Representation of Active Rules in Cooperative Work Environment

Hisayuki MASUI
Masakazu NOMOTO
Yahiko KAMBAYASHI
Integrated Media Environment Experimental Lab.
Faculty of Engincering, Kyoto University
Yoshida-Honmachi, Sakyo Kyoto 606-01, Japan

Abstract

Due to the recent development of distributed systems, new application area to support user
cooperation is getting popular. Database functions must be utilized for user communication, since
there are cases when a user may not be available at the time of message arrival. In few years, most
relational database systems will have trigger functions to enforce various kinds of semantic
constraints as discussed in SQL-3 standard. In this paper, we assume that ECA(Event Condition
Action) rules (a general form of trigger functions) are available, and we will discuss how to realize
user coordination utilizing ECA rules. As it is impossible to control user coordination'automatically,
negotiation among users is required. For this purpose we need to display the situation of the systems
in a form which can be understood by users easily. In order to represent active rules, finite
automaton model, ECA model and IDEF)(Integrated Computer-Aided Manufacturing DEFinition 0)
maodel are compared and a generalized IDEFG model is proposed in this paper. Major generalizations
are as follows; 1) Control flow and workflow are distinguished, 2) Start conditions are explicitly
expressed in order to translate an IDEFO diagram into ECA rules. Workflow representation by a
generalized IDEF0 model can be used for user negation. Dynamic modification of workflow is also
discussed.

1. Introduction

Recent development of high-speed computer networks and high-performance workstations are
opening up new application areas of computer systems. CSCW(Computer-Supported Cooperative
Work) is one of such important applications. Since conventional CSCW systems are developed
utilizing video systems, communication facilities including E-Mail and basic window sharing
mechanisms, we have been developing new CSCW environment utilizing database technology, called
VIEW(Virtual Interactive Environment for Workgroups). Applications of VIEW concept include an
office system called VIEW Office(although it had been called VirtualOffice [TK93], it was renamed

213

since the term "virtual office" became a general term) and VIEW Classroom for distance education.
In VIEW Office we need to support cooperation among users. We have developed deputy object
model[PK 93] to realize coordination among users with different views.

Recently active mechanisms are going to be combined with database systems. One typical
example is ECA rules developed by Dayal et al.[Dag8]. In VIEW systems we are using ECA rules
for user coordination. As ECA rules are developed for software systems, there is no strong
requirement for modification. In our purpose, it is required to modify rules since a person may not be
available, or the rule cannot be applied due to some privacy reasons. Furthermore, it is required that a
user can know the meaning of the rules easily. We will use IDEFO (Integrated Computer-Aided
Manufacturing DEFinition 0) model developed by US Air Force to define workflow[MM93]. As
detailed description of actions are required to use IDEFO, the description by IDEFO is more powerful
and it is easy for users to understand. The followings are major contributions of this paper.

1) Comparisons of finite antomaton model, ECA model and IDEF0 model are given.

2) By the above comparison extensions of IDEF0 model are discussed. The generalized IDEFD
model has high expressive power, which is easy to be understood by users and also easy to
translate it into underlaying ECA rules of database systems.

3) Dynamic.modification of generalized IDEF0 model is also discussed.

2. Basic Concepts

In this section three methods to describe user communication are defined.

2.1 ECA Maodel
A triggermechanism[Esw76] is important in a database system to enforce consistency constraints
and also to realize an automatic start of transactions. For example, an update of some values may
cause updates-of other values, or printing of reports. Such a mechanism is also very much useful for
office systems. Recently a version of trigger mechanisms, called ECA rules, is introduced to realize
active database systems[Da88, DBME&E, MDE&9]. Here, E, C, and A stand for Event, Condition, and
Action, respectively. ECA rules are used to handle actions realized by computer programs. In this
section, we first describe the ECA rules and then requirements to realize cooperative work among
users are discussed.
Primitive events are defined as follows[MD89]:
- User-specified database operations: data definitions, data manipulations
Database system operations: periodical checking operations, automatically executed database
operations, failure of the system, roll-back operations, transaction control, back-up operations
Temporal events: absolute time, relative time, periodic
External notifications: application defined events, user defined events

