move results in an increase in the value
of the cost function, the move 1s accepted with a proba-
bilistic function based on the temperature. The paral-

lel algorithm based on move decomposition breaks up
the task involved in simulated annealing into a set of
subtasks and allocates each task to a different proces-
gor. This approach i= only suitable for shared merm-
ory MIMD machines and typically gives only small
speedups of about 2 to 3. The parallel algorithms
based on parallel move evaluation allow different pro-
cessors to propose different moves in parallel; these
approaches give large speedups, and are suitable for
both SIMD and MIMD machines, but one has to be
careful about interactive parallel moves, Parallel algo-
rithms based on parallel evaluation and acceptance of
noninteracting moves give low speedups. Parallel al-
gorithms based on parallel interactive moves can give
good speedups, but can give rise to some degradation
in quality of the solution with an increasing number of
processors. The main advantage of all these algorithms
is that it gives the best quality of the solution among
all parallel algorithms for the placement problem. The
disadvantage is that the runtimes of the algorithms are
quite large even after parallelization compared to some
of the other approaches.

Some researchers have proposed parallel algorithims
for placement based on simulated evolution which is
based on the analogy of the placement process to a bio-
logical evolutionary process. Related to the placement
problem, the three steps in an iterative lnop consist of
evaluation, selection, and allocation. First, each cell in
the population is subjected to evaluation, a phase that
determines its normalized goodness, a figure of merit
that reflects how well a cell is placed in its current
position. Mext, the selection procedure selects cells
for replacement. For each cell separately, a trial is
performed in which the cell's goodness determines its
probability of survival in its eurrent location. Finally,
the allpcation procedure removes all selected cells from
the placement and a search is performed to find an im-
proved location in the vicinity of its old position. In
the parallel algorithm, a processor is allocated a re-
glon of the chip area and its set of cells and runs the
simulated evolution algorithm procedures of evalua-
tion, selection, and allocation on its cells. The paral-
lel algorithm is suitable for both shared memory and
distributed memory MIMD machines and gives good
speedups. However, the quality of the solution is not
as good as simulated annealing.

The parallel algorithms for placement based on ge-
netic algorithms allocate a subset of population of cells
to each processor, and each processor runs a genetic
algorithm on its own population, and periodically ex-
changes subsets of populations with other processors.
The algorithm gives reasonably good quality of solu-
tiom and large speedups. The disadvantage of this al-

59

gorithm is its large memory requirements, which need
to store several hundred different placement solutions
simultanecusly.

The parallel algorithms for placement based on hi-
erarchical decomposition use a divide and conguer
method of solution by recursively decomposing the
placement solution on the entire chip into subproblems
of the placement of cells on smaller chip regions. The
advantage of the paralle]l algorithm is that the solution
quality does not degrade with an increasing number
of processors. However, the disadvantage is that the
speedups are not scalable with a large number of pro-
cesaors, since the topmost nodes in the task graph that
execute on a few processors take the longest time to
execute, and it takes a long time for all the processors
to become busy doing useful work.

4 Parallel Routing

After a given set of cells is placed optimally on a lay-
out, the wires need to be routed together. This routing
is typically done in two steps called global routing and
detailed routing. We will briefly describe some of the
parallel routing algorithms in this section. '

Parallel algorithms for detailed maze routing and
detailed line routing have been proposed using differ-
ent grid partitioning strategies. The maze routing al-
gorithm consists of three phases: front wave expan-
sion, path recovery, and sweeping. In the front wave
expansion phase, a breadth-first search beginning at
a start node S is performed, and consecutive nodes
are labeled in increasing order until the target node
T iz reached. After the front wave expansion reaches
the target cell T°, the path recovery phase traces back
the path from T to 5, thereby identifying the wire
path. The parallel algorithms are suitable for both
shared memory and distributed memory MIMD ma-
chines. The advantage of the maze routing algorithm
iz that it is guaranteed to determine the shortest path
for a given two-terminal net. Excellent speedups can
be obtained on this algorithm since it naturally scales
with the number of processors. The main disadvantage
of this algorithm is its enormous memory requirement
since we need to store the state of every grid point
of the routing grid, which for large chips can be an
extremely large number. The other disadvantages of
this algorithm are (1) the order of routing the nets is
very important to the solution quality and (2) multiple
terminal nets are not easy to handle. The line rout-
ing algorithm minimizes memory and computation re-
quirements at the cost of giving up on the routing
quality.

