Heterogeneous Distributed Cooperative Problem Solving Syst&m
HELIOS and Its Cooperation Mechanisms
(Draft)

Alkira Aiba, Kazumasa Yokota, and Hiroshi Tsuda
Institute for New Generation Computer Technology
{aiba, kyokota, tsuda}@icot.or.jp

1 Introduction

HELIOS is a system for constructing heterogeneouns distributed cooperative problem solving systems.
When we consider knowledge information processing, it is very difficult to cope with real large-scale
applications in a single programming language and a single paradigm. That is, constructing those
applications requires combinations of multiple heterogeneous problem solvers that may spatially dis-
tributed. Besides heterogeneity, we have to consider that those applications also require resource bound
computation.

Considering those issues, we propose a heterogeneous distributed cooperative problem solving system
HELIOS. Basic concepts of HELIOS are an agent and an environment. An agent is an encapsulated
problem solver by a module called capsule, and an environment is a common space in which agents
are placed. In HELIOS, agents can communicate with each other even if problem solvers have differ-
ent communication protocols, and agents can cooperate even if problem solvers have no functions for
cooperation. That is, those functions are implemented by capsules and an environment.

In this paper, we describe functions in HELIOS mainly focusing on cooperation funictions. In HE-
LIOS, cooperation is defined by providing negotiation protocols and negotiation strategies. We consider
negotiation in HELIOS as transaction since negotiation can be considered a logical unit of message
sequences. We call it fransaction-based negotiation. Furthermore, since negotiation can be nested,
transaction-based negotiation corresponds to nested-transactions. This protocol can represent several
negotiation protocols such as the contract net and multi-stage negotiation protocols.

2 - HELIOS

2.1 Motivations
We can find many applications which require multiple keterogeneous problem solvers !;
* Modeling Heterogeneity

The complexity of a given problem requires a combination of multiple heterogeneous problem
solvers,

'Here, we use a problem solver as & general term for & database system, a knowledge-base system, a constraint solver,
an expert system, an application program, and so on.

77

» Spatial Heterogeneity:
Spatially distributed problem solvers are required to process a given problem.

o Temporal Heterogeneity: -
For a new problem, a new problem solver is not necessarily developed: that is, multiple existing
problem solvers must be reused for a new problem.

There have been some approaches: an arithmetic calculator in Prolog and a constraint logic program-
ming language with a single constraint solver. Such a restricted approach seems to be neither flexible
nor promising for maost applications.

Further, considering the spread of distributed environments, there might be similar resources, each
of which does not have complete information. In such an environment, we can frequently get betier
results by accessing and merging multiple information resources or multiple problem solvers. In other
words, cooperation among distributed resources are frequently required. Considering such applications
and environments, heterogeneous, distributed, cooperative problem solvers will become more important
and can play a role of a large-scale applications in knowledge information processing.

2.2 HELIOS Model
A basic concept in HELIOS is an agent, defined as follows:

agent :=- (capsule, problem-solver) | (capsule, environment, {agent;, ..., agent, })

A simple agent is defined as a pair of a cepsule and a problem solver: intuitively, a problem solver is
wrapped with a capsule as in Figure 1. .

A compler agent i defined as a triple of a capsule, an environmenif, and a set of agents
(agent,,...,agent,), where an environment is a field where agent;,...,agent, can exist and commu-
nicate with each other. Intuitively, as a pair of an environment and a set of agents can be considered
also as a problem solver, a new agent can be defined by wrapping them by a capsule. That is, an agent
can be also hierarchically organized. Figure 1 shows such structures.

A capsule and an environment is defined as follows:

capsule = (agent-name,methods,self-model, negotiation-strategy)
environment = (agent-names,common-type-system, negotiation-protocol, ontology)

An agent name in a capsule is an identifier of the corresponding agent and agen! names in an
environment specifies what agents exist in the environment. Methods in a capsule define import and
ezport method . protocols of the corresponding agent. An agent with only import methods is called
passive and an agent with both methods is called active: that is, only an agent which send new messages
through export methods can negotiate with other agents. A common fype sysiem in an enviromment
enforces all agents under the environment to type all messages strongly. A self modelin a capsule defines
what the agent‘can do. An environment extracts necessary information from self models in agents to
dispatch messages among agents. Under a negofiation profocol in an environment, each agent defines a
negotfiation strategy to communicate with other agents. An onfology defines the transformation of the
contents of messages among agents, while a capsule convert the syntax and type of messages between
the common type system and the intrinsic type system of the corresponding problem solver. These
information is defined in CAPL (CAPsule Language) and ENVL (ENVironment Language).