214

A composite event is defined as a result of applying Boolean operations and concatenations
(sequence operation) on primitive events,
ECA mechanism M is defined as
M=(E,C, A K),
where E is a set of primitive events and composite events, C is a set of conditions, A is a set of
actions. K shows combinations of E, C and A together with coupling conditions. An element of K
15 l{;;:i, c;, a;, dy;, dy,) called an ECA rule, where e, is an element in E and ¢, is a subset of C, a; is the
action which will be triggered when é--l occurs and one of the conditions in ¢; is satisfied, and d,;

specifies when the condition is evaluated relative to the transaction in which the event is signaled, d,,

specifies when the action is executed relative to the transaction in which the condition is evaluated.

There are typically the three modes for d; and d,;, immediate, separate(evaluation (or start of an

action) is realized by a separated transaction) and deferred(evaluation (or start of an action) is done

when the transaction terminates). An ECA rule can be expressed by a block shown in Fig. 1.

Event ——m

—3» Acti
Condition ——m -

Fig. 1 ECA rule

- ECA rules are suitable to describe operations caused by transactions. In our requirement, as
communication among users and programs must be considered and some action may take very long
time, we need to consider the following problems.

1) Ewven if a condition is satisfied, the corresponding action cannot be started because the user who
is in charge of the action is not availahle.

2) An equivalent action may be taken by a user who is in charge of the action. Modification of

action should be realized also. An action can be divided into several sub-actions.

3) Dynamic change of event-condition-action relationships should be handled. For example, if

some condition is satisfied a set of conditions may need to be modified. A simple case is that
some condition can be set to be inactive.

Since user's speed is much slower than computers, we need not use coupling conditions(d ;; and

d,;) when action is realized by some persons.

2.2 Finite Automata Model
A finite automaton is defined by

M=(Z,T, S, 5, A, sp)

215

where Z is the set of input symbols, T is the set of output symbols, S is the set of internal states, &:

§ X Z — S is the next state function where 8(s,, a) = s, means that a new state is s, when input a is

applied to state 5,. A: S — I'lU{e} is the output function where A(s,} = b means that output b is
generated when the automaton enters state s,. In this definition we permit states without any
.autputs{i‘ €., for s;, A(s;) = €). Instead of A we can use A" s_XE — T"lJ{&} as the output function,
where A'(s;, a) = b means that output b is generated during the transition caused by applying input a

to state 5,. 5, in S is the initial state.

5+ Reporl preparation
by Mike y

: Imitiak
SCI slabs

Job type B

Labeles to edpas:
Input or InpuCruipur

(b} Contral at state 5

{Request) i Drecline report Declare mmphw’@

Maodification reques

s Mk o

Modification nequest G
w Peter

(d} Control at state 5

(c} Control at state §

Fig.2 Control flow and workflow representation by a finite automaton model

A workflow is expressed by a finite automaton as shown in Fig. 2(a). This workflow shows that

a report is prepared by Mike or Peter and it is later checked by Bill. If the report is incomplete, the
person who prepared the report have to revise until Bill satisfies. In this figure, input alphabet is {a,

b,ec,d, e, f, g} and output alphabet is {c, B}. A'is used for the output function. A label like f on

an edge shows an input symbol which cause the transition. A label in the form like d/a shows the

combination of input and output symbols(in this case input is d and output is o).

State transition conditions are specified by the automata which specify control flow. Examples are

216

shown in Fig. 2(b), (c) and {d). Here symbols in the states show outputs to be generated at the

states(i. e., output function X is used). Fig. 2(b) shows the control of state s;. When job type A(B)

is given this automaton, a(b, respectively) is generated, which causes the transition from s to s,(sq
to s,, respectively).
Control at s, is rather complicated, since it involves some kind of user negotiation. Let Jay be the

person who asked the job. The dotted lines show input from Jay and straight lines show input from
Mike. The state diagram is exactly same as the diagram shown in [WiB8]. When Jay asks to prepare
a report to Mike, he can promise, decline or make counter proposal. If Mike declines or his counter

proposal is not accepted, output ¢ is generated, which causes the state transition from s; to s, in the

automaton shown in Fig. 2{a). Then Jay start to ask Peter to do the job. Furthermore, during the job
it can be canceled. If the job is completed, the automaton generates output d, which causes the
transition from 8, to s, in the automaton in Fig. 2(a).

