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Abstract

The applicability of the Multi-Seale Structure Description (M5SD) scheme to the inverse-
folding problems was investigated. An MSSD represents a 3D protein structure with muliiple
symbolic sequences. Euch symbol in the symbolic sequence denofes o type of local structure
of the level scale. The structure fragments are, thus, clossified at eech scale level respectively
according to the shope and the environment around the fragments: how the structure is exposed
to the solvent or buried in the molecule. [ modeled the propensity of an amino-acid sequence to
the structure fragment type {i.e., primary constraint) af each scale level. The loeal propensity
is, therefore, modeled ot small scale levels, while the global propensity modeled at larpe scale
levels. Thus, superposing all the primary constraints, a 20 protein structure yields an amine-
acid sequence profile. Bvaluating the fit of an amine acid sequence lo the profile derived from
the known 3D profein structure, we con identify which SD structure the given omino-acid
sequence would fold infe, T checked whether a sequence identifies its oum siructure gver two
hundred protein sequences. [n many cases, an aming acid sequence identified ils own 3D
protein structure,

1 Introduction

With the recent rapid increase in the number of known 3D protein structures, the method to
identify protein sequences that fold into a known 3D structure would be more promising than the
3D structure prediction ab initio. After the Chothia's shocking declaration that “There would be
no more than thousand protein families!” [Chothia 91], the inverse protein folding problem has
ever been attracting. In any method for the inverse folding problem, it is necessary to define a
scoring function to evaluate the fit of an amino-acid sequence (1D being) to protein conforma-
tions (3D being). Some focused on the compatibility of each amino-acid type to the environment
around the residue [Bowie et al. 91], some on the empirical potential derived from the known 3D
protein structure [Sippl and Weitckus 92|, and other on the statistical potential based on Bayesian
principle [Goldstein et al. 94].

This paper discusses on the applicability of MSSD scheme and the structure-sequence propencity
evaluation method to inverse folding problem. An MS35D represents a protein conformation at mul-
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tiple scale levels. At each level, the conformation is described by a symbolic sequence, each symbol

'of which denotes a type of local structure of the level scale. Local structures are classified into
several types at each level respectively according to their shape and the environment. The classifi-
cation is, therefore, closely related to the secondary structures particularly at the small scale levels.
The description at middle scale level is considered to represent the supersecondary structures, and
that at high levels represents the global topology.

Since I classified the structures according not only to their shape but to their enviconment,
two structures with similar shapes but in the different environments are classified into different
types: the helix exposed to the solvent is classified into a different type from those buried in the
molecule. Let us call the compatibility of the structure type to the amino acid sequence “primary
constrains” which we regard as the constraints from the primary sequence to the choice of structure
types. Hence, given an amino acid sequence fragment, we can roughly estimate which type of local
structure it would form. The 3D structure prediction method based om the MSSD scheme is
discussed in the literature [Onizuka et al. 94].

To apply the MSSD scheme to the inverse protein folding problem, the primary constraints are
used inversely. Given a fragment of amino-acid sequence, we can evaluate its fit to the structure
types of the fragments. Or rather, given a structure type at a level, we can obfain an amino-
acid sequence profile attached to the structure type under my model. The fit of a given amino-
acid sequence to this profile is, therefore, equivalent to the fit to the structure type. Since the
structures are classified according to their shape and environment, my approach is, in some sense,
the extension of the method proposed in the literature [Bowie et al. 91], where the compatibility of
an amino-acid sequence to the secondary structure type and the environment around each residue
in the sequence is considered to evaluate the fit. The extension, here, indeed concerns the multiple
scale evalnation of the fit. The sequence profile is caleulated by superposing all the subprofiles
derived from the structure fragment types in the given MSSD. The fit of a sequence to the whole
3D structure is not only evaluated at the small scale level in the MSSD, but at all scale levels
available. Chances are that even though a given sequence does not fit to a MSSD at low levels, the
sequence may well fit at high levels. Thus, we can identify a sequence that fold into an unknown
3D structure but similar to a known 3D conformation, even though the local fine structures of the
unknown one would be quite different from those of the known one: the fine structures may differ
even if the amino-acid sequence of the two protein is very similar to each other.