Several paralle]l algorithms for channel routing have
also been proposed. The advantage of these algorithms
is that they handle the problem of net routing simul-

taneously. The parallel algorithm based on simulated
annealing assigns tracks to different processors and
moves nets among the tracks using an annealing al-
gorithm to reduce the net overlaps. The algorithm
gives good quality of the routing solution and excel-
lent speedups; however, the sequential algorithm takes
a very large amount of runtime, Hence even after yun-
ning the algorithm on multiple processors, its runtime
is slower compared to the best serial algorithms.

The parallel channel routing algorithm based on
the greedy track assignment by columns partitions the
channel region by column separators and routes each
region independently. The choice of the columns for
separating the regions is determined af the points of
maximum channel density. This might give rise to load
imbalances in the parallel algorithm. Also, by solving
the channel routing problem independently, there is no
guarantee that the nets will be assigned to the same
tracks on the boundaries. When such a solution can-
not be found, the algorithm uses the assumption of
45-degree bends at the boundaries to change tracks.
Such a technology may not be allowed.

The parallel channel routing algorithm based on
hierarchical decomposition creates two-by-N routing
tasks recursively and solves each task on a processor.
The algorithm has the advantage of giving good rout-
ing solutions, and the quality of the solution does not
degrade with increasing number of processors. How-
aver, the disadvantage is that the task graph is a bi-
nary tree and, in the beginning, many processors re-
main idle since not enough tasks exist. Hence, the
speedup using this algorithm is not very high.

Recently, a parallel algorithm for switchbox routing
based on conflict resolution and iterative improvement
has been proposed. The algorithm assigns each net
to a different processor and routes each net indepen-
dently. Conflicts in the routing are resolved and cor-
rected by an iterative improvement phase. The paral-
lel algorithm gives no degradation of quality with the
increased number of processors and gives reasonably
good speadups.

We will now describe some parallel algorithms for
global routing. Global routing algorithms perform ap-
proximate routing of nets to routing resources. The
parallel algorithms using graph search use a wave ex-
pansion algorithm similar to maze routing on a coarse
routing grid to determine approximate routing assign-
ments. The routing grid is partitioned among the pro-
cessors using different methods. The advantage of the
algorithm is that it gives very good routing quality and
excellent speedups. The disadvantage of the algorithm
is that the sequential algorithm takes a large comput-
ing time; hence, the runtimes on parallel processors

60

are still quite large.

The parallel algorithm for global routing using it-
erative improvernent considers a subset of possibilities
for routing nets (L-shaped and a few Z-shaped layouts)
and routes multiple wires simultaneously by assigning
the routing task of & net to a different processor. The
advantages are that the runtimes are quite low and ex-
cellent speedups are obtained. However, the routing
quality is not as good, and the routing quality degrades
slightly with increasing number of processors.

The parallel algorithm for global routing using hi-
erarchical decomposition essentially divides the global
routing problem on a grid into 2 x 2 subregions and
solves the routing tasks recursively in a top-down man-
ner. The advantages of the algorithm are that the run-
times are quite low and the routing quality is reason-
ably good. There is no degradation in routing quality
with increasing number of processors. The speedups
are reasonably good since, even though the task graph
s in the form of a tree and at the top of the task
graph there are not many tasks to keep the processors
busy, the task graph expands very quickly and creates
enough work for the later stages of the algorithm to
effectively use all processors,

5 Parallel Layout Verification

Layout verification and analysis tools determines
whether the polygons that represent different mask
layers in the chip conform to the technology specifica-
tions and obtains circuit information about the circuit
it implements. Design rule checkers (DRC) detect vi-
olations of rules that govern the technology in which
the chip is to be fabricated. A circuit extractor de-
termines the circuit implemented by the chip layout
and estimates varipus electrical parameters, such as
the resistances of lines, capacitances of nodes, and di-
mensions of devices. We will describe several parallel
algorithms for DRC and extraction.

The parallel algorithm for design rule checking us-
ing area decomposition partitions a given chip lay-
out by horizontal or vertical strips with an overlap
of the maximum design rule interaction distance and
performs DRC on each partition independently. The
approach reguires very little communication among
the processors, and if each partition contains approx-
imately the same number of rectangles, it gives good
speedups. This approach is only suitable for Aattened
layouts, and is suitable for execution on shared mem-
ory and distributed memory MIMD multiprocessors.

