Automatic Transformation of Deterministic Prolog Programs
to KL1

Konstantinos Varsamos

Department of Computer Science
University of Bristol

Bristol BS8 1TR, UK.
E-mail: varsamos@acre,bristol.ac.uk

Abstract

Concurrent logic programming languages such as KL, using shared vardables as communication
channels, set up networks of communicating processes. In this way they impose directionality on the
programs that they execute, assuming that specific arguments of predicates are input and the rest are
output. So, to set up such networks, the Input /Output modes of the arguments of each predicate have
to be already known (which process connected to a channel is its producer and which are CONSUMErs).

This paper describes a system for transforming deterministic Prolog programs to KL1, based on
an effective method for mode inference.

1 Introduection

In previous years, some work [12],[13],[11] has been done on compiling Horn-clause programs (eg. Prolog
programs) for all-solutiens search into committed choice concurrent logic programs (eg. KL1[15] pro-
grams). The aim of this work was to automatically generate a program which returns the same set
of solutions as a Horn-clanse program intended for exhaustive search by means of backtracking or OR-
parallelism. .

In this paper, we describe a system for transforming deterministic Prolog programs to KKL1., We focus
mare on the mode analysis of the given Prolog program and we also consider a gnard analysis. Our work on
mode inference is based on the ideas presented by Debray[5], but with some important innovations that we
discuss. An implementation of this system has been used for the preprocessor of the CHUEKL(Constraint
Handling Under K1.1) system[17] developed in the Computer Science Department of University of Bristol.
The results obtained from this implementation show the effectiveness of the method used, when it is
applied to a certain class of Prolog programs,

In [12],[13] the mode inference that is described by Ueda can be applied only to a restricted class
of Prolog programs, since every predicate should always be called with ground inputs and return with
ground outputs (or stream-inputs/outputs in [13]). Ueda also presented a different approach for mode
inference in [14] based on mode constraints imposed by individual program clauses. We believe that for
the purposes of our system global dataflow analysis is more appropriate.

Our system can easily be modified to transform deterministic Prolog programs to programs of other
committed choice languages, such as Parlog[3].

1.1 Outline of the System
To transform a deterministic Prolog Program to a KL1 program, the following steps are necessary:
L. Work out the Input/Output mode for each predicate in the Prolog Program.

2. Replace the cut operators " by the commit operator ‘|, and add the commit operator and any
guards wherever else it is necessary.

3. Move the output unifications in the head of each clanse to the body of the clause.

The system presented in this paper, given a deterministic Prolog program together with the modes of
the arguments of those predicates that may be called by the user, infers the instantiation of the arguments
of all predicates when they are called and when they succeed, uses these inferences to work out the
Input/Output modes of all predicates, and continues with the remaining transformation steps.

142

1.2 Overview of the Paper

The remainder of the paper is organized as follows: Section 2 presents a method for mode inference, based
on an algorithm given by Debray in [5], but with some improvements in the abstract representations and
functions used for the simulation of unification in the set of modes, which make the method more powerful.
In Section 3 is described the inference of the Input/Output modes for each predicate of the given program
and in Section 4 the two transformation steps for the transformation of a deterministic Prolog program to
KL1: replacement of the cut operator by the commit operator and addition of guards where it is necessary,
and shift of the output unification to the body of the clause. Section 5 gives some results obtained by the
current implementation of the system, and finally in Section 6 conclusions and future work end the paper.

2 Mode Inference in Prolog Programs

In general Prolog programs are undirectional. An argument of a procedure can be used for input or cutput
purposes, or for both. However, typically mest of the predicates in a particular program are executed in
one direction only, that is, they are always called with a particular set of their arguments instantiated
(the "input” arguments) and another set uninstantiated (the “output” arguments).

Information about predicate modes finds many uses in the static optimization of logic programs. It
can be used to make unification more efficient. Mode information is important in the transformation of
logic programs into committed-choice languages or functional languages. It can also be used to detect
deterministic and functional computations and reduce the program’s search effort.

Edinburgh Prolog allows the user to specify the mode of an argument as either bound (*+'), unbound
(="} or unknown {'?"} [16]. Another solution is to have a system deduce the modes from the program.