Although various information is defined in each environment and each agent, a message among agents
iz in the form of a global communication protoce! consisting of the message identifier, the identifier of

78

user (environment}

r ™
capsule
' Y
environment
complex agent
simple agent
capsule
capsule
environment
(?rohlam solver (agent:) . (agent)
A w
L &

Figure 1: Configuration of an Agent

a sender agent, the identifier of a receiver agent, a transaction identifier, and a message. A message
identifier is common in a query message and answer messages. A transaction identifier is used to identify
a negotiation process as a transaction, which can be nested.

2.3 Message Dispatching in HELIOS

Any active agent can send a message to its environment. How is the message dispatched by the
environment?

First, during the initialization of agent processes in the environment, the environment constructs a
map of a logical agent name and a physical process address (or IP address). Secondly, the environment
gathers method information and function information in self models from each agent and constructs
two kinds of maps: a method and an agent name; a function name and an agent name. Such maps
work for dispatching messages among agents.

As a method or a function does not necessarily corresponds to an agent uniquely, a message is possibly
sent to multiple agents. This mechanism is useful for the followings:

o [t is unnecessary to specify an agent name in problem solvers explicitly.
e It is possible to send simultaneously a message to possible agents.

An environment decides to send a message sequentially or in parallel to candidates listed by the maps,
and processes answers sequentially or by grouping as a set. In the case of set grouping, aggregation
functions can be specified in an environment. Such a mode can be selected in a query message.

How can agents communicate with each other? We consider three kinds of modes:

* simple communication,
* negotiation-based communication, and

79

schedulable communication.

When communication among agents requites neither negotiation nor query plans, it is called simple.

For negotiation among agents, negotiation protocel and negotiation strategy in HELIOS can be
defined in ENVL and CAPL, respectively, differently from conventional systems. The protocol is based
on the transaction-based protocol, which comes from the similarity between transaction and negotiation
processes: negotiations can be nested and controlled by begin-, end-, and abort-transactions. Various
negotiation protocols such as contract net and multi-stage negotiation can be written by the transaction-
based protocol. Negotiation strategies can be written in a logic programming language with the above
protocal. :

For efficient negotiation, an agent can use its proxy. In HELIOS, we introduce a proxy agent. An agent
can send its proxy to other agent, and an agent can send it to an environment. The former decreases
communication between agents, and the latter decreases communication between an environment and
agents, and decreases functions of an environment. 0

Another kind of communication is applied when a message can be partitioned into sub-messages and
their execution plan can be generated. A messages is analyzed and ils corresponding processing plan is
constructed as a dependency graph. A query in conventional distributed databases is such an example,
Synchronization information between sub-messages is attached to each sub-message and controlled by
the capsule of each agent.

An answer message can be processed by global constraints, a constraint solver, or aggregation func-
tions. Global constraints pare used for restricting special values embedded in messages. For example,
you can see the number of columns and rows in n-queen as unchanged one, and a blackboard as change-
able one. A constraint solver is used for evaluation of results. An environment sends them to the related
agent if necessary. Depending on their evaluation, the environment decides whether alternative message
processing is necessary or not.

When all agent cannot solve a query, the environment sends the guery to the outer environment,
which may be a nser, through its capsule.

3 Negotiation in HELIOS

In HELIOS, negotiation is realized by describing negotiafion protocol in each environment, and negotia-
tion strategy in each capsule. Based on those functions, we propose a transaction-based negotiation by
considering a negotiation as a transaction. In the following subsections, we describe transaction-based
negotiation protocol that can be deflned as a protocol in an environment. Then, we show how this
protocol can be used to represent various negotiation protocols such as contract net protocol, multi-
stage negotiation, etc. Then, we show how other negotiation such as bargaining over the price and seat
reservation can also be represented by the protocol. '

3.1 Messages Protocols in HELIOS

A message between a.gents-_ contains the followings:

¢ Message identifier
An identifier used for identifying a message.
» Message type
A message iz either a method invocation or an answer. The former message is called a query

80

message, and the latter message is called a reply message. This field is used to distinguish a query
message from a reply message.

s Sender agent identifier
This field contains a logical name of the agent that sends this message,

* Destination agents
As described in section 2.3, an environment can dispatch query messages by logical names, method
names, and functions. This field contains such information to dispatch this message.

o Transaction identifier
If update of a content of a destination problem solver is attendant on invocation of a method,
then a transaction identifier is required. This feld contains a transaction identifier. For nested-
transactions, a transaction identifier with a nested structure is used.

o Status . .
This field contains information on the status of invoked methods for error handling.

s MMessage content
In a query message, this field contains a method invocation, and, in a reply message, this field
contains the answer to the invocation.

3.2 Basic Policy: transaction-based protocol

A negotiation can be considered as a transaction since it is a logical unit of a message sequence, and it
is required to ensure intermediate internal states of agents participating in the negotiation.

In the transaction-based negotiation, each unit of negotiation iz described as a transaction. Since
negotiations may be nested, transactions are also nested. Thus, we have to use nested-transactions
in negotiation in HELIOS. That is, when a proposed plan is partially accepted then the negotiation
becomes deeper, and transaction is nested to achieve agreement on issues that are not yet agreed. :

When negotiation succeeds, then it corresponds to commaif, while a breaking down on a negotiation
corresponds to rollback. However, if there might be a possibility of re-negotiation, them a two-phase
commit should be used for a breaking down of a negotiation. Note that both sides of the negotiation
can send a commit message or a rollback message.

Transaction-based negotiation protocol can be defined in Figure 2.

Az in Figure 2, presenting a plan is distingnished from asking & query. Presenting a plan is followed
by its evaluation value, or rejection. On the other hand, asking a query is followed by its answer,
acceptance, rejection, or conflict.

3.3 Various Negotiation Protocol in Transaction-based Protocol

As we described in section 2.3, an agent can send its proxy to the other agent or to the environment.
In the following, we present several negotiation protocols as examples of transaction-based negotiation
protocol. In all protocols, an environment plays an important role of a manager. An agent that asks to
execute a job can send a proxy to the environment for decreasing communication, and the proxy plays

a role of & manager.

Contract Net Protocol

The contract net protocol was proposed as one of protocols for dispatching a job by a manager to one
of contractors [Smith 1980]. This protocol consists of Task announcement, Bidding, Announcement of
awerd, etc. In the following case, an agent that has a job sends its proxy to the environment, and the

a1

{1 s plan . = cvaluate : - {1}

» TRjECT

J begin-trans. s qQuery —— . answer _...

L accept —

L . reject —

L o conflict — |

. ok-commit . COmMMIL]
= PrE-COMMIL _E:

no-commit —

no-rollback — —

.. pre-rollback
ok-rollback rollback |

Figure 2: Transaction-based protocol

proxy plays a role of a manager. The contract net protocol is implemented using the transaction-based
protocol as follows:

Message flow Content Messages Corresponding message
in [Smith 1980]

a—m Asking a job query

m—+cXn Presenting the job begin-trans + plan task-announcement

exk—m Bidding evaluate bid

m— ¢ Asking the job query announced-award

m— ¢ x(k—1) Announcement of rejection rollback

£c—m Receiving the answer answer final-report

m — ¢ Termination comnmil

m—a Sending the answer aREWET

where a is an agent, m is a manager, ¢ is a contractor, ¢ ¥ = and ¢ % k represent n contractors and k
contractors, respectively.

Before negotiation, an agent that has a job sends its proxy to the environment. Then the agent sends
a job using a gquery message to the proxy in the environment. The proxy multicasts the job to each of
candidates for contractors by functions of the environment using a begin-transaction message followed
by a plan message. This corresponds to “task-announcement”.

Some of contractors bid for the job. Evaluation of the job may be carried out by asking other agents
that have functions for evalnation. Bids are send to the proxy using evaluate messages. This corresponds
to *bidding”. . ' '

Then, the proxy selects one of the contractors. Selection of a contractor may be carried ont by asking
other agents that have functions for comparing bids. Then the proxy sends an award to the selected

g2

agent using a guery message. This corresponds to “announced-award”. The proxy sends messages to
agents other than the selected one for giving np taking the job. These are realized by rollback messages.