2 Method

This section describes the methods used in my inverse-folding scheme. On MSSD scheme, refer-
ence the literature [Onizuka et al. 93]. We extract a set of numerical parameters from structure
fragments, where paramters represent the fragment shape and the environment around it. Then
the structure fragments are classified nsing Learning Vector Quantization.

The first subsection describes the classification of the environment arond the structure fragment.
The second subsection shall define the primary constraints between the structure types and the
primary sequence fragments. And then I formalizes the scoring function for the inverse folding
problem. The last subsection shall illustrate the dynamic programming with A* algorithm applied
to the alignment between the sequence profile derived from the 3D structure and the amino-acid

sequence,

2.1 Classification of The Environment around Structure Fragments

Here, I discuss how we can incorporate the solvent accessibility of structure fragments into the
structure classification.

More and more biologists are aware of the importance of hydrophobic interaction between
the residues during the folding process. A protein ehain folds into a tertiary structure so that the
hydrophobic residues would be buried inside the molecule, whereas the hydrophillic ones exposed to
the solvent. The hydropathy of each residue must be a strong factor determining the environment
around the residue. When a structure fragment is deeply buried in the molecule, most residues
in the fragment should be hydrophobic, while hydrophillic when exposed to the solvent. Indeed is
it that, when the fragment is half buried and half exposed, the residues around the buried region
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should be hydrophobic and other residues hydrophillic. The propensity of each amino acid type to
the environment is considered even sironger than that to the secondary structure (Saito et al. 93).
Considering the propensity from the primary sequence, we can estimate how the the structure
fragment would be buried or exposed . In order to characterize the environment around a structure
fragment, I introduce a new parameter attached to each residue in the structure, the Quasi Buried
Depth (QBD), which takes positive value when the residue is buried inside the molecule while
takes negative value when exposed to the solvent. The dimension of the parameter is length so
that the calculation with the topological parameters physically would make sense. First, I give the
definition of QBD, and then I illustrate how to parameterize the solvent accessibility of a structure
fragment.

A residune deeply buried inside the molecule is surrounded by more residues than those exposed
to the solvent. The number of residues nearby a given residue within a certain distance can be
considered to measure how the residue is buried or exposed. This number is given by counting
the number of residues in a sphere with certain radius centered at the position of a given residue.
The predictability of this number from a given primary sequence is discussed in the literature
[Saito et al. 93]. The Quasi Buried Depth is derived from the number, and has the dimension of
length.

iFrom the investigation of the maximum number of residues M in a sphere whose radiusis r, I
found that M is almost proportional to the r*4%, and is calculated as M = 0.15r24%, This suggests,
the residues are not optimally packed but are suboptimally packed in the sense of fractal dimension.
We can consider that when the actual number of residues N in the sphere with radius r centered
at a given residue would be equal to M, the depth from the surface of the protein molecule to the
residue would be estimated greater than r, while the depth would be estimated around zero when
N is a half of M. The number N can be, therefore, transformed into the quasi depth of the residue
from the surface. The Quasi Buried Depth d9 is, therefore, calculated as d9 = (2N/M — 1)r,
where M = 0.15r*#%, When d9 takes a positive value, the residue is considered buried, while
considered exposed for the negative d%. o '

Likewise the topelogical parameters which are obtained by linear transformation, the set of
environmental parameters representing how a structure fragment is buried or exposed is calculated
by transforming the set of residues’ QBD in a structure fragment. The environmental parameter
of kth order Ey is calculated as below.

N=1
By=)_ onwudf, (1)
=0

where d? is the QBI of ith residue in the fragment. Since the physical dimension of environmental
parameters is length, these parameters can be used with topological parameters. In my study, the
maximum order of expansion is five, and five environmental parameters are to represent the solvent
accessibility of the structure fragment.

The parameters obtained from QBD alanysis are marged to other parameters representing the
fragment shape. And then the structures are classified according to the parameters using Learning
Vector Quantization.

2.2 Primary Constraints

The primary constraints relate the primary sequence and the structure type at each region. MSSD
scheme is particularly suitable to model both local and global factors of structure formation. The
primary coustraints for short structure fragments naturally represent local factors, and those for
long ones represent global or long-range factors. For further discussion, I define several notations
here.

