Searching Bayes Nets by Exploiting Task Priority

E. Tick
Dept. of Computer Science
University of Oregon

Abstract

Bayes networks are directed acyclic graphs where nodes represent events and
edges represent probablistic dependencies among events. Associated with each node
are conditional probabilities of the associated event triggering if its ancestor nodes
trigger. The total probability mass of a leafl node triggering can be computed
from simple probability theory, albeit the number of minterms in the formula is
exponential in the number of ancestor nodes of that leaf. It is a well-known result
that for certain biased networks, a number of minterms only linear in the number of
ancestor nodes contributes about 67% of the total probability mass. The problem
of Bayes net search is to generate only these high-mass minterms. A concurrent
algorithm for attempting this is introduced, based on converting the net into a
concurrent process network. Each parent node sends messages containing partial
minterms to child nodes. The novel idea is to prioritize these messages to give higher
weight to partial terms that are likely candidates for inclusion in the final high-mass
minterms. The KL1implementation of this algorithm and its performance attributes
are discussed.

1 Introduction

Bayes networks are directed acyclic graphs where nodes represent events and edges rep-
resent probablistic dependencies among events [4]. Associated with each node are con-
ditional probabilities of this event triggering given ancestor nodes trigger. The total
chance of a leaf node triggering can be computed from simple probability theory, albeit
the number of minterms in the formula is exponential in the number of ancestor nodes.
To illustrate, Figure 1 (left) shows a simple four-node Bayes net. Node A is the only
root, and node D is the sole leaf in this diagram. The diagram states that the probability
distribution for node I} is conditional on both nodes B and C, and that each of these
nodes in turn is conditional on noede A. Significantly, the diagram encodes the statement

158

A

/1N
IS
A A
/LA
/ i \
A B C D
VAR N/ I
P I I I
B C [N I
N/ /N |
\ /7 Al [
D E F !
\ | /
N/
N/
NS
N/
G

Figure 1: Two Simple Bayes Nets: Downwards Flow

that the distribution for node D is independent of the value taken by A once the values
of both B and € are known. This can be formulated as:
P(D)=), P(D|BC)P(B|A)P(C | A)P(A)
AB,C
This formulation can be expanded by expliciting enumerating the truth values of the
events represented by nodes {A, B, C, D}. The expanded form is:

P(d) = P(d|b)P(c|a)P(b]|a)P(a) + P(d | be)P(c|) P(b | a)P(a) +
P(d]b2)P(c | a)P(b| a)P(a)+ P(d | be)P(e | a)P(b | a)P(a) +
P(d | be)P(c| a)P(b| a)P(a) + P(d | be)P(e | a)P(b] a)P(a) +
P(d | be)P(c| a)P(b| a)P(a }—I—P[dﬂm}P(cl&}P[H a)P(a)

There are 2* = 8 minterms in this equation, i.e., it is exponential in the three ancestors
of the exit port. There is an analogous equation for P(d) with eight minterms.

It 1s a known result [2] that for a certain class of biased Bayes nets, 67% of total
prabability mass of a given node can be computed with a number of minterms linear
in the number of its ancestor nodes. Thus for the previous example, if the conditional
probabilities showed the proper bias, then it is known that only three minterms are needed
to compute within 67% of the exact answer. _

The problem is how to find these magic minterms without computing alll There have
been sequential algorithms proposed for doing this [2, 5], but to date no concurrent algo-
rithms. The hypothesized advantage of a concurrent algorithm is to exploit multiprocessor

159

parallelism to gain performance. The danger of a concurrent algorithm that exploits spec-
wlative parallelism is that a large number of minterms is generated in any case. Thus we
risk increasing complexity to gain parallel execution.