Previous work on mode inference, besides that mentioned in the introduction, was done by Mellish
[71.[8].[9] who used dependencies between variables to propagate information regarding their instantiation.
However, in this approach aliasing effects resulting from unification were not taken into account and built-
in predicates such as *="/2 could not be handled very precisely. Reddy proposed a different approach to
mode inference, in connection with work on transforming logic programs inte functional languages [10],
but which applied only to a restricted class of logic programs. Bruynooghe et al. [1],[2] did mode inference
as an abstract interpretation problem akin to type inference. Mannilla and Ukkonen [6] used a simple
mode set that is essentially the same as Reddy's, and focused on the algorithmic aspects of the analysis.
Debray and Warren [4] described an approach to mode inference based on global flow analysis, related
to [1},[2] and [6]. Finally, Debray (5], improving the work that was done in [4], used a set of modes that
is more detailed than any other previously used and propagated instantiation information using state
tramsformations rather than through dependencies between variables,

The analysis procedure presented in [5] is based on the principles of abstract interpretation. Some of
the abstract representations that Debray used there, together with the way he handled the dependency
sets of the variables in unification in the “abstract domain™ in some cases, tended to be very conservative
and so his algorithm did not always give the expected results. A more precise treatment is presented here.
Technical terms and notations used in this section mostly follow those that Debray used in [5].

The remainder of the section assumes that the predicates in the Prolog program that is to be analyzed
are static. Thus, the use of built-in predicates such as assert or retractl is precluded.

2.1 Modes and Instantiation of Sets of Terms

The mode of a predicate in a program indicates how its arguments will be instantiated. For this reason
we classify the terms occurring in a program into classes with regard to how they are instantiated and we
consider modes over the domain of these classes A={e,d,e finv}, where ¢ denotes the set of closed (i.e.
ground) terms, d (“don't-know"™) the set of all terms, e the empty set, f the set of free variables and nv
the set of nonvariable terms®.

The set & forms a complete lattice under inclusion:

1Dy ring abstract unification we will alss use two other notations 4y and ney to specify subsets of d and nv respectively,
for which we have more specific information aboie their dependencies.

143

ny

€
The join operation for the ordering induced by inclusion on A is denoted by L.

Definition: The instantiation +{ T) of a set of terms T'is given by «(T) = n{f € A | T < é}

Thus, a set of terms that contains ground and nenvariable terms only will have instantiation nv {this
is the element of A that best “describes” it) while a set of terms containing only ground terms will have
instantiation c.

We now give the definition of unification over sets of terms, denated by s.unify:

Definition: Given two sets of terms Ty and T3, s_unify{T;,Tz) is the least set of terms T such that,
for each pair of unifiable terms t; € Th, ¢z € T> with most general unifier 8, #(t,) is in T.

If the result of the unification of two terms & and ¢ is the term fz, then f2 is more instantiated than
t1. We can extend this conclusion to sets of terms and we can define an instantiation order < over sets of
terms as follows:

Definition: Given two sets of terms Ty and T3, Ty 9 T3 if and only if s_unify(T}, T2) = Ta.

It can be easily proved [5] that < is a partial order over A:
fdddnvdede,
The join operation for this order is denoted by V.

2.2 Abstract Representations
2.2.1 Instantiation States

During static analysis at each point in the program, we have to maintain information about variable
bindings. In a call to a predicate such information can be propagated across each clause for that predicate
to obtain information about variable bindings, when it returns. Thus, the behavior of a program can be
summarized by specifying, at each point of the program, a description of the terms that each variable in
a clause can be instantiated to at that point, together with the set of variables it can depend on (possible
aliasing and sharing information between variables at that point). Such abstract representations are called
instantiation states (or i-stales). To describe the set of terms that a variable in a clause can be instantiated
to at any point in a program because such sets of terms can be arbitrarily large, we use elements of the
mode set. In this way, we have finitely computable approximations to them suitable for purposes of static
analysis.