Control automaton for s, can be similarly defined. Fig. 2(d) shows the control antomaton for
state s5. If Bill satisfies the result it generates e and the automaton will be reset to initial state s,
otherwise f or g is generated to complete the report.

There are two kinds of interactions among these automata. Signals from control flow automata to

the workflow automaton(a, b, ¢, d, e, f, g) are used to control the antomaton. Signals from the

workflow automaton(ct, B) are used for observation of the flow. In this example, depending on who

prepared a report, output becomes o or f5.

2.3 IDEF0 Model

IDEFO was developed by US Air force to describe workflow in detail to be understood by
nonprofessional users[MM93].

The fundamental description of IDEFO includes five elements as shown in Fig. 3, Subject
described in the block, Inputs to be processed and operated by Subject, Control which gives
influence to subject's activities, Mechanisms which are used to perform the activity, and. Qutputs
which show outcomes of the subject activity. Subject is described in a rectangle and Input, Control,
Mechanism and Output are described as arrows. Except Control and Output, these arrows are not
always required.

In order to describe a diagram in detail, each subject can be further replaced by a diagram. These
diagrams form a hierarchical tree structure,

217

Control

Input ———= Subject ——= Cutput

!

Mechanism

Fig. 3 A unit block of IDEF0 expression

Situation of Condition of
" food materials cook A

Drdei
Food items > Cooking
Meal Put meal on Meal on the table »
guests’ table
Pan Knife Cook A Waiter B

Fig.4 Anexample of a process in a restrant

A simple example of IDEF0 diagram is shown in Fig. 4, which shows processing of an order at a
restaurant. There are two major actions, "cooking” and "put meal on guests' table" which are shown
as subjects in the two blocks. By cooking, food materials(input) are converted into the meal (output).

Cook A is assigned to prepare the meal and thus he is one of the mechanisms. Cooking
instruments(in this figure, a pan and a knife are shown) are also mechanisms. Cooking will be
stopped if some of the mechanisms are not available. For example, after cutting food materials,
cooking cannot continue if pan is used by another cook.

Details of cooking is determined by the order from the guests, situation of food materials
(varieties, quantities, quality, etc.), and conditions of cook A(for example, if he has a lot of work to
do, he may change the process of cooking). These are shown as controls. When meal is ready,
waiter B will bring the meal to the table of the guests. The second block shows this action.

218

Ca

(] Family
Budget palicy
"\ ~ < -.
) Recipe
— 3| Flan Meii:
(o mpuﬂl y‘&
Money Mezded
| Maintain items
r’_," stock
: Y
R:jm Food
peals ltems Prepare _-‘Pl'l:pﬂ"ﬂd
() N\ | food Y G
Unfed people) \# Serve ﬁp
> ™ Table
Clean T
. arbage
Clean Unused | | |dishes Clean | S
Leflovers ! - up
' kitchen kol Dirty kitehen j
b b N
Reusabiles

Fig.5 Feed family example

A more complicated example is shown in Fig. 5 which is a Feed Family model given in [MM93].
In this example, input(I,) is unfed people, controls(C;, C,) are money & budget and family policy,

outputs(O, O,) are fed people and garbage. The workflow shown in Fig. 5 is easy to understand.
1"~2 g

For simplicity mechanisms are omitted. There are mutually constraining activities, details that require
hiding, exception handling, and error conditions. This diagram is decomposed to hierarchical
diagrams adequate for writing detailed specifications. This example is selected, since the

complexities of feeding a family are rich enough to represent any systems analysis methodology.
3. Comparisons on the Models

Since each model has different advantages and disadvantages, we will compare the models. The
results will be used to generalize IDEF() model.
A. Problems of ECA models

Since ECA model is developed for database/transaction processing, starting time of actions is very
much important. Events and conditions determine when to start the corresponding action. Details of
the action is described by a program and it is not easy for users to understood its operation.