The parallel algorithm for DRC using functional de-
compesition partitions the DRC tasks by the rules to
be checked. Each rule can be potentially checked on
the entire chip area by each processor. The approach is
applicable to flattened and hierarchical circnits. How-

ever, the speedup of this approach is limited due to the
fact that for many DRC operations we need to gener-
ate some common intermediate layers, which force a
dependency on the application of the rules. This re-
stricts the maximum parallelism available in the prob-
lern. The algorithm is suitable for shared memory and
digtributed memory MIMD multiprocessors.

A very efficient way to perform DRC in the sequen-
tial domain is to exploit hierarchical techniques. Par-
allel algorithms for hierarchical DRC essentially per-
form DRC tasks on individual cells in the hierarchi-
cal description of the circuit. The problem with this
approach is that it is possible to get wide variances
of load if we have cells of widely different sizes in a
design, This can Iimit the speedups available in the
problem. It is possible to use partitionable indepen-
dent task scheduling algorithms to alleviate some of
these problems. In this approach, a number of pro-
cessors are assigned to solve the DRC problem of each
large cell in parallel. The parallel hierarchical algo-
rithm iz suitable for shared memory and distributed
memory MIMD multiprocessors. '

The parallel algorithm for DRC using an edge based
decomposition is suitable for SIMD massively parallel
machines. The algerithm allocates each edge in the
layout to a processor and performs DRC among pro-
cessors owning adjacent edges. The approach gives
good speedups, but is only applicable to flattened cir-
cuit designs.

Several researchers have developed numerous par-
allel algorithms for netlist and parameter extraction,
The parallel netlist and parameter algorithms based on
data decomposition partition the chip area into subre-
gions and perform local extraction within each region,
followed by a merge algorithm to perform globally ex-
traction. These algorithms are suitable for flattened
layouts and can execute on both shared memory and
distributed memory MIMD multiprocessors. Excellent
speadups can be obtained through this method.

The parallel algorithm for hierarchical netlist and
parameter extraction combines the benefits of hierar-
chy and parallelism to speed up the extraction pro-
cess. In the simplest parallel hierarchical algorithm,
each cell in the hierarchy is extracted independently
on a different processor. This approach may give poor
speedups if the load balance is not uniform, for exam-
ple, if there are cells that are very big. A more effi-
cient parallel hierarchical algorithm has been proposed
using the partitionable independent task scheduling
method, in which & number of processors are assigned
to solve the extraction problem of a hierarchical cell in
parallel. This algorithm gives excellent speedups and
combines the benefits of hierarchy and parallelism eof-

61

fectively. The algorithms are suitable for shared mem-
ory and distributed memory MIMD multiprocessors.

6 Parallel Circuit Simulation

Circuit simulators are used to verify circuit func-
tionality and to obtain detailed timing information
before the expensive and time-consuming fabrication
process takes place. The behavior of an electrical cir-
cuit can be accurately described by a set of equations
involving node voltages, currents, charges and fluxes:
A variety of techniques for parallel circuit simulation
has been proposed by researchers over the last few
years. In this section, we will review several parallel
approaches to circuit simulation based on: (1) direct
methods, {2) nonlinear relaxation methods, and (3)
waveform relaxation methods.

The parallel algorithms using direct methods are
the most general and can be applied to any cireuit.
They are based on parallel solution techniques for lin-
ear algebraic systems. The direct methods constitute
two parts: (1) the model evaluation part, which is
relatively easy to parallelize, by assipning sets of de-
vices to different processors and having each processor
generate the model parameters of the matrices and
vectors in parallel; and (2) the linear system solution
phase, which is relatively hard to parallelize since these
are gparse linear systems. There are some well-kmown
parallel linear systems solution algorithms, and many
of them are very efficient for parallel processing; but
most are applicable to dense linear systems, or lin-
ear systems with well-defined sparse structures such
as tridiagonal systems. For cirenit simulation, since
the systems are extremely sparse and irregular, paral-
lelization is rather difficult. Several approaches such
a5 element-based, row-based, and pivot based parallel
approaches hasv been proposed. Element-based par-
allelism involves elemental operations such as multi-
plications and additions, and are difficult to exploit
on MIMD multiprocessors since the grain-sizes of the
parallel tasks are extremely small. Row-based paral-
lelism involves operations which involve updating an
entire row of & sparse matrix, and are easy to apply,
but generates tasks of relatively medium grain. These
methods do not generate appreciable speedups due to
the small grain size of the computations. These meth-
ods are applicable mainly to shared memory MIMD
multiprocessors. Pivot-based parallelism involves op-
erations on independent pivots updating entire subima-
trices in parallel. The tasks are of relatively large grain
and hence this approach is suitable for both shared
memory and distributed memory MIMD multiproces-
sors. However, the issues with regard to identifying
independent pivot-level parallelism are difficult. The
amount of pivot-level parallelism is limited; hence such

methods cannot give large speedups.