Let ~f denote a structure type, where normally 4¥ = A* +f = B*,..., 7 = P* Let o*
denote a primary sequence fragment at the kth level. And we further denote w* as the number
of residues in the structure fragment at the kth level. We denote T'¥ € {A* B* ... X*) as the
variable that takes a structure type, where i denotes the position in the primary sequence. We
also denote Ef as the variable that takes a primary sequence fragment. Note that the position {
here denotes the position of the first residue of the structure fragment in the primary sequence.
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The pmba.bﬂ]t.]r of a primary sequence fragment o* formmg a type of structure 4 is represented
as Pp(I'¥ = +} |E" = o*). Since we assume that the primary constraint is invariant of its absolute
position in the primary sequence but only depends on the structure type and the primary sequence
at that region, it may simply be represented as Pp(I'*|LF).

In the field of molecular biology, the sequence profiles are frequently used to analyze the re-
lationship between a sequence pattern and the structure or function at that region, where the
frequency of each amino-acid fype is counted with respect to the position. This technique is di-
rectly applicable to model the primary constraints at small scales, though it requires large number
of parameters, again, for the primary constraints at large scale. For example, at five-residue level,
the number of parameters representing the frequency is 100 = 20 x 5 where 20 is the number of
amino-acid types, and 5 iz the number of residues in the structure fragment at that level. At the
large scale levels, where the number of residues are more than 100, more than 2000 parameters are
required. In this case, however, we can compress the sequence profile using the same technique as
I applied to the structure abstraction. We can always reduce the number of parameters into 100
using linear expansion again.

2.3 Inverse-folding Scheme

Given an MSSD representing a 3D protein structure, we can estimate the most probable sequence
irom the MSSD using the inverse primary constraints Pr(Z|I), which is simpl}r given by ca.lcula,tiug
the fit of a sequence to a pmﬁ]a Pp(T|T) is calculated by applying the prior P(I') to Fy( .rl
Let i denote a position in the sequence. Let t* denote an amino-acid type, and let T

variable that takes one of the amino acid type 4. We can derive the probability P(T# = t“’-}
of the amino-acid type oceurring at the position €, from the structure fragment type covering the
position i. Let Pr(T/* = t*|T;) denote the probability of the aminc-acid type t* occurring at the
position i in the fragment. To superpose the P;(T7), we have to divide this value by the prior
P(T4 = t*), because the prior is doubly or triply calculated. Thus, Pr(T) is calculated as below.

_ Ay _ prA Pr(T# = t4|Ty)
P[TE‘—H—P{HA I Ay (2
I T; covaringi

In this case, however, the prior P(t") does something unpreferable. The probability P(TA =

t) almost always suggests that Alanine is the most probable amino-acid type at any position.
This means that the inverse primary constraint P;(T/*|£;) is much weaker than the prior. Hence,
I adopt C(T* = t4) = Pi(T# = t*)/P(t*) instead of I"JrIIT“1 = t4). This value is greater than
1.0 when the amino-acid type stochastically occurs more than random level.

The superposition of all the inverse primary constraints from the MSSD derived from the given
3D structure yields a stochastic sequence profile. The fit of a sequence to this profile is considered
the fit to the given conformation represented by the MSSD and by turn the fit to the given 3D
structure.

2.4 3D-1D Alignment

The alignment beiween the sequence and the profile is carried out simply by dynamic programming.
The dynamic programming searches for the optimal alignment that minimize the score B below.
Some appropriate gap penalty should be used when we permit gaps.

== Zlﬂg CH{TA = i""} + gap penaliy. (3

We consider the resultant score E as the fit of amino-acid sequence to the sequence profile {2’; {T""}
derived from the MSSD representing 3D structure. Hence, given a primary sequence of a pro-
tein whose 3D structure is unknown, we can search for the most compatible 3D structure in the
protein structure database. This is far simpler than that of those echemes using Sippl potential
[Sippl and Weitckns 92, Jones et al. 92, Yuke and Dill 92, Skolnick and Kolinski 92], where it is
necessary to apply the double dynamic programming that requires large amount of calenlation.