Composition of ECA rules is also difficult to be understood, since it is a combination of

219

programs/rules. As a conclusion, ECA model is suitable for database transactions and not suitable
for user interface.

In ECA model when an event occurs then conditions are checked, and at that moment if there is
no satisfied conditions the corresponding action will not be started and the rule will be canceled. In
order to handle cooperation of users we need to consider the following case.

After 9 a. m.(Event), we will start a job(Action) when all the members of a group come
(Condition). In this case, when Event occurs the condition may not be satisfied. The job may be
able to be started at 9:30 a. m., for example, whien the last member comes. We can eliminate Event
by converting it into Condition(at 9 a. m. is an Event but after 9 a. m. is a Condition). The following
condition can be used.

We will start a job(Action), when all the member of a group comes{Condition 1) during 9 a. m.
and 10 a. m.(Condition 2).

Action will be started when both Condition 1 and Condition 2 are satisfied.

For user cooperation we will use this kind of Condition-Action rules. Since ECA rules are also
required to cope with transactions, we will translate Condition-Action rules to ECA rules. Advantage
of ECA model is that some version of the model will become available in most database systems in
near future.

B. Adﬁntnges and disadvantages of finite automata models

As shown in Fig. 2, we can represent both workflow and control flow by a finite automaton
model. More gencral control is possible. For example, the control such as "Bill cannot ask rewriting
of a report if it is prepared by Peter” can be also expressed by a finite automaton model. It is realized
by defining a part of paths by defining regular expressions.

Another advantage is that branching condition can be explicitly expressed. For example, there are
two transitions to s, and s; from s; and selection of one transition is explicitly stated by control

signals c and d.

On the other hand, in IDEF0 model selection is expressed by control part and no explicit selection
is possible.

Fig. 6 shows IDEF0 diagram corresponding to the finite automaton model in Fig. 2. It is rather
easy to understand, but the information on which branch should be taken is not expressed. Since
each block can be replaced by an automaton, hierarchical representation is possible by both finite
autornaton and IDEF0) models. In IDEFO model, detail description block "Report preparation by
Mike" corresponds to the automaton shown in Fig. 2(c). Workflow and control flow are always
mixed in IDEFQ model.

One serious drawback of the finite automaton model is that it cannot express paralle] execution.
There is a nondeterministic automaton model which can handle parallelism. In that model all possible
paths are realized. In order to express a subset of all possible paths we need to define states, each of
which corresponds to one subset of the states of the original finite automaton. Since the number of

220

such states is (2" - 1), it is practically impossible to use such a model.
Use of Petri nets[Pe81] is one possible solution. We will not discuss further since it is ecasy to
translate diagrams in Fig. 2 into Petri nets,

Mike's Peter's Bill's
condition condition condition
V’ ™, Modification
mstruction
Wri
Job A Rgpr;rrra don : ”_um Ieport ~, Modification
. Substitution request instruction
¥ Mike
A YYY Written
| Report report
Job B preparation
P by Peter v

Check by Bill repos :

I Cancel nutiﬁcatﬁ)h
Mike Peter Bill

Fig.6 IDEFO representation for control and workflow of Fig. 2

C. Advantages and disadvantage of IDEF0 models

IDEF(Q model put emphasis on the representation of the action. All of input, mechanism, control,
subject and output are related to the action. Event and condition of ECA model are only a part of
control in IDEF0 model. Contrel by automaton model also corresponds to control which selects the
output which really used. Control of IDEF0 model is used for the following three pu'rpuses. .

1) Start condition like ECA model. .
2) Branch condition like finite automaton model.
3) Parameter of the action.

In finite automaton model only one action is defined. On the other hand in IDEF0O model action
can be modified by control. It can be regarded as parameters for action definition. In IDEF0 model,
these three kinds of control signals are not distinguished.