This paper proposes a new concurrent algorithm to solve this problem. The basis of
the algorithm is to generate partial minterms, such as P(b | a)P(a) above, prioritized by
their own values. Generation proceeds in parallel within a process network constructed
directly from the Bayes net. The result is fast computation of heavier terms and delayed
computation of lighter terms. The algorithm is dynamically self-balancing, i.e., as partial
minterms are combined, their priorities change, affecting how they are scheduled within
the remainder of the net.

The paper is organized as follows. Section 2 describes the proposed concurrent algo-
rithm and gives an example to illustrate its execution. Section 3 describes an implemen-
tation in KL1. The performance of the algorithm is discussed in Section 4. Conclusions

and future work are summarized in Section 5.

2 Concurrent Algorithm

For a full literature review of previous sequential algorithms for searching Bayes nets, see
Tick and D’Ambrosio [9]. Figure 1 (right) illustrates a more complex example that helps
motivate the concurrent algorithm. The probability mass at the exit port G is:

P(G) = z P(G | DEF)P(F | BC)P(E | BC)P(D | A)P(C | A)P(B | A)P(A)

AB.F

Unlike the previous example, this net has reconverging edges, e.g., al nodes E, F and
G. This creates a problem in formulating a concurrent algorithm because it is critically
important to join together only those partial minterms that have the same truth value
assignment. |

Initially, the Bayes net is converted into a process network, i.e., a set of “object-
oriented” procedures that actively send and receive messages on their edges. Edges are
unidirectional corresponding to message streams. For example, nodes B and E communi-
cate over a dedicated stream. This stream is merged at £ with a stream originating from
node .

Conceptually a node contains the following static information: the set of probabilities
conditional on its parent nodes. For example, node E contains P(FE | ABC) for all truth
assignments of variables {A, B, C, F}, i.e., 16 values. This is formalized as follows.

Definition: A partial truth assignment is a subset of all variables in the net,
each with an indicated polarity (true or false). For example, a partial truth
assignment for the net in Figure 1 is {a, b,c, &, f,g}. O

160

Definition: A key is a pair of bit vectors (B7®*, B"¥), B{™ = 1 indicates
that variable 1 is true (positive polarity). B* = 1 indicates that variable i is
false (negative polarity). B; = 0 does not indicate anything about the truth
assignment for variable ¢. For example, the key (1110000,0000111) corresponds
to the truth assignment {a,b,c, & f,5}. 0

Definition: The function conv takes a set of truth assignments and returns a

key. The function conv=! takes a l{E}' and returns a set of truth assignments.
Y g
O

Definition: The function cond(Tuede, Tanc), Where Tyoq is a truth assignment
for a node and T,,, is a partial truth assignment of the ancestors of that node,
returns P(Tyode | Tane)- |

The information in cond may be stored within each node, or combined in a global
table. In the implementation, the information is distributed among the nodes. Note that
there is no dynamic state required in a node. However, one might consider the matching
queue associated with each node as holding the dynamic state of that node. The matching
queue is defined in Section 3.1.

2.1 Message Definition

A node sends and receives messages consisting of a tuple < Prob, Key, Priority >. These

are defined as lollows:

e Probis a probability between zero and one. Messages sent to a selected child of
a parent node are assigned Prob based on probabilities from a sei of incoming
messages. Messages sent to all other children are assigned Prob = 1. This effectively
creales a spanning tree, as is discussed in Section 2.4.

e Keyis a partial truth assignment key as previously defined. The keys are used to
match incoming messages in the matching quene. When the keys of an incoming
message and previously enqueued message match, the two messages are combined.
Two keys (Py, Ny) and (P, N;) match iff P A Na= Ny A Py =0, i.e., the keys are
consistent.

o Priorilyis a set of partial minterms whose product, suitably scaled, is a value in the
priority system of the underlying implementation. For example, in the KL1 system
(PDSS) used in the implementation [3], absolute priorities ranging from 0 to 4095
are acceptable. The components of the priority are saved, rather than the priority
value itself, in order to compose priorities. This is discussed later in this sectiomn.