The answer from the agent is sent to the proxy using an enswer message, and the proxy sends a
commit message to the agent to terminate the transaction. Then, the proxy sends the answer to the
agent that originally asks the job to the environment.

On the other hand, the direct award can be implemented using a begin-transaction message followed
by a plan message. In this case, there is only one contractor that is designated by the manager. Thus,
the agent can accept or refuse the job. This can be implemented using an evaluate message or using a
reject message. When the agent accepts the job, then the answer is sent to the proxy using an answer
message.

Selection among Answers

Besides the contract net protocol, there are several other protocols that are exchanged between a
manager and contractors. In the contract net protocol, one contractor is selected by estimated costs
reported from contractors. However, there is a situation that the answer produced by each contractor
is a criterion of selection. We call this selection among answers. In this case, an agent can also send its
proxy to the environment, and the proxy plays a role of the manager. This protocol can be represented
using the transaction-based protocol as follows: '

Message flow Content Messages
a—m Presenting a job query
m—axn Presenting the job gquery
axk—m Collecting answers answer/ reject
m evaluation g
m—a Answer answer

In this protocol, an agent sends a job using guery message to the manager. Then the manager
multicasts the job to candidates for contractors using query messages. An agent that can accept the job
sends the answer to the manager using an answer message, while an agent cannot accept the job sends
a reject message. Time-out is checked for collecting answers from contractors. The manager selects
one of the answers using functions of other agents, then the selected answer is sent to the agent that
originally asks the job.

Aggregate Answers

Selection among answers can be generalized to aggregation.

Message flow Content Messages

o — m Presenting a job query

M —aXxn Presenting the job guery
axk—m Collecting answers answer/ reject
m aggregation

m—a Answer ATMSWeETr

In this protocol, the answer is produced using collected answers by certain aggregate functions. Just
same as in “selection among answers”, an agent sends its proxy to the environment, and the proxy plays
a role of the manager. Almost all of this protocol are same as those in the “selection among answers”
except after collecting answers from agents by the manager. After gathering answers, the manager

83

asks certain agent with aggregate functions to aggregate answers. Then the agent sends its aggregated
answer to the manager. The manager sends the answer to the agent that originally asks the job.

4 Concluding Remarks

As described in the above, the major feature of negotiation in HELIOS is that problem solvers without
an ability of negotiation can participate in negotiation by defining negotiation strategies in its capsule,
and negotiation protocols in its environment.

As for the transaction-based protocol, there was a research on a transaction model [Ishida 1992].
Our transaction-based protocol for negotiation has different viewpoint from Ishida’s transaction model.
Our intention is to describe negotiation using a formal language by making element technologies of
negotiation clear. For instance, from logic programming and deductive database points of view, the
contract net protocol requires set grouping, aggregaiion function, constrainl solving, nested-transactions,
and long-term {ronsaction as its element technologies. By making those element technologies elear, more
flexible negotiation/cooperation strategies can be realized. Using the transaction-based negotiation
protocol, some variations of the contract net protocol can also be easily represented.

Using the transaction-based negotiation protocol, we describe several problems requiring negotiation
as examples. Those examples include bargaining over the price, seats reservation, and meeting schedul-
ing. In the future, we should investigate the usefulness of the transaction-based negotiation protocol to
other negotiation protocols. We also require real large-scale a.ppflma.tmns for verifying the effectiveness
of HELIOS and the transaction-based protocol.

References

[Aiba et ol. 1994] A. Aiba, K. Yokota, and H. Tsuda, “Heterogeneous Distributed Cooperative Prob-
lem Solving System HELIOS," In Proceedings for International Sympﬂﬂ:um on Fifth Generation
Computer Systems 19894, TukynT December 1994,

[Ishida 1992] T. Ishida, “A Transaction Model for Multiagent Production Systems,” In Proc. Eighth
Conf. en Artificial Intelligence for Applications, Monterey, California, March 2-6, 1992.

[Smith 1980] R. G. Smith, “The contract net protocol: High-level communication and control in a
distributed problem solver,” IEEE Transaction on Computers, Vol. C-29, No.12, pp.1104 - 1113,
December 1980,

84