IDEFO model can describe details of actions. Combination of actions can be expressed by
combining a diagram, which can be easily understood by users.

As shown in Fig. 6, IDEF0 model can express both control flow and workflow in one diagram.
It is easy to understand(see Fig. 2 for comparison), but one problem is that control flow and
workflow are mixed. Although clean separation of the both may not be possible(see the example in
the following paragraph), it is important to distinguish them in order to understand the meaning of a

221

diagram.

In a company some manager may be in charge of making a plan to do a job. His work is actually
making control flow for other people. Senior managers must determine workflow of such managers.
Thus there will be a hierarchy of control flows.

4. Generalized IDEF0 Model

In the previous section we compared ECA model, finite automaton model and IDEF0 model. It is
required to generalize IDEF0 model due to the following reasons.

1) We must express starting conditions and events for actions in order to translate IDEF0 diagram
into ECA rules.

2) Separation of control flow and workflow should be achieved as much as possible.

Further generalization is motivated by the following reasons.

3) Explicit expression of workflow branch control as shown in Fig. 2(a) should be realized: In
Fig. 6 the condition when "substitution request” will be issued, is not explicitly shown.

4) Schednlé on mechanism assignment should be required: For example, if there are only two pans
and they are required by four actions, proper assignment of pans is required. We need to add
pmﬁer.scheduling procedures for mechanisms.

For the purposes of 1) and 2), we will define a generalized block as shown in Fig. 8.

Control has two kinds, one for start condition and the other for parameters and branch conditions.
It is recommended to use separate arrows for parameters and branch conditions., We will use bold
arrows to express start conditions and events. There are two kinds of outputs, result of the action
and control for other blocks. We will distinguish the both by using dotted line for control output. In
conventional IDEF) start condition is not clearly expressed. It is assumed that actions defined by
Subject will be started when all inputs are ready. We can start some actions if explicit statement for
starting condition is given. If there is just one input, then action is assumed to start when the input is
ready. In order to translate IDEFO diagram into ECA rules we must explicitly show the start
conditions. Fig. & shows a diagram using generalized IDEF) model, which corresponds to Fig. 5.

As there are too many control arrows we will use the following simplified notation,

If there is no control corresponding to start conditions, we assume that the action must be started
when the all inputs are ready.

By this assumption, we can remove most bold arrows in Fig. 8, still keeping the property that it
can be translated into ECA rules.

For explicit expression for workflow branch control, we can use labels for outputs. Fig. 9 shows
an example. Conditions a and b are given as Control. Output A will be produced if a is satisfied.
Output B is produced if a - b(both a and b) is satisfied.

We can use another IDEF0 diagram which determines schedule for items of Mechanisms. Details

222

of workflow branch control and scheduling of Mechanisms are omitted here.

Start Parameters /
condition Branch conditions

-

Y

Input———>» Subject

T

Mechanism

........ » Control output
——= Ountput

Fig. 7 A generalized IDEFD block

Family
Budge: palicy
" .
H

Pt Pl "} s -,hit_ng
R R
Mulpu.‘if ::: F-'-':- -------- ?.E.__‘]
" l E E ENII:MDd
Dm’ > e ::; ------ HIH ritams
| ok }: £
ra | YY_ :
& Foad e e e e et |
prefs ft=ms Prepare anmiﬁ = h"'! E
wd WY 2
e —1 Serve bk Fed people
P o e
l Clean i*ﬂﬂd W'f
vers Clean Unused dishes l.'!:u &bﬂ‘
Lefio kinzhen Fivnad L iy vichen } .
h,
Reusabies

Fig. 8 Representation of feed family example
using generalized IDEF0 model

a,b

A ——-

a- b —-

Fig. 9 Explicit expression of
branch condition

223

..... Wntml

- sl consition

5. Use of Generalized IDEF() Model for User Coordination

Since it is not possible to determine or modify workflow automatically, negotiation among users
is required. IDEFO or generalized IDEF0 can be used to show the status to users in easily
understandable form. Becaose users are involved, we need to handle dynamic modification of
diagrams. For example, a user to whom a job is assigned may not available because he is out of the
town.