161

Upon receipt of a set of messages (with matching keys) from the matching queues, a
node NV compresses the set into two output messages, corresponding to both polarities of
N. Consider an incoming message set from k parents:

{< Prob;, Key;, Priority, > |1 <i <k}

Consider one of the output messages (say for negative polarity of N): < Prol’, Key', Prior—
ity’ >, computed as follows:

e Key' is computed from the incoming keys and the appropriate assignment of N,
e.g.,

k k
Key = (VP V)
=1 =l

Key' = conv(conv™'(Key)U {N})

* Prob' is the product of the incoming probabilities and the local conditional proba-
bility corresponding to the truth assignment (determined from the incoming keys):

Q@ = cond({N}, conv(Key))
k
Prob' = Q][Prob;
i=1

Again, Prob’ is sent only to one of the children and all others are given Prob’ = 1.

® Priority’ is computed from the set of matching incoming message priorities. The
union of the incoming priority sets is computed and the product of these elements
and the local conditional probability corresponding to the truth assignment is taken:

k
Priovity' = Q [|) Priority;
i=1
When sending a message, each child receives a copy with the same priority. This
allows us to separate dynamically load-balancing from correct computation of prob-

ability masses. The reason for keeping a priority set rather than a priority value is

to prevent “double counting.”

2.2 Example of Message Combination

To illustrate message receipt, consider node F in the previous example. Suppose the
messages it receives from parent node B are:

< P(b| a),(1100000,0000000), { P(a), P(b| a)} >

162

< P(b] a),(1000000,0100000), { P(a), P(b| a)} >
< P(b| a), (0100000, 1000000), { P(a), P(b| &)} >
< P(b] a), (0000000, 1100000), { P(a), P(b | &)} >

The keys have all possible assignments for A and B only. Consider messages from node
C' that are similar:

< P(e| a),(1010000,0000000),{P(a), P(c| a)} >

< P(c| a}, (1000000,0010000), { P(a), P(¢| a)} >

< P(c| a), (0010000, 1000000), { P(a), P(c| a)} >

< P(g| a), (0000000, 1010000), { P(a), P(¢| a)} >

Let’s observe how two of these messages are combined, from B and € respectively:

< P(b| a), (1100000,0000000), { P(a), P(b | a)} >
< P(c/ a), (1010000,0000000), { P(a), P(c | a)} >

The keys match and the messages are combined, producing two new messages emanating
from node F:

< P(f | abe)P(c| a)P(b | a),(1110010,0000000), { P(a), P(b | a), P(c | a), P(f | abe)} >
< P(f | abe)P(c| a)P(b| a),(1110000,0000010), { P(a), P(b | a), P(c | a), P(f | abec)} >

A subtle point is that the message probability is not necessarily equal to the product
of terms in its priority set. In this example, the difference is P(a) which is a value
incorporated in the probability of the right child of node A, not here.

Consider attempting to combine the following two messages from nodes B and C

respeclively:

< P(b |),(0100000, 1000000), { P(a), P(b | a)} >
< P(c | a),(1010000, 0000000), { P(a), Plc | a)} >

They should not be combined because each assumes a truth assignment with opposite
polarity for A. The keys do not match (Po A Ng # 0), so combination is avoided.

163

2.3 Message Spawning and Priorities

The algorithm reduces the computation needed to produce a final probability mass esti-
mate if messages are delivered in a schedule related to their priorities. In languages such
as KL1, procedure invocations can be assigned priorities for scheduling. Although these
priorities are not guaranteed, in a multiprocessor implementation scheduling does follow
priorities as best it can [7]. A key design issue is how to convert a message priority into
a process priority. ' '

One method for doing this conversion is to spawn a send procedure for any message
to be sent by a node. It is this send procedure itself that is given the priority value for
the message, i.e., the product of the terms in the priority set. The send procedure copies
the message to issue down the streams to individual child processes. It ensures that one
and only one child gets the actual probability value and all others get a value of one. The
scheduler sorts send goals by their priorities, effectively suspending low mass messages.
Thus speculative parallelism is throttled in proportion to the progress of the computation.