When a clause is selected for resolution against a geal, its variables are renamed so that it is variable-
disjoint with the goal. A use of a clause C in a computation where the variables of C have been renamed
via a renaming substitution ¢ is referred to as o-activation of C. The finite set of all variable names
appearing in a clause C' (referred as program variables of C) is written V.. For any term ¢, vars(t) is the
set of variables occurring in ¢. Then we have the following definition:

Definition: An instantiation state A; at a point in a clause ¢ is a mapping
A V. 5 A xaVe
satisfying the following: if for any variable x in Vi, A.(z) = (§,V), then for any o-activation of C in the
computation,

l44

(i) if () can be instantiated to a term ¢ at that point, then t € §; and

(ii) if for any variable y in V;, o(y) can be instantiated to a term 1’ at that point such that vars(t) N
vars(t') £ 0, then y € V.

We can extend the notion of i-states to nonvariable terms, as well. Given an t-state A® and a
nonvariable term £ : 5 '

s if ¢ is a constant, then A(t) = (e,0) ; else

s if ¢ is a compound term f(t;,...,ts) and A(t) = (&, D:), 1 £ i < n, then A(t) = {8, D), where
& =cif §; =¢, 1 < i < n, and nv otherwise; and D=|J"_, D

=]

Given a t-state A. and for any variable v € V¢, if A.(v) = {4, V) then § iz the instantiationof v in A,
written inst(A.(v)) and V is its dependency set, written deps(A.(v)).

Example: Consider the program

p(X) == a(X,Y),r(Y).

Let the variable X be uninstantiated at a call of p and A be the -state at the program point between
the literals ¢ and r. Then A(X) = (f, {X,Y}) and A(Y) = (f,{X,Y}}, indicating that X and ¥ are still
uninstantiated at that point and may share a variable.)

2.2.2 Instantiation Patterns

To reason about how a predicate may be called or what will return after a call, it is necessary to pass
information between clauses (from the caller to the callee at the time of a call and from the callee to
the caller at the time of a return). Since instantiation states describe the bindings of different variables
in a clause and because clauses have their variables renamed befere they are used in resolution, a dif-
ferent representation has to be used to represent calls and returns. Such a representation has to specily
the instantiation of each argument when a predicate is called or a call returns, and also any sharing of
variables between the arguments of the predicate. So we use inslantialion palterns or -patterns. An
instantiation patlern for a tuple of terms deseribes the hindings of different elements in the tuple and
possible dependencies between them, but without any reference to variable names. We use a different
definition for ¢-patterns than that given in Debray [5]. We distinguish cases where the instantiation of an
argument is ground, since it cannot share variables with any other argument of the predicate and we also
distinguish those terms where there is a variable appearing more than once, from the rest of the terms, so
that we can obtain more precise information about their dependencies after unification. Thus, we define
t-pitttern as follows:

Definition: Given an t-state A and an n-tuple of terms £ = (h,...,tn), let A(L) = (6, V) for
1 <1¢ < n. Then the instantiation pattern of f induced by A is
i_pﬂ!‘{t_, A] L) {{J],S| }r' vy {Jﬂr Sﬂ”r

where
e 5 =0,1fdi=c;or
o Si={k|VinV, £ 0,k#{}, if § # ¢ and there is no variable appearing in #; more than once; or
o 5 ={k|Vin¥e s 0}, if & # ¢ and there is a variable appearing in {; more than once.

The kth element (dx, Sx) of an t-pattern I = {{(§1,51), ..., {8n, Sa)) is dencted by J[k]. Given a tuple of
terms [= (t1,...,8n} in an e-state A, if [is the i-pattern i_pat(E, A), then for L < i < n, the instantiation
of the kth element (written inst(I[k])) is &, while the share set of ITk] (written share(I[k])) which gives
the indices of the elements in I that ¢ shares variable with, is the set 5.

Example: Consider a call p(f{ X, X),g(a), R(X,¥), Z) in an -state A :
A={X 2 {{{X}), Y = {§{V,Z2}}, Z = { ov,{Y, Z})}.

? Because V; is fied ance C has been specified, when there 15 no scope for confusion we ean drop the subscript © from
the name of the i-stale.

145

“T'his call is represented by the t-pattern
epat({f(X, X),g(a), M(X,Y), 2}, A) = ({nv,{1,3}),(c, D), (nv,{1,4}}, (nv, {3}}).