There are typically the following two methods to handle dynamic modification.

1) Prepare all possible paths beforehand.

2) When some conditions are satistied, the rule to modify the diagram is applied.

If there are many possibilities, method 1) is not practical. We will use method 2) in this paper.

There are the following cases for IDEF0 diagram modification.

1) Workflow diagrams are not modified. Only details of conditions are modified. Change of
deadline dates is one example.

2) A part of a diagram is removed. For axa.mplel. in Fig. 6, if Job A is processed by Mike, the
block "Report preparation by Peter" will not be used, thus it can be removed. Th.i,s kind of
modification can be used in the following two cases.

2-1) Simplification of 2 diagram. By removing blocks which are not used, only really used
job flow will be shown. Furthermore, complicated diagrams can be simplified by
removing less important control flows and/or mechanisms.

2-2) Generation of user's view. Workflow related to a specific user is required to make his
own schedule.

3) Addition of blocks and edges.

3-1) Addition and deletion of edges. For example, new control is added or some mechanism
is replaced.

3-2) Replacement of partial diagrams. If some condition is satisfied, we need to replace a
part of a diagram by another diagram. A simplified case is as follows.

If condition C is satisfied, replace block B by diagram D.

We will consider the case when some job cannot be finished before the deadline.

1) Change of deadlines: In this case we need not modify the diagram. Only deadline values are
modified.

2) Giving up the job: In this case the part of the diagram related to the job will be removed.

3) Modification of diagrams:

3-1) Assign additional people to perform the job by adding these people as Mechanisms.

3-1) Replace a block by a diagram which corresponds to a modified job or users' decision.

We will show an example corresponding to case 3-2). Consider the case to prepare a program

224

shown in Fig. 10 without () parts(it will be explained later).

Schedule Schedule [Schedule Schedule
of Peter of Bill \of Peter . of Mike

S P meeesesseceneaoaans fomeeqenneas
Software V‘V Y(’- ' i h\

specification System ---.,ﬁ-;,-;...ﬂ
design H |

) Yyv o

DE-SiEH\) Design -/ Result of
Result Verification | Evaluation :

A A \V;

\ Program
> Coding —3»

T T

Peter Bill (Peter) Mike

Fig. 10 A Workflow for Program Coding

Here design verification and coding are performed in parallel after systemn design. During the
coding result of verification is given as control and if there is some problem, system design must be
modified and coding must be modified accordingly.

If there is a deadline for design verification and it is found that verification may not be able to
finish before the deadline, we need to assign additional persons for design verification. A block
showing decision for help is generated and other users will help design verification. - The modified
diagram is shown in Fig. 11.

Fig. 12 shows an example of a diagram modification rule. When a job cannot be finished two
days before the deadline, the rule in Fig. 12 will be applied. Newly added block and edges are
shown by bold lines. A new decision block is added to determine modification. In parameter control
only deadline condition is added to the decision block. Additional members correspond to all
possible members who can help the job. Coordinators at the decision block will determine new
deadline and people who will help the job, using the conditions of these additional members.

Fig. 11 shows the result of the application of the rule to Fig. 10. After a decision is made,
simplification of diagram will be applied. In this case, if it is decided that only Peter will help the
Design verification, we can generate a diagram where () parts are added in Fig. 10.

225

Deadline

Schedule Schedule ! Schedule
of Peter of Bill & of Mike
: T
N e 4 MO
Software ‘V‘r ; II‘-‘-':& R N :
specification System |preeeeeseeemessages bebefedeenanas Fesessesanaas deed “ees i
| design —ﬁl' R : Pl)
Y PR Y it bt e ~ i
X WYYV imeaor |G) G
Design Design [~ Evaluation i i i i i
Result P verification IIZZIZZZZIIZ:{"!"‘:' TN 1
W gl & ii i
yWyy (i
3| Decision for | _J 2 1
i Help in Design HEE
| Verification HE
) A A j P
i vYy
Program
\ 2 Coding |P———m—
))
5
Peter Bill Mike Coordinator