The major advantage of using direct methods is
that they have proved to be accurate and reliable over
a large class of circuits. There are, however, three
major disadvantages. First, the sparse linear equation
solution time grows faster than linearly with circuit
sige. Second, some waveform properties such as wave-
form latency and multirate behavier are hard to ex-
ploit. Hence, for large digital circuits that are based on
MOS transistors, the direct methods constitute inher-
ently slower approaches than relaxation-based meth-
ods, which have linear time complexity. Finally, direct
methods are very hard to parallelize efficiently and get
good speedups on large-scale parallel machines,

The nonlinear relaxation-based methods exploit the
latency property of waveforms in MOS circuits. The
parallel algorithms based on nonlinear relaxation solve
the complete Newton-Raphson iteration of the nom-
linear equation. corresponding to one time-point for
an entire subcircuit as a subtask. This approach has
larger grain size compared to the grain sizes of tasks
in parallel circuit simulation uwsing the direct meth-
ods. It is therefore more suitable for parallel process-
ing. - This approach has been applied successiully to
both shared memory and distributed memory MIMD
multiprocessers, as well as SIMD massively paralle
processors, with good speedups. Among the nonlin-
ear relaxation approaches, the Gauss-Seidel relaxation
methods are harder to parallelize, but converge faster
than Gauss-Jacobi methods. For a very large number
of processors; it is advantageous to use Gauss-Jacobi-
based nonlinear relaxation methods since the advan-
tages of more parallelism outweigh the increased time
for convergencos.,

Waveformerelasation methods exploit the multirate
property of wavelorms and can give the least expen-
sive approach’to circuit simulation, faster than direct
and nomlinean:relaxation methods. Also, the paral-
lelization of the circuit simulation problem iz much
easier using the waveform relaxation approach, since
the grain sizesof tasks is even coarser than those ob-
tained for themonlinear relaxation approaches. A task
in waveform relaxation constitutes the solution of com-
plete voltageswaveforms over an entire window for a
subcireuit. This approach is therefore most suitable
for large-scalé parallelism. For distributed memary
MIMD multiprocessors, for which the cost of sending
messages is relatively high, but the cost of long mes-
sages 18 not significantly higher than the cost of short
messages, the waveform relaxation approaches are the
best. However, this approach has the disadvantage
that its convergence properties depend a lot on the
circult characteristics and may take a large number of

62

iterations to converge for seme cireuits.

7 Parallel Logic Simulation

Logic simulators are used in hardware design veri-
fication to verify the logical correctness and perform
simple timing analysis of logic circuits. Logic simu-
lators rely on abstract models of the functioning of a
digital system. They yield discrete value outputs and
crude timing information

We can classify the following types of parallelism
in logic simulation. Functional parallelism deals with
the exploitation of parallelism in logic simulation by
assigning different functions associated with logic sim-
ulation to different processors. Input data parallelism
assigns different sets of input patterns to each proces-
sor on the entire circuit. Circuit or model parallelism
exploits the parallelism by assigning portions of a cir-
cuit to different processors and simulating the circuit
partitions in parallel. In the compiled cireuit parallel
approach, the simulation code for the gates in the cir-
cuit partition assigned to each processor is compiled
into machine code, and all the gates are evaluated at
all time steps whether they are needed or not. In the
event-driven circnit parallel approach, only those gates
whose inputs have changed in the present time step
are evaluated. There are two subapproaches within
event-driven simulation. In the synchronous approach,
we require that all the necessary nodes be evaluated
at a given time point before moving on to the next
time point. The problem with this approach is that
the parallelism in logic simulation is limited to within
one tirme point at a time. In the asynchronous ap-
proach, different portions of the circuit are allowed to
evaluate up to different points in time. Such an ap-
proach has the maximum scope for exploiting paral-
lelism. The problem with such an approach is in gnar-
anteping causality constraints. There are two basic
ways to design such methods. In conservative meth-
ods, a parallel simulation is viewed as a series of se-
quential computations separated by synchromization
messages. Suitable deadlock avoidance methods or
deadlock detection and recovery methods have to be
used. In optimistic methods, each processor is allowed
to go ahead with its computations and to advance its
local clock until a message is received that indicates
an inconsistency. Then the processor state has to be
tolled back to a point in time before the ervor.