In the steady state one expects a large number of send goals waiting for their prioritized
turn to be executed. It won’t matter where in the network these messages correspond —
resulting in a balanced execution wherever it is most profitable. This can be subverted
if later nodes (closer to the exit port) turn out to have such low conditional probabilities
that previously assumed high-priority computations turn out to unnecessary. This is the
prevalent danger in any such distributed speculation scheme. It is unprofitable to derive
analytic complexity measures for such nondeterminate algorithms: empirical performance
measurements of its performance is shown in Section 3.

Mapping the partial probabilities onto priorities is more of an art than a science. A
logarithmic mapping was chosen here:

Priority = 4095 — min(4095,5 - log,o(Prob))

where 4095 is the highest priority, S is a suitable scale factor, and 0 < Prob < 1. For
example, if one wishes to break the priority range into five logarithmic decades, choose
5 =4096/5. A problem arises when attempting to choose S to be effective when collecting
low mass, such as 0.7, as well as high mass, such as 0.98. Furthermore, within a given
search, the optimal S changes as the mass collects. Developing a more sophisticated,
dynamic mapping function is a topic of future research.

2.4 Correctness

In this section a correctness proof of the algorithm is sketched. For this purpose one can
safely ignore the priorities and their affect on scheduling because this is orthogonal to
computation of the probability mass. The full evaluation of a Bayes net of n variables

164

consists of computing the sum of 2" minterms, each containing n partial minterms (con-
ditional probabilities). To prove correctness, one must prove that every truth assignment,
1s covered and that within a given minterm, each partial minterm appears once and only
once.

Consider our technique of sending a message from a parent node to its children. One
selected child is sent the “real” probability mass and the others are sent a mass of one.
The effect of receiving a message with mass one is as if the receiving node is a root of the
graph (again, ignoring priorities). Thus the scheme effectively removes all edges but one
between any parent and its children. It is not difficult to see that the resulting graph is
a spanning tree of the original graph, i.e., there is only one path from any node to the
exit node. Thus a spanning tree is guaranteed to have minterms wherein each conditional
probability appears once and only once. ' .

To see that every truth assignment is considered, recall that two messages are sent
from a node N, corresponding to the conditional probability of N given its parent’s truth
assignment, for both polarities of N. Thus by induction on the nodes in the spanning
tree, one can prove that every possible truth assignment is represented in the totality of
messages received at the exit port.

3 Implementation

This section describes the key parts of the implementation: how the matching queue is de-
signed, how messages are copied, how termination works, how priorities are implemented,
and how the process network is specified.

3.1 Matching Queue

The matching queue is a set of queues that accept input messages arriving from the
parents of a given node, and combine messages that have consistent keys. It is required
that one message from each parent be combined before the combination can be processed
and propagated in the network. What makes the matching queue difficult to design is the
capability of quickly matching messages. |

In our prototype there were two competing designs for the matching quene:

¢ Copying Method: streams from all parents of a given node are merged into a single
stream. Messages from that stream traverse the queue, checking if they match
any entry already enqueued. If so, they are combined. If no match is found, a
new entry is created. This scheme implies that every message must be assigned a
unique truth assignment from among the common ancestors of the child node. Thus

165

messages need to be reproduced, at the parent, with alternative keys covering the
truth assignment space. Although this method is conceptually simple, copying can
be exponential in the number of ancestors. Tn practice, such behavior was observed
and so it was abandoned for performance reasons.

¢ Active Queue: Instead of merging all input streams to a given node, each stream

~ leads to its own queue at the child node. A queue manager is responsible for routing
messages through one queue after the other, combining messages once per queue.
The final output stream from this chain of queues holds fully combined messages
ready for processing and propagation to other parts of the network. The key insight
here is that no copying is necessary. In practice this proved to have satisfactory
performance and to be quite elegant to implement in a concurrent language.