Fig. 11 Meoedified Workflow for Program Coding

Comtrols Condition of
Paramster - Additional
Controly | Mecharisms
Sart b4 .
Parimelsr o 1 . ¥
i i Cnmdlua:n i ﬁeudlmehu :
St~ Branch I A ek, SR S
Condilion ! tral P -l
T !.'E'nm 5 * Vo s P “\1..
* 1‘ 1 1y HE- :
M H ¥
—t - O
Inpuu_hjl n | Chuipusts 4 Inpits—e= a [Rp—— H E H e
i H"L : b i Mew deadling,
Y ¥ ¥ ! Modified contral for
ﬁ‘ Jnmhmisms
Mechanisms r-l——- DCiecisian [~
3)
' Mechanisms Additions] Cotididl o
echunisms

Fig.12 A rule to modify IDEF0 diagrams

Users have to know the result of modification. We are developing a user interface utilizing

generalized IDEFD diagram which shows the followings.

1) If there is a branch, only the edge which really selected is shown.

2) If some decision is involved as shown in Fig. 11, the result of the decision is shown.

Using hierarchical representation, users can understand the current situation easily. We are

226

currently designing representative blocks and corresponding ECA rules. Using these blocks we can
define workflow without complicated programs.

6. Concluding Remarks

In this paper problems of IDEF0 model are discussed by comparing with finite automaton model
and ECA model, and a generalized IDEFD model is proposed. It can be translated into ECA rules
realized by database systems. Furthermore, it has rich expressive power for user decision and
negotiation. The system will be used in VIEW Office which has been developed using Distributed
Smalltalk and VisualWorks combined with an object oriented database system.

References

[Da88] U. Dayal et al.: "The HiIPAC Project: Combining Active Databases and Timing Constraints”,
SIGMOD Record, Vol. 17, No. 1, March 1988.

[DBMEE] U. Dayal, A. P. Buchmann, and D. R. McCarthy, "Rules Are Objects Too: A Knowledge
Model For An Active, Object-Oriented Database System”, In 2nd Intl. Workshop on Object-Oriented
Database Syst., pp. 129 - 143, Springer-Verlag, September 1988.

[Esw76] K. P.Eswaran: "Specifications, Implementations, and Interactions of a Trigger Subsystem
in an Integrated Data Base System", Research Report RI1820, IBM. August 1976.

[KCK92] Y. Kambayashi, Q). Chen, T. Kunishima: "Coordination Manager: A Mechanism to
Support Cooperative Work on Database Systems”, Proceedings of the Second Far-East Workshop
on Future Database Systems, pp. 176 - 183, World Scientific, April 1992.

[MD89] D. R, McCarthy and U. Dayal: "The Architecture of an Active Data Base Management
System”, In Proc. ACM SIGMOD Intl. Conf. Management of Data, pp. 215 - 224, June 1989,
[MM93] D. A. Marca and C. L. McGowan: "IDEF0/SADT Business Process and Enterprise
Modeling”, Electronic Solutions, 1993.

[PeB1] I.L. Peterson: "Petri Net Theory and the Modeling of Systems”, Prentice-Hall, 1981.

[PK95] Z. Peng and Y. Kambayashi: "Deputy Mechanisms for Object-Oriented Databases",
Proceedings of the International Conference on Data Engineering, 1995.

[RS94] W. Reinhard, J. Schweitzer, G. Volksen, and M. Weber: "CSCW Tools: Concepts and
Architectures", Computer, Vol.27, No.5, pp.19-27, May 1994,

[TK93] H.Takada and Y. Kambayashi: "An Object-Oriented Office Space Description Model and an
Office View Management Mechanism for Distributed Office Environment"”, Foundation of Data
Organization and Algorithms, pp.362-377, Springer Verlag, 1993.

[WiBE] T. Winograd: "Where the Action Is", BYTE, Vol. 13, No. 13, pp. 256A-258, December
1988.

227

