MGTP Application Study to Inductive Logic

Programming

Naoki Yagi, Keiko Shimazu, Koichi Furukawa, Akihire Kimura
November 25 , 1994

1 Introduction

Inductive logic programming provides a new approach for realizing machine
learning based on first order logic. The main advantage of the approach
is the ability to utilize background knowledge during learning phase. This
ability makes it possible to enhance the expressiveness of the system simply
by providing related knowledge as one of its inputs. We applied MGTF to
an inductive logic programming system called PROGOL developed by Mug-
gleton et al. We found that the use of MGTP makes the PROGOL complete
for deriving the most specific hypothesis which plays an important role to
guide the search in concept hierarchy lattice to find a most suitable concept
description explaining given positive examples whereas keeping to exclude
negative examples under given background knowledge. The essential idea of
the nse of MGTP in PROGOL is to compute an extended minimal model for
the union of background knowledge and a singleton set consisting negation
of a positive example. We need both positive and negative literals deriv-
able from the union. We found it possible to compute a set of positive and
negative literals using a version of MGTP, called Ground-MGTP/MERC,
which accepts both standard and contra-positive representations and com-
putes minimal models.

To realize parallel PROGOL, we started to design a new 1mplemsnta.tmn
of PROGOL in Prolog and KL1. Essentially, there are two modules in
PROGOL, one for computing a most specific hypothesis to explain a given
positive example and the other for finding a most suitable description to
explain the given example. The former part can be realized by a direct copy
of the ground-MGTP/MERC. The essential algorithm of the latter part
is A* algorithm for searching on a concept hierarchy lattice each node of
which is a clause describing a positive example. We are now designing and
developing the latter module in Prolog. The implementation of the system
in KL1 is scheduled later.

2 The structure of PROGOL

2.1 Computing a most specific hypothesis

Inductive inference is a form of reasoning which is very common within
natural sciences. As Muggleton suggests, there have been long time effort
to formalize the reasoning. [Muggleton ,1994]

Aristotle first describes it in his “Posterior Analytics”. Frances Bacon, in discussing the em-
piricism of the new natural sciences in the 17th century gave numerous examples of inductive
inference as a paradigm for scientific method. However, despite the efforts of philosophers
such as Hume, Mill, Pierce, Popper and Carnap, the foundations of inductive reasoning are
still much less clear than those of deductive mathematical logic. Since the 1970 several re-
searchers from within Computer Science have attempted, with varying degrees of success, to
find a logical basis for inductive inference. These researchers have included Plotkin, Shapiro
and the new school of Inductive Logic Programming,

In the following, we briefly introduce the theoretical background of PRO-
GOL. [Muggleton] '

The purpose of PROGOL is to explore inductive inference in the frame-
work of classical first order predicate calculus, Bayesian statics and algo-
rithmic complexity theory. This is achieved by finding a H which satisfies
the four conditions. Inductive inference can be formulated as a problem of
finding a hypothesis H.

¢ Prior Satisfiability. BAE KD _
(Negative examples not allow us to explain false to B.)

e Posterior Satisfiability. BAHAE O
(E~ not allow us to explain false to B and H.)

¢ Prior Necessity. B E*
(B not allow us to explain positive examples.)

¢ Posterior sufficiency. BAHEEY
(H allows us to explain E relative to B.)

Also it minimizes I(T' | E) where I(T | E) = I(T)+ I(E | T) - I(E), where
T = BAH. This is driven by simply the log form of the Bayes’ formula. In
this case, T' "compress” the examples, since it less information content than
they have.

Considering the posterior sufficiency condition (BAH |= E*), according
to the Deduction Theorem F1AF2 |= F3 if and only if F1 = F2V F3, it can
be applied left to right B |= HVE* and also right to left BAET |= H. So the
following theorem shows how this relationship can be made one which allows
the hypothesis space to be logically derived from background knowledge and
examples.

For every hypothesis H such that BA H |= ET, H can be derived from
BANET (B A E+ |=) using any sound and complete derivation method.
If H is assumed to be a single clause, then H is a conjunction of ground
(possible skolemised) literals. The set of ground literals is derivable using
linear resolution from B A E+.

The problem of generating a single clause hypothesis has been studied
extensively. A central notion is that one of the most specific hypothesis
relative to B and E*. This will be denoted by Ly (B, ET). It is defined
that Ly (B, E™") is the negation of the conjunction of literals derivable from
BA ET.