An expanded description of the active queue, which was adopted for the prototype, is
now given. Suppose there are k parents of a given node and thus k—1 queues. The parent
with the greatest number of ancestors is called the lead parent or leader. Matching entails
combining k messages: one from the lead parent, and k — 1 from each of the quenes.
Matching does not mean ezact matching (as in the Copying Method above), since keys
in messages other than the lead queue are incomplete. Nonconflicting key matches are
sufficient.

At a given node, the k—1 queues are linked and called followers because they “follow”
the leader. A message that arrives from the leader and is subsequently combined is called
a packet. A packet is passed from one follower to the next, combining it with some message
from each follower. Combining entails key matching, followed by adding information to
the packet; however, the follower message is never removed. Thus followers fill up and
their memory is not reclaimed. If the packet successfully passes through all followers, it
is finally processed by the node itself.

If the packet does not match any message in a follower this indicates that a needed
follower message has not yet arrived, Tt cannot be the case that all the follower’s messages
have arrived but none match. This suggests building active follower queues similar to the
pipeline of prime filters in the Sieve of Erastothenes (e.g., [8]). When a message arrives
at a follower from its parent, it is transformed into a new filter process and added to the
end of the follower’s pipeline.

If a packet fails to match any filter element in a follower, it will naturally suspend at
the end of the follower’s pipelinel A new message sent from this follower’s parent will be
transformed into a new filter process. This will cause resumption of the attempt to match
the packet. Eventually either the match will succeed or the program will terminate.

The beauty of this scheme is that packets that are incompletely matched suspend at
the precise spot where they need more information. Furthermore, such suspended packet

166

spawn{ _, [], 50, 51) :- 51 = 50.

spawn{ Stop, [F | F= 1, S0, 52) :-
follower(Stop, F, 50, 51),
spawn(Stop, Fs, 51, 52).

follower({ _, [, Pin, Pout)} :- Pout = Pin.
follower(Stop, [M | Hs 1, Pin, Pout) :-
M = packet(Key, [Item]) |
filter(Stop, Pin, Key, Item, 5_fail, S_match),
follower{ Stop, Ms, 5_fail, Out),
merge({ S_match, Out }, Pout).

filter({ _, [J, _, _, S_fail, S_match } :-
S_fail = [J, S_match = [1.
filter(Stop, [P | Ps], Key, Item, 5_fail, S_match) :-
P = packet(Key0Q, Hs),
check_keys(Heyd, Key, Status),
gubfilter{ Stop, Status, P, Ps, Key, Item, S_fail, S_match).

subfilter{ stop, _, _, _, -, —, S5_fail, S_match) :-
5_fail = O, S_match = [J].

alternativaly.

subfilter{ Stop, no, P, Ps, Key, Item, S_fail, S_match } :-
$_fail = [P | Rest 1,
filter(Stop, Ps, Hey, Item, Rest, S_match).

subfilter{ Stop, yes, _, Ps, Key, Item, S_fail, S_match) :-
combine(P, Key, Item, NewP),
S_match = [WewP | Rest],
S_fail = [P | Rest0],
filter(Stop, Ps, Key, Item, RestD, Reat).

Figure 2: Active Queue in KL1 (Simplified for Tllustration)

will not delay subsequent packets that can match.

A sketch of the active queue code, written in KLL, is shown in Figure 2. Procedure
spawn creates a group ol follower processes that send packets through a chained stream
(variables 50, S1, 82). Each follower is issued an input stream F where it receives messages
from its parent. All procedures share a common first argument: the global termination
signal (see Section 3.2).