This indicates that the first argument of the call is a nonvariable term that shares a variable with the
third argument and there is a variable that occurs more than once in this term; the second argument is a
ground term; the third argument is a nonvariable term that shares variables with the first and the fourth
argument; and the fourth argument is a nonvariable term that shares a variable with the third argument.

The w-pattern of a call to a predicate is referred to as a calling pattern, while the ¢-pattern of a return
from a call is referred to as the success pattern for that call.

Finally, instantialion patlerns of length n (for any n) can be ordered element-wise by inclusion in a
straightforward manner. The least upper bound of two t-patterns is then

({811, S}y - - - (G1m, Saa)Y U ({821, 21), -, (B2m, 82a)) = ({(51aUd2, S USn), ..., (§1nUdzn, S1n L) S2a)).

2.3 Abstract Unification

At the time of a call to a predicate the arguments of the call are unified with those in the head of a clause
for that predicate, and at the time of a return from a call they are “back-unified” to propagate the effects
of the return to the caller.

To simulate unification over i-states we have to consider the instantiation “inherited” by a variable #
occurring in a term during unification. For this reason, we define the function inherited_inst:

Definition: Let t; be a term in an t-state A, with inst{A(t)) = &, and let = be a variable occurring
in ¢;. The instantiation inherited by & when ¢, is unified with a term whose instantiation is & is given by

inherited_inst{A, z, 6, 8) =
if z =&, then §; else if &; = then insi(A(x)); else sub_inst{4);

where § = §, V2.

The function sub.inst describes the instantiation of the set of all proper subterms of all the elements
of a set of terms, and is given by the following table:

§ | subsnst(d) |

d
nvy
[

A BN Esl I =0 =N

Example: Let X be a free variable in a t-state A and a term f{X) being unified with a ground
term. The instantiation of X after the unification is inherited_inst(A4, X, f(X),c) = subinst{nvVe) =
sub_inst(c) =c”,

The function inherited_inst gives the instantiation of the resulting term after unification ignoring any
aliasing effects. Of course, any dependencies between variables must also be taken into account.

During analysis, only one of the two tuples of terms that are to be unified is known. The other one
is represented by an i-patiern. So, we need a function which will indicate for every variable appearing in
the kmown tuple, the dependencies induced by the tuple represented by the i-pattern, after unification.
Let £ = (t,...,ta}), and for any any variable v, let oce(v,f) = {7 | v € vars(t;)} be the indices of the
elements of fin which v oceurs. Then, we define the function inherited_dep :

Definition: Consider an n-tuple of terms £ = (t1,...,tn), an t-pattern I of length n and a variable
z € U(vars(t;}), 1 <i < n. The indices of the elements £; that + may depend on any variable in vars(t;),
taking into account only any sharing of variables in the tuple of terms represented by I, are given by

inherited dep(z, [, I) = {j | k € occ(z,£), § € share(ITk])}.

Debray [5] uses a function called c_closure to indicate sharing of variables after unification. By using
this function he does not take advantage of the informaticn that we have about the occurrences of vari-
ables in the known tuple of terms. By considering the instantiation patterns for both terms, his treatment

3This is sound in the sense that, if the unification were to fail, the resulting instantiation of X would be e, which is
contained in ¢

146

becomes conservative and general at this point. By using the function inherited_dep, we exploit any
information that we have about the two tuples of terms that unify.

Example: Let X, Y, Z, UV be free variables not aliased to any other variable and consider the
unification of the tuple of terms fi = (X, f(Y),Y,Z) with the tuple & = (U, f(I"),V, V) represented
during static analysis by the e-pattern [z = ({f, {2}), (nv, {1}}, (f; {4}), (f, {3})}). Then, oce(Y,) = {2,3}
and inherited dep(Y, [1,) = {1, 4}, indicating that after unification, because of sharing of variables in
fa, ¥ may depend on any variable appearing in the first and fourth argument.

2.3.1 The Basic Functions of Abstract Unification

Now we are in a pesition to describe abstrael wnification. We decompose it inta the following three
functions:

o init.unify derives any changes in variable instantiations or their dependency sets resulting from
unification, taking inte account any sharing of variables in the tuple presented by the e-patiern;

s propagaie_inst propagates these changes to instantiations of variables by taking into account depen-
dencies between variables;

¢ normalize “cleans up” the dependency sets of variables using information about variable groundness
and returns the resulting «-state after unification.