The PROGOL system derives such a most specific clause when carrying
out generalizations. However, with PROGOL the most specific clause is
variabilised according to "mode” declarations. jFrom B ¥ E+, Ly (B, ET)
is made of conjunction of literals derivable from B A E+ and H is made as a
set of clauses. BAH |= F' if and only if H — 1y (B, Et). (All hypothesis
implies the most specific hypothesis.) This theorem is proved as follows.

In "if part”, H —1lg (B,E*) and BA H ¥ E* are assumed, but
BA Ly (B,ET) = Et and BAH = BA Ly (B, ET) are derived. Therefore
B nH | ET contradicts assumption. In the other hand, in "only if part”,
BAH |EFE* and H /4 Ly (B,E"), H does not imply, are assumed. This
implies (Hv Lg (B, E*)) therefore HA Ly (B, E+). But BAE = H which
means B A ET must be unsatisfiable because H is true. Then B |= Et
contradicts the assumption. .

The PROGOL system searches though all clauses which subsume 1y
(B, ET) to find that which has maximum posterior probability. It’s the
approximation of implication by subsumption test. (If A implies B, then A
subsume B. But the inverse is not true.)

2.2 Searching a conceptual hierarchy lattice

The PROGOL system searches a conceptual hierarchy lattice to find the best
hypothesis among a set of clauses which subsume the most specific clause.
In this search the A* algorithm is used. The best hypothesis satisfies the
four conditions mentioned above and minimizes I{T" | E). In A* algorithm,
a cost function ” f" is associated to each candidate is defined as follows:
f=p—(ctn+h).

¢ p — the number of positive examples which are explained by the can-
didate clause,

e n — the number of negative examples which are explained by the
candidate clause.

e ¢ — The number of atoms in the body of the candidate clause.

e h — the least number of atoms required to complete the relationship
between variable in the head of candidate clause.

During the negative search process, many irrelevant branches are pruned
by the use of mode information, allowance of literals and number of noise,
and the depth of search, In PROGOL, background knowledge is used as a
concept hierarchy lattice. It is easy to use definitions on concept hierarchy
as a part of background knowledge. This additional information besides
individual facts sometimes speeds up and/or proceeds further generalization
depends upon how such hierarchical knowledge fits to the target structure.
On the contrary, if the given structure does not reflect the target structure,
the addition may expand search space and slow down the computation. In
other words, the computation cost for deriving a hypothesis increase time
when background knowledge increases. The present version of PROGOL
cannot handle real data which has large quantities or has various background
knowledge.

Therefore, it is worth parallelizing the program to solve the time com-
plexity.

3 Design of parallel PROGOL

In the process of PROGOL, there are the following two main modules.
1. To calculate the most specific clanse which explain the examples.

2. To choose the best clause by A* algorithm taking the most specific
clause into account.

For the former computation, MGTP can be used without any significant
modification for the other process, when the specific example is generalized
to derive hypothesis, the new hypothesis is derived from the rest of the ex-
amples after removing those which are explained by the previous hypothesis.
This process is repeated until the examples are tested on generalization. In
PROGOL the generalization is processed from the topmost clause of the
mmput file. So example sets with different order generate different sets of
hypotheses. To design the paralleled PROGOL, there are two approaches.
* One is to follow the idea of present sequential algorithm of PROGOL, and
parallelizes such algorithm as search in concept lattice requiring heavy com-
putation. The other is that all generalizations of hypothesis. are derived in
parallel. The latter architecture promises fundamental improvement against
the current sequential PROGOL. There are many .issues to be solved such
as the design of communicating hypothesis generalization.

4 Conclusion

In this we described a promising application of MGTP in Inductive Logic
Programming. It is very natural to embed MGTP in PROGOL, the most
advanced ILP system developed by Muggleton and Feng. Moreover, it is
expected to remove a substantial limitation of the current implementation
of PROGOL which computes only a Horn clause subset of the most specific

6

hypothesis clause. We are designing paralleled PROGOL aiming to make it
complete and efficient. As we mentioned in the last chapter, there are many
issues to be solved to parallelize PROGOL.

There is another possibility to utilize MGTP in removing redundant
literals. This problem is left for the future research.

References
(1] Muggleton et al. PROGOL: Inductice Logic Programming system, 1993

. (2] S.Muggleton, Foundation of Inductive Logic Programming, Draft,1993

(3] Ryuzo Hasegawa and Masayuki Fujita, Parallel Theorem Provers and
Their Applications, Proc. FGCS'92 1992 '

