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An equation valid in the initial model of an equational theory is called an
inductive theorem. In this paper, we present an inductive theorem proving method
in the form of inference rules. The method can be seen as an extension of the
inductive completion procedures presented by Goguen Musser, Huet, Fribourg, and
Bachmair. Compared with their procedures, our method can handle unorientable
axioms and theorems. Moreover, it can prove theorems even when the canonical
term rewriting system corresponding to a given equational theory contains an infinite
number of rewrite rules. The method is refutationally complete; that is, if at least
one of theorems is not correct, then it always finds a disproof.

Musser and Goguen showed that the correctness of an inductive theorem 7' in
an equational theory I is equivalent to the consistency of an extended axiom system
E' obtained by adding T to an axiom set of F as a new axiom[4, 8]. Moreover, they
suggested that the Knuth-Bendix completion procedure[7] can be used to prove the
consistency of the new system E’. Their method has only one kind of inconsistency,
that is true=false. Huet and Hullot proposed a method that finds inconsistencies
more easily by decomposing function symbols into constructors and defined symbols.
Dershowitz pointed out that an equation T is valid in the initial model defined by
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R if and only if no equality between two distinct irreducible ground terms follows
from R and T[2]. Fribourg presented a linear proof method which restricts the
number of critical pairs to be generated[3]. These proof methods are called inductive
completion procedures. Bachmair showed that the proof ordering method can be
applied to prove the completeness of these inductive completion procedures[1].

In spite of the fact that the inductive completion procedure works efficiently,
several problems still remain to be solved. Those are: (1) it does not work if
the canonical term rewriting system corresponding to the given equational theory
contains an infinite number of rewrite rules, (2) it fails if at least one generated
equation is not orientable under the given ordering; and (3) it loops if an infinite
number of critical pairs are generated. In this paper, we address all of these problems
by presenting a new inductive theorem proving method which is based on Bachmair’s
proof by consistency[l]. Our method starts with E, given equational theory, and T,
inductive theorems to be proved; while other completion procedures start with R,
the canonical rewriting system corresponding to E, and 7. The method performs
inductive theorem proving by generating a term rewriting system corresponding to
E, and terminates after sufficient rewrite rules are obtained. Therefore, the first
problem can be avoided. As for the second problem, we employ orientation-free
rewrite rules. With these rewrite rules, the method can obtain a ground convergent
rewriting system. Since inductive completion needs confluence only on the set of
ground terms, the extended method is still refutationally complete. It is well-known
that the termination problem of the Knuth-Bendix procedure is undecidable. Then,
for the last problem, we introduce a criterion, called a recursive pair, to detect
cases where the procedure fails to terminate. This criterion is based on Hermann’s
crossed pair which examines the structure of critical pairs to find infinite loops in
the Knuth-Bendix comipletion[5].
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