I applied the A* algorithm to the 3D-1D alignment, which was first applied to the protein
sequence alignment in the literature [Araki et al. 93]. This algorithm finds the optimal solution
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while the caleulation amount is much smaller than that of conventional dynamic programming
algorithms, though the implementation is much difficult.

The choice of the gap penalty has not yet established. In most cases, there are three parameters
concerning the gap penalty: 1) the slide gap penalty is the cost for the offset between the two
sequence; 2) the initial gap penalty is the cost to put a gap in a sequence; and 3) the incremental
gap penalty is the cost for the length of each gap. When the initial gap penalty equals to incremental
one, the dynaiic programming turns out to be quite simple with a simple network., Thus, I adopted
this penalty. The slide penalty should be zero to allow any offset between the sequence and profile
without costs.

3 Results -

I used the same data set of protein structures as that used for structure classification. To cross-
validate the result, the data set was divided into five groups randomly so that each group would
contain forty nine structure data. I obtained five sets of primary constraints, where each set was
derived from the structure data in five groups. When a structure yields the sequence profile, I
did not use those primary constraints that are derived from the structure group including that
structure.

First, as a preliminary experiment, I investigated how a protein sequence. fits its own 3D
structure evaluating the 7 score. Here, I did not align the profile and the sequence: the gaps are,
thus, not considered. We can obtain the Z score of a sequence to a profile by normalizing the score
F by the mean score < Frandom > and the deviation og__,_ . of random sequences to that profile,
where F is defined as below.

E=-) logCr(T{ =1t*). (4)

Thus, Z score Egz is,

__ B= < Brandow >
a’E‘fﬂﬂ.‘ﬂH

Iinvestigated the fit of sequences to the structures at only one scale level, in order to see which level

best corresponds the sequence. The plot below shows the mean Z score with respect to the scale

level, The correspondence is the best at the lowest S-residue level and it decreases monotonously

Ez (5)
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Figure 1: Z Score versus Scale

with the increase in the level. This suggests that a local sequence strongly influence the formation
of the secondary structures at that region, becanse the classification at the S-residue level well
corresponds the secondary structures. Probably due to the over-learning, the scores at the high
levels are below zero.

Second, I checked whether a sequence would identify its own structure. The hit-ratio of the self-
identification direclty suggests the performance of my inverse-folding scheme. I checked whether the
fit of a sequence to its own structure would scores the best among all sequence-profile combinations.
We selected 188 protein structures from the data set which I used to model the primary constraints,
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because the other structure data contain residue-lacks or unacceptable bond lengths. Iinvestigated
the hit-ratio of self-identification. When the compatibility score of the sequence to its own structure
obtained from the 3D-1D alignment scores the best, I consider that the identification hits. I did
exhausting 3D-1D alignment for 188 » 188 times. The table below shows the hit rationes.

| | Total | Hit | Hit Ratio |
Single Level 188 | 63 0.335
Multi-Lewvel 188 | 90 0.478

This result actually shows that the performance of self-identification is better when many scale
levels are incorporated.

LB o

] -::z ﬁﬁ;: -u..i !.-li ¥
Figure 2: Hit Ratio versus Gap Penalty

Third I investigated how the gap penalty influence the hit ratio. In this case, I used only first
group of data set which contains thirly nine proteins. This graph shows that the higher the gap
penalty 1s, the better is the hit ratio.

4 Discussion

In this-paper, I proposed the multi-scale evaluation scheme to solve the inverse protein folding
problem. I incorporated the compatibility of sequences to 3D structures not only at the small scale
level bitt also at the large scale levels,

The results show that the multi-scale compatibility scoring works better than the single scale
one, even though the compatibility scores at large scale levels poorly corresponds the fit between
the structures and sequences better than those at small scale levels. Considering size of data set
containing 188 protein structures, the result is not so bad.

Considering the poor mean Z score at high levels, the 3D-1D correspondence at high levels does
not seem to be stochastically modelable. Thus, we should not nse those levels in order to obtain
better seif-identification hit-ratio.

Tinvestigated the applicability of MSSD scheme to the inverse folding problem, and found that
the multi-scale scoring works far better than single scale scoring. T]us means that the score at
high levels does a great deal to enhance the performance.
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