Process follower(Stop, My, Fin, Pewe) has an input stream M, of arriving messages
from a non-lead parent. Inpul stream Fj, has packets arriving from previous followers in
the chain (or from the leader to the first follower). P,.; is an outpui siream of packets to
the next follower in the chain {or from the last follower to the receiving node). For each
arriving message, follower spawns a filter process that will filter packets going through
the chain.

Procedure filter checks if the packet’s key matches the filier's key and acts on the

167

lead -=-=-+ Hmm— e +
parent I | |
v I v
S + | b
| Hil-->0 | M4 |-—>0-->
I [(I
e + | + |
| i I I
| | I |
v | v |
et + | pmm——— + |
| W2 |-=>0 | M5 |-->0
| [(I
d—mm——t | dme—ee + |
l | I
i | I
v |
= + |
| M2 |-->0
I (I
== + i
I

Figure 3: Illustration of Active Queue

status of this check. If match fails then the original packet sent to the next filter (clause
2 of subfiller). This recursive call will suspend if there is no mrrespdnding filter spawned
yet: the filter will be spawned because all packets must either match eventually or be
discarded during termination. If the match succeeds then the filter’s message is combined
with the packet and the combined packet is sent to the next follower (clause 3 subfilter).
Critically, the original packet is also sent to the next filter within the current follower
to ensure that all possible keys are matched. This “cascading” technique produces an
exponential number of combinations if needed.
An example of an active queue process network is illustrated in Figure 3. An initial
packet streamn from the lead parent enters a chain of three filters comprising the first
follower. These filters contain messages M1, M2, and M3. The outputs of these filters are
merged into a siream feeding the second follower. Builtin mergers are denoted by “0".
The second follower is composed of two filters holding M4 and M5. Note that the follower
process corresponding to each follower is actually suspended, waiting for more messages
to arrive so that il can extend its filter chain. Any incomplete packets that require
such a message will suspend on a call to the follower process. Thus incomplete packets
are tucked out of the way of subsequent packets that can be completed. Furthermore,
incomplete packets are antomatically resumed once new filtering information is received
at the required follower. Note the dangling stream pointers to the last builtin merger of
each follower: this is perfectly acceptable and will not prevent messages from five joint

168

streams [rom proceeding,.

The matching queue processes are given the same system priority as the node processes
(see Section 3.3). However, among the node and queune processes that might be available
for scheduling at any time, ideally those processes corresponding to the exit node should
have highest priority. This will facilitate eager termination, as is discussed in the next
section. For other details of the queue construction, see the Appendix for the actual

source code.

3.2 Termination

The exit node of the network plays a special role for termination. Messages combined
at the exit queue have their probability masses accumulated. When the accumulated
value reaches a certain threshold, a global termination signal will be set. Each process
in the network kills itself when this signal is set. It is eritical to performance that the
global signal be applied to all frequently executed process goals, particularly send goals
and matching queue goals. Without such termination, un neceﬂsa.f}r messages will con-
tinue to be generated, and previously enqueued messages will continue to be processed,
significantly increasing the time to termination.
Refering back to Figure 2, one can see how termination is performed once the stop
“signal is set. The first clause of subfilter is devoted to early termination. If the global signal
is bound to the atom stop, subjfilter terminates itself after closing its output streams. Even
if the subfilter task was originally suspended, it will be resumed and then terminated. The
KL1 control construct alternatively gnarantees that the first clause is attempted first
during every invocation (without such a gnarantee, the first clanse might never be tried
at all). It is possible to add early termination clauses to filter and follower; however, since
these procedure invoke subfilter, not much would be gained.

Note that termination by the technique of “short (:ircuitingh messages (e.g., [8]) is not

needed because the termination condition is determined at a central location.

3.3 Prototype

The proposed algorithm was implemented in KL1 and executed on the PDSS pseudo-
parallel runtime systern [3]. The KL1 program consists of 785 source lines of code (in-
cluding comments), not including the data description of the network. The most inter-
esting part of the program is the definition of send for dispatching the messages. A node
process invokes send as follows: send(...,0uts,...)@priority(*,Rate) where Outs
is a list of output streams to child nodes, and Rate i1s the KL1 priority value computed
{rom the priority set in the algorithm. The notation above indicates that send is assigned

169

an absolute priority of Rate, which ranges from 0} to 4095. The other arguments indicate
the messages to be sent. Children of send, which recurse on the ODut list while doing
the sending, inherit the Rate priority. Interesting, the node procedures retain their high
default priority. A node process will nominally be suspended waiting for a message to ap-
pear from its message queues. Thus prioritized senders/producers control non-prioritized
receivers/consumers by feeding or starving them of data.

4 Performance Evaluation

To introduce the evaluation methodology, consider the net shown in Figure 1. The per-
formance of this net is labeled “gﬁcampl_e 1" in Table 1. Computing P(g)+ P(§), 0.7 mass
is collected at node & in the first 12 complete minterms, generating a total of 50 partial
minterms. Considering that to compute the full 1.0 mass, there are 27 = 128 minterms
exiting node G and 186 partial minterms generated in the net, the algorithm appears to
be pulyﬁnmial if not linear.

The other benchmarks in Table 1 have similar attributes. The table lists the bench-
marks and their search performance for different captured masses. Each time (in msec) is
the lowest observed execution time. This time includes both building-and searching the
net. The empty table entries indicate that the program exceeded its memory limitation
and therefore did not terminate. |

The execution complexity is highly variant on the net topology and its conditional
probabilities. Thus it is difficult to discern a clear pattern among these benchmarks.
However, it is clear that to collect 70% mass, the complexity is not growing exponentially
with net size. The number of messages sent is a more [air indicator of complexity than
time because the latter includes the complexity effects of accessing several data structures.

Additional experimentation was performed concerning setting a threshold to reduce
message traffic. If a the mass of a partial minterm is less than the threshold, its message
is discarded. This reduces network traffic that does not add to the solution. As the
threshold is increased, the traffic decreases, until so many messages are discarded that
the desired total mass cannot be collected at the exit node. This is illustrated for nets
4 & 5 in Figures 4 and 5 respectively. These programs were measured for PDSS on a
Sparc-10. Notice the time reduction for greater thresholds, especially for large masses
and complex networks.

The current prototype breaks down for large nets when collecting high mass because
of the nature of the data structures used. For example, the priority sets are implemented
as ordered lists, over which set union is frequently performed. The logarithm function for
the priority mapping is done by a simplified table lookup because floating point operations

170

IMGeCs

35000 —
0000 =
25000
20000
15000
10000

2 extrapolated

-5
log(threshold) -4 0.7
3 :

Figure 4: Threshold vs. Mass vs. Time (Example 4)

MSECS

350000
300000
250000
200000
150000
100000
50000

0.95

[I1ass

-

log{threshold) -4 0.7

Figure 5: Threshold vs. Mass vs. Time (Example 5)

171

mass captured
example | nodes | T0% 80% 920% | 95% 08%
minterms required
1 T 12 16 24 37 49
2 16 J 4 i 4 10
3 16 15 21 28 31 51
4 19 5 9 29 51 126
5 24 12 26 82
messages sent
1 7 50 54 70 85 99
2 16 45 46 46 46 68
3 16 67 76 86 91 160
4 19 51 83 166 219 393
5 24 116 235 343
msec
1 7 340 370 540 640 740
2 16 350 350 340 350 1,860
3 16 510 570 630 670 | 10,520
4 19 || 1,000 | 2,910 | 17,100 | 54,180 | 151,210
5 24 4,960 | 48,510 | 339,670

Table 1: Performance of Benchmark Nets (Sun Sparcstation-1)

are too expensive in PDSS (each operator spawns a process). All the nets use lists to
implement the conditional probability tables. Only the 24-node net exploited vectors
instead of lists for only two (the largest) of the 24 tables. The KL1 prototype is about
as fast as it can be. One might imagine implementing the algorithm in an imperative,
explicitly parallel langnage. However, the advantages of using a concurrent logic language
are that implicit dataflow synchronization of active process networks and prioritized task
scheduling are “free” to the programmer.