The function init_uni fy: The function init_unify returns a pair consisting of an t-sfate and a set of
program variables. The c-state reflects the effects of unification on variables in a clause, considering the
instantiations inherited from each position in which a variable occurs in the lmown tuple of terms and
propagating any sharing information given by the tuple represented by the t-pattern.The dependency set
of a variable whose instantiation in this stage does not become ground is obtained by taking the union
of its previous dependency set with the union of the dependency sets of all the elemenents of the known
tuple that their indices are returned by inherited_dep. The set of variables returned by initunify consists
of those variables whese instantiations or dependency sets changed in this step.

If a term ty; from the known tuple £ is unified with the term ts; from the unkewn tuple £, where
fb2i = r and = is a free variable, and = also appears in term ta; (f 3 ¢) in £ where £, is unified with the
ground term &;; from £, then &; becomes ground after unification.

If & term &1 from the known tuple £ is unified with the term 3¢ from the unknown tuple £, where
tz; = x and z is a free variable, and there is also a term ly; = z (j # i) in > where t3; is unified with the
nonvariable term t;; from £, then tz; becomes a nonvariable term after unification and depends totally
on every variable appearing in &,. If every variable appearing in £;; becomes ground later then by will
become ground as well.

The function #nil_unify to handle precisely such cases as the above and to be able to take advantage
of the specific information about instantiation and dependencies that can be obtained from sharing of
variables in the term represented by the w-pattern, for some terms, has to distinguish these terms from
the rest of the terms of the same instantiation. For this reason, during abstract unification such terms
are denocted by (in); where (in) is their instantiation, (n) € {nv,d} and we use the function. init_unify
instead of a_unifynit that Debray uses in [5]. The join operation for the partial order < which also
handles (in)y is written V; and is defined as V including also the cases:

[8 | d2 | Vy{d1,d2) |

iy f nvf
nup | d nv
nvs | nv nv
nvp | ¢ ¢
nvy | e [
nvy | vy nwy
nvy | dy nuy
dy f . e
dy d d
dy | nv nv
cy o c
dy e e
dy dy dy

Thus, if the instantiation of any one of two terms is free, then the instantiation resulting from their
Jjoin operation is free, as well. If the instantiation of any one of two terms is ground or “empty”, then the
instantiation resulting from their join operation is ground or “empty”, respectively. If the instantiation
of hoth terms are in {nvyds} then we can still have specific information about the instantiation and
dependencies of variables after unification and so the resulting instantiation of the join operation of the
two terms is in {nvy,d;}. Otherwise, the resulting instantiation is the corresponding instantiation from
AL

MNow, we can define init_unify as follows:

Definition: Consider an s-state Ay for a clavse C, an n-tuple of terms I = {H,... En) and an o-
pattern I = {{§;,51),...,{(8n,8.)). Then, initunify(do,[,T) = (4, V1), where 4, is an t-slate for C
and Vi C V., is defined as follows:

for any variable v in V7,

— if oec{v,F) % 0, then A (v} = {8, D), where
+ if V{inherited.inst(Ao, v, t;,8;) | 1 € oce(v,I)} =c then § =c and D =; else
+ if there is a k € occ{v, £} such that inst(ITk]) =f and for any
J € share(I[k]), Aa(t;) = (¢, 0} then § =c and D = 0; else
* § = V{mi | i € occ(v,i)}, where
« if inst(I[i]) =f, j € share(I[i]), inst(I[5]) =Ff and inst(As(t;)) =nv then
m; = (inherited_inst{ Ao, v, ti,nv)) s; else
- my; = inherited_inst(Ag, v, ;, 8:)),
- and D = deps(Ao(v)) U (U{deps{Ao(L;)) | 5 € inherited_dep(v, I, I'}});
— if occ(v, 1) =9, then A:(v) = Ao{v);

o Vi={veVe|Ao(v) # A(v)}

Example 1: Given an i-state Ag = {X = (f,{X}), ¥ = (£, {Y}}, consider the unification of the
tuple of terms f; = (X, Y, f(V), f(a)) with the tuple (I, U, V, V) represented in static analysis by the
sepattern T = ({£, {2}),(F, {1}), (& {43, (£, {3})).