While functional parallelism seems to be exploited
best by special-purposs hardware, pattern parallel
and cirenit parallel approaches lend themselves shared
memory and distributed memory MIMD multiproces-
gors. Typically, pattern parallel approaches take the
least amount of recoding effort and can yield perfect
linear speedup; however, their applicability is limited

due to space and algorithm considerations. Pattern
parallel algorithms are mainly restricted to combina-
tional circnits with zero-delay gates.

Circuit parallel approaches are geared to handle
large designs that need to be partitioned; they involve
complex preprocessing and usually require complete
redesign of the simulation aystefn. Synchronous event-
driven circuit parallel logic simulation gives reasonably
good speedups on shared memory MIMD multiproces-
sors. These algorithms are not that complex.

The best speedups are obtained through asyn-
chronous cireuit parallel logic simulation algorithms.
Both forms of asynchronous algorithms, conservative
and optimistic, can glve good speedups and are suit-
able for both shared memory and distributed memory
MIMD multiprocessors. The algorithms are, however,
much more complicated to implement than the simple
synchronous parallel algorithms.

8 Parallel Test Generation and Fault
Simulation

Once a digital circult is designed and fabricated,
the circuit needs to be tested for the presemce of ab-
sence of physical defects or faults. Automatic test
pattern generation {(ATPG) deals with the problem of
generating input patterns to test all faults automati-
cally for a given circuit description. The objective of a
fault simulation algorithm is to find the fraction of to-
tal faults (also referred to as the fault coverage) that
are detected by a given set of input vectors. Often
a fault simulation procedure is integrated within an
automatic test pattern generation system. In this sse-
tion, wa dizenss parallel algorithme for test generation
and fault simulation of combinational and sequential
circuits.

The parallel algorithms for test generation are
based on fault parallelism, circuit parallelism, search
parallelism, functional parallelism, and heuristic par-
allelism.

Fault parallel test generation refers to the evalua-
tion of the test patterns for the given fault set in par-
allel. In this method, the fault set is divided egually
among the processors. Each processor can now gen-
erate tests for its own fault s=t independently. This
method has the advantage that the approach is in-
dependent of the actual ATPG and fault simulation
algorithm used and is therefore the easiest to use. Ex-
cellent speedups can be achieved with a dynamic par-
titioning of the fault list using a multipass approach.
In such an approach, each pass of test generation and
fault simulation is performed using a fixed time limit
per fault. The time limit is increased in successive
passes, 30 the easier faults are detected in earlier passes
and harder faults are detected in later passes. The

63

main disadvantage of this approach is that the test
set size increases significantly over serial algorithms.
The approach is applicable to both combinational and
sequential circuits.

Heuristic parallel test generation involves letting
each processor use a different heuristic to puide the
search for the same fault. But the main disadvantage
of this method is that the parallelizm is limited by the
number of heuristics available for search (at most five
to six). Also, by using different heuristics there is no
guarantee that the search spaces are disjoint. This
may lead to redundant work. Also, no Improvement
iz possible if a fault remains undetectable for all the
heuristics.

Search space parallel test generation assigns dis-
joint search spaces to multiple processors to search for
a test vector or test vector sequence of a particular
fault. Each processor can be allocated a portion of
the search space, either statically or dynamically, and
the search for the test vector can proceed concurrently.
The advantage of this approach is that the really hard
to detect Faults are detected by a truly parallel test
generation strategy; hence this approach reduces the
runtime for particularly hard faults. The other advan-
tage is that, when integrated with a fault simulation
phase after each test generation phase, the test set size
can be kept almost as small as the corresponding serial
algorithm. The disadvantage of this approach is that
not all faults are hard to detect, and many faults are
detected with a few number of backtracks, for example
10 if good heuristics are used.