4,1 Multiprocessor Considerations

Fuature work entails porting the KL1 program to a multiprocessor implementation, e.g.,
PIM [7] or KLIC [1], to measure speedup. Ordinarily this would require no modification to
the program because parallelismn is implicit in the language. However, in our case, porting
will require simulating global priorities within the PIM (or KLIC) systems, which support

172

only local priority quenes per processor. Preliminary experiments on PIM indicated that
the algorithm is extremely sensitive to priorities, 1.e., if local queues continue goal reduc-
tions without globally synchronizing the priorities, exponential explosion can occur. To
solve this problem, two alternatives are being considered. One is to build a deamon that
artificially synchronizes the local priority queues in a PIM cluster. This deamon must be
scheduled fairly frequently to avoid having any queue “run away.” Another is to build a
meta-interpreter that simulates a global priority queue and then schedules the tasks on
individual processors. K. Kumon has implementied both techniques and we are analyzing
their behaviors.

5 Conclusions

A concurrent algorithm was introduced to evaluate a Bayes network. The key contribution
is to convert the network into a concurrent process network and send partial minterms
as messages. These messages are prioritized as a function of the mass they represent. To
solve the potential problem of “double counting” partial minterms, the message priorities
and masses are decoupled in a novel fashion. Furthermore an interesting “active queue”
was developed to allow efficient combining of prioritized messages.

A sketch of a correctness proof for the algorithm was given, as well as a real imple-
mentation in KL1. The KL1 implementation, running under PDSS, a sequential emulator
on a Sun Sparcstation, demonstrated the ability of the concurrent algorithm to achieve
what appears to be polynomial reduction in work.

Future work involves further optimizations such as better priority assignment, as well

as exploring multiprocessor implementations of global priority.

6 Acknowledgements

The anthor was supported by a grant from the Institute of New (Generation Computer
Technology (ICOT), and an NSF Presidential Young Investigator award, with matching
funds from Sequent Computer Systems Inc. T thank K. Kumon [or interesting discussions
about this research.

References

1 . UChikayama., ortable an clent Implementation o A In fnfernational Syim-

T. Chikay A Portable and Efficient Impl ionof KL1. In [tional S
posium on Programming Language Implementation and Logic Programming, Madrid,
September 1994,

173

[2] B. I’Ambrosio. Incremental Probabilistic Inference. In D. Heckerman and A. Mam-
dani, editors, Conference on Uncertainty in Artifical Intelligence, pages 301-308. Mor-
gan Kaufmann Publishers Inc., July 1993.

[3] ICOT. PDSS Manual (Version 2.52¢). 21F Mita Kokusai Bldg, 1-4-28 Mita, Minato-
ku Tokyo 108, Japan, February 1989.

[4] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers
Inc., Palo Alto, 1984.

[5] B. Poole. The Use of Conflicts in Searching Bayesian Networks. In Conference on
Uncertainty in Artifical Intelligence, pages 359-367, July 1993.

[6] E. Y. Shapiro. The Family of Concurrent Logic Programming Languages. ACM
Computing Surveys, 21(3):413-510, 1989,

[7] K. Taki. Parallel Inference Machine PIM. In International Conference on Fifth Gen-
eration Computer Systems, pages 50-72, Tokyo, June 1992, ICOT.

[E.] E. Tick. Parallel Logic Programming. MIT Press, Cambridge MA., 1991.

[9] E. Tick and B. D'Ambrosio. Evaluating Bayes Nets with Concurrent Process Networks.
Technical Report CIS-TR-94-15a, Dept. of Computer Science, University of Oregon,
Eugene, OR 97403, September 1994.

174