Then, init_unify(As,E,I) = (41,1}, where A; = {X = (£,{X,Y}), ¥ = (¢,0)} and Vi = {X, ¥},
indicating that the instantiation of ¥ becomes ground after unification and X is a free variable that may
depend on Y.

Example 2: Given an w-state Ao = {X = (£,{X}),¥ = (£ {Y}),Z = {,{Z}}}, consider the
unification of the tuple of terms £ = (f(Y, Z), X, Z) with the tuple {U, I/, a} represented in static analysis
by the i-pattern I = ({f,{2}), (£, {1}), (c, 0)).

Then, initunify(Ao,I, I} = (41, W), where 4, = {X = (nvy,{X,¥,Z}), ¥ = {£,{Y. X}), Z =
{e,8)} and Vi = {X,¥, &}, indicating that after unification X becomes a nonvariable term depending
totally on ¥V and £, ¥ remains unbound but may depend on X and Z becomes a ground term.

The function propagateinat: The next step is to propagate these changes derived by init_unify to
instantiations of variables by taking into account dependencies between variables. This is done by the
function propagate_inst.

To infer the instantiation of a variable z after unification, we have to know the instantiation of every
variable that depends on. In the same way to infer the instantiations of the variables that z depends on,
we have to know the instantiation of every variable that they depend on, and so on. ‘Thus, the function
propagate_inat has to be defined recursively, in order to propagate any change in the instantiation of a
variable to the variables that it depend on, until a fixed point has been reached (i.e. there are no other
changes to propagate).

Suppose the it-sfate obtained by unify_init is A, the set of variables inferred to be affected by unifi-
cation is V" and consider a variable with A{x) = (4, D'). If D' = {z}, then the new instantiation of r is
d' = § otherwise D = D' — {2} and there are the following possibilities:

1. If § =e, then execution cannot reach that point, so §' must also be e.
2, If § =f, then

o if all variables in VNI are still uninstantiated after init_unify, or if those that are instantiated
have instantiation nvy or dy, then the instantiation of x is unaflected by the unification and
§ =f

148

o if there is at least one variable in V' N D whose instantiation changes to ¢ after unification and
there is no variable in V' N D that has instantiation nv or d, then §' =c;

o otherwise, some variable that » depends on has become instantiated bui we are niot able to
infer precisely the new instantiation of x, so &' =d.

3. If § =c, then r is a ground term and cannot be affected by aliasing effects, so §' =c;
4. If § =nv, then we are not able to infer with greater precision the instantiation of r and, so §' =nv.
3. If § =nuy, then

o if every variable in V M D iz ground after unification, then becomes ground as well, so §' =¢;

o otherwise, » remains a nonvariable term, &' =nwvy.
6. If § =d, then we are not able to infer precisely the instantiation of » and, so §' =d.
7. If § =dy, then

 if every variable in V' N D is ground after unification, then r becomes ground as well, so §' =c;
» otherwise, we are not able to infer precisely the instantiation of = and, so &' =dj.

Now, it can be more obvious why the notations nvy and dj are used. When the instantiation of a term
iz nv or d nothing more about its instantiation can be inferred using dependency information, while for
any term that has instantiation nuvy or dy any infermatien about variable groundness in ils dependency
sct can be used to have a more precise inference,

Based on the above case analysis, the function propagate.inst, taking advantage of the use of the
notations nvy and dy, can be recursively defined as follows:

Definition: Let Ag be an i-state defined on a set of program variables V. and V € V. Then
propagate_inst{{Ag, V}) = A is an t-stale defined on V. as follows:

¢ for every = € V., if Ag(z) = (4, D'} and D' = {z}, then Ai{z) = Ag(x); else D = D' — {z} and

- if § =f and there is a variable y in V' D such that inst{ Ag(y)) = &, where & € {nv,d}, then
Az} ={d, D'
— if § =f, there is a variable y in V' N D such that inst(As(y)) =c and for every other variable
z€VND, z#y, inst(An(z)) = &1, where §; € {fic,nvy,d;}, then A;(x) = (e, 0);
— if d =nvy and every variable y in V N D has inst