Functional parallel test generation uses a divide and
conquer type approach by which a task is divided into
a series of subtasks, all of which have to be completed.
These subtasks can be completed in parallel if they do
not access or modify any common variables. If they
have common variables as they do in test generation,
execution of the AND-parallel subtasks becomes com-
plicated due to variable binding conflicts. The aver-
heads due to variable binding conflicts may essentially
reduce the AND-parallel tasks to sequential execution
due to consistency checking, and the like. Hence this
approach is not very attractive for parallel test gener-
ation,

In all the parallel approaches discussed so far, each
processor keeps a copy of the entire circuit. For ex-
tremely large cireuits, the memory of each processor
may not be able to store the entire cirenit. In a cir-
enit decomposed approach, each processor keeps a par-
tition of the circuit and performs various operations
{such as backtracing, justification and implication) on
its own subcircuit to satisfy various test generation
objectives. While this approach is attractive for really

large circuits, it is extremely hard to achieve efficient
speedups with this method,

For test generation, it appears that the most suc-
cessful approach to parallelization is to use a combina-
tion of fault parallelism (for the first phase to detect
easy faults) and search parallelism to detect the hard
faults. In any case, we should include fault simulation
as part of the test generation process for efficiency.

We will now describe various approaches to parallel
fanlt simulation: fault parallel, pattern parallel, circuit
parallel, and pipelining.

We can use fault parallel fault simulation by parti-
tioning a list of faults across the available processors
and having each processor perform fault simulation
on all the input vectors for each sublist. It is pos-
sible to obtain almost linear spesdups in the case of
fault parallel implementations. The problem is that
for each partition of fanlts we have to perform a good
machine simulation. Depending on the partitioning
of the faults, the fault activity of each partition for
a particular input vector may not be uniform across
all partitions. This approach can also give poor load
balance due to widely different fault dropping char-
acteristics. One way to provide better load balance
is fo partition the fault list into smaller sized parti-
ticms, but then the good machine simulation (which
represents wasted work) increases significantly.

Pattern parallel fault simulation involves partition-
ing the input patterns and letting each processor per-
form fault simulation on the entire fault list but for a
subset of the input patterns in parallel. This approach
gives excellent spesdups; however, it is restricted to
combinational circuits, The approach cannot be used
in sequential cireuits sinece the future behavior of a se-
quential circuit depends on all previous vectors. The
approach can be used if we can identify independent
subsets of patterns even in sequential circuits or if we
use an iterative approach to solve the simulation prob-
lem until convergence.

Circuit parallel fault simulation involves partition-
ing a given circuit among processors and having all
processors cooperate in the fault simulation of all
faults and all inputs together. The advantage of this
approach is that it is memory efficient and can handle
very large circuits. However, the communication over-
heads of this approach are quite high, and it is difficult
to get good speedups. .

In summary, for parallel fault simulation, the fanlt
parallel approach is a general approach applicable
to both combinational and sequential circuits. For
very large clrcults, we should use circuit parallel ap-
proaches. For medinm-sized combinational circuits,
the pattern parallel approach is the best.

B4

9 Parallel Logic Synthesis and Verifi-
cation

Logic synthesis tools provide the automatic synthe-
sis of near-optimal logic netlists, for which the goal is
minimum delay, minimum area, or maximum testabil-
ity. Logic verification tools compare the logic design
of integrated circuits at different levels to male sure
that, in the synthesis process, no logic errors have been
introduced. In this section, we review parallel algo-
rithms for logic synthesis and verification.

The parallel algorithm for two-level logic synthe-
sis is based on the well-known ESPRESSO approach.
The ESPRESS0 algorithm iteratively performs the
operations of reducing certain cubes, expanding other
cubes, and removing redundant cubes of a multiple
output Boolean function, until the circuit shows no
improvement. The parallel algorithm for two level syn-
thesis involves parallelizing each procedure within the
ESPRESS0 sequential algorithm: the complementa-
tion of cubes, the reduction of cubes, the expansion
of cubes, and elimination of redundant cubes. To pre-
serve the correctness of the cover of the circuit, several
interesting heuristics have been developed to prevent
simultanecus elimination of cubes during parallel re-
duction, and creation of multiple identical cubes dur-
ing paralle] expansion of cubes. Good speedups have
been reported using the parallel algorithm with slight
degradation in circuit quality.

The parallel algorithm for logic synthesis using the
partitioning approach initially partitions a given cir-
cuit into as many partitions as there are processors.
Subsequently, it performs bipartitioning, merging and
resynthesis of each partition with different pairings of
processors in an iterative manner, The approach has
three advantages, First, it is possible to get excellent
speedups by partitioning the cirenit into as many parts
as there are processors. Second, the approach is inde-
pendent of the logic synthesis algorithm used. Hence
it is possible to use the best sequential algorithms for
logic synthesis available at any time. Finally, the ap-
proach minimizes the memory requirements needed in
the synthesis algorithm. Hence it is possible to per-
form logic synthesis on very large circuits. The main
disadvantage of this approach is that the quality of
the synthesized clreuit deteriorates significantly with
an increasing number of partitions.

The parallel algorithm for logic synthesis using the
MIS approach involves parallelizing each synthesis pro-
cedure within the MIS system. Specifically, parallel
algorithms have been developed for kernel and cube
peneration, kernel and cube extraction, resubsatitution,
and node simplification. A key feature of the algo-
rithm is in the use of partitioning of the circuit for

workload distribution, while the logic synthesis is per-
formed on the entire network. Consistency is main-
tained among concurrent updates to the network due
to various transformations by using the notion of ver-
sion numbering on the nodes in the circuit. Excellent
speadups have been reported using the parallel algo-
rithm with very little degradation in circuit quality.
The MIS approach is one of the best-known methods
of multilevel logic synthesis, and is known to produce
cirenits of excellent quality, and is also very efficient
in time and memory requirements. Hence the paraliel
algorithm for logic synthesis using the MIS approach
has very high practical value.

A parallel algorithm for logic synthesis using the
transduction method has also been proposed. The ad-
vantage of the transduction approach is that it can
produce circuits of excellent quality, but the disadvan-
tage is that it has large computing and memory re-
quirements. The parallel algorithm involves paralleliz-
ing each procedure used in the transduction method.
Specifically, parallel algorithms have been developed
for the evaluation of output and permissible functions
and for various transformations such as pruning, gate
substitution, and gate merging. Good speedups were
reported using the parallel algorithm with slight degra-
dation in cireuit quality.

Wi finally describe two parallel algorithms for logic
verification. The first algorithm is based on an im-
plicit enumeration approach, and the algorithm uses
a recursive decomposition of the search space of veri-
fication for all possible input combinations implicitly.
The dynamic decomposition of the search space gives
exeellent load balance and speedups,

The second parallel algorithm for logic verification
iz based on tautology checking. Again, the algorithm
is based on a recursive divide-and-conguer decompo-
sition of the search space of input combinations. The
parallel algorithm gives excellent speedups,

10 Commercial Parallel CAD Prod-
ucts

While the previous sections outlined research in
parallel CAD applications, parallel processing for
VLSl CAD has become a reality in industry as well.
Hardware vendors such as Sun Microsystems, Sol-
bourne, Hewlett-Packard and Digital have already an-
nounced products with multiple CPUs in a single
workstation. Several software CAD vendors have al-
ready anncunced products that exploit parallel ma-
chines.

Mentor Graphics has a product called PARADE,
which performs cell placement in parallel. Mentor
Graphics also has a parallel implementation of design
rule checking and extraction called CHECKMATE.

65

Cadence Design Systems has a parallel design rule
checker called PDRACULA. Cadence Design Systems
also has a product called VERIFAULT that runs fault
simulation in parallel on a network of workstations.

Crosscheck Technology has a parallel test generator
called the ATDA-II for combinational circuits. Sunrise
Test Systems recently announced a parallel test gen-
arator calle TGEN on a network of workstations.

Chronologic Simulations has announced a parallel
VHDL simulator which runs on multiprocessor SUN
workstations.

Silvaco markets a product for lithography simula-
tion called VIRTUAL WAFER FAB and, for 3D de-
vice simulation, one called THUNDER on massively
parallel MasPar MP-1 systems.

In the future, numerous other parallel implementa-
tions of VLSI CAD tools will become available. This
is especially true in view of the multiprocessor work-
stations that are now available from various vendors.

11 Future Directions of Parallel CAD

In view of the increasing complexity of VLSI cir-
cuits of the future, the requirements on VLSI CAD
tools will continuously increase. Parallel processing for
CAD applications is becoming gradually recognized as
a popular vehicle to support the increasing computing
requirements of future CAD tools. Recent research
on parallel CAD applications have been reported for a
wide variety of applications such as placement, rout-
ing, layout verification, circuit simulation, test geriera-
tion, fault simulation, and logic synthesis. This paper
has surveyed méany of these parallel algorithms,

A major limitation with almost all previous work
is that the parallel algorithms have been targeted to
run on specific machines like an Intel iPSC hypercube-
based message-passing distributed memory multicom-
puter or an Encore Multimax shared memory multi-
processor. Such work, although interesting, is not us-
able by the rest of the VLSI CAD community since
the algorithms are not portable to other machines.

A second serions problem also presents itself in the
design of parallel algorithms, The software devel-
opment. cycle for parallel algorithms is considerably
longer than for sequential algorithms. This has two
important implications. The first is they are consid-
erably more costly to develop than sequential algo-
rithins. This iz exacerbated by the lack of portability
across parallel machines. The second implication is a
more pragmatic. Given the fast pace of progress in
the development and improvement of sequential algo-
rithms for CAD applications for a given application,
gequential algorithms frequently outpeeform parallel
algorithms due to the longer development time of the
latter.

Finally, and most importantly, all the parailel CAD
algorithms that have heen developed so far are mainly
academic tools solving simple versions of complex
real-world problems, and do not have the industrial
strength required of the corresponding conventional
tools running on uniprocessor computers. For exam-
ple, the parallel placement and routing programs only
work for regular-sized cells, and can handle two lay-
ers of interconnect, whereas in the real world, we have
to deal with up to seven layers of interconnect, with
complex interactions between the layers. In order for
parallel CAD algorithms to really become practical,
it should be possible to readily leverage off the recent
advances in the sequential algorithms,

Two important questions that nead to be addressed
in the development of parallel algorithms for CAD are
how we can design parallel algorithms for CAD that
are truly portable across parallel machines and how we
can exploit good sequential algorithms in the design of
parallel algorithms for CAD, The FroperCAD project
(Portable object-orlented parallel environment for
CAD) tries to address these goals. The approach to
parallelism taken in this research is the development af
a C44 runtime-dibrary that provides, simultaneously,
a high-level, object-oriented abstraction to application
programmers and an underlying runtime implementa-
tion that utilizes to the mecdmum extent and high-
est efficiency possible the resources available to the
program [2]. Parallel CAD applications are developed
on top of the standard parallel programming interface
implemented as a C++ class library. This approach
facilitates the incremental application of parallel con-
structs to develop a parallel application while main-
taining compatibility and code-sharing with the serial
implementation. An overview of the ProperCAD-IT
project is shown in Figure 1. Successful implementa-
tions of several CAD applications have been reported
on the ProperCAD environment: ProperHITEC, a test
generator forisequential and combinational circuits,
ProperPLACE, placement for combinational circuits,
ProperS YN, synthesis for combinational circuits.

. It is our opinion that the future of paralle] CAD lies
in machine independent parallel CAD algorithms with
well-defined interfaces to sequential algorithms so that
latest advances in sequential algorithms can be readily
incorporated into parallel CAD algorithms. A problem
that is commeonly faced in the design of efficient paral-
lel algorithms for CAD applications such as placement
is that everywear better and better sequential heuris-
tics are being discovered, which improve on previous
methods in terms of quality of layouts prodoced, bet-
ter objective functions, and runtimes. Newer sequen-
tial placement algerithms handle better and improved

66

Aaplicatisne
PoepusFANLT: Trult sbrmcleter
PoapsTEST: lest gesarsion
Prope IPLAGE: sall plaeesiard

|Prajs=EXTL 4l anlinstzn
FroparsT™: logls wyniteais
ProparSini: faghc slmzintion

Earalal slgorthm

e,
I E -

Figure 1: Overview of the ProperCAD-IT project

objective functions, that is, performance driven layout.
Unless the paralle]l algorithms can be designed such
that these newer efficient techniques can be rapidly in-
corporated into the parallel implementations, the lat-
ter will become rapidly obsolete in terms of practical
nse,
. We helieve that for the application of parallel pro-
cesging to CAD to he successful, all of the above ob-
jectives need to be met. It is important for industry
to work together with academia to develop such indus-
trial quality tools.
References
[1] P. Banerjee, Parallel Algorithms for VELST
Computer-oided Design Applications. Englewoods-
Cliffs, NJ: Prentice Hall, 1994.

[2] 5. Parkes, J. Chandy, and P. Banerjee, “A Library-
Based Approach to Portable, Parallel, Object-
Oriented Programming: Interface, Implementa-
tion, and Application,” Preoe. ACM Supercomput-
ing 84 Conf., Nov. 1994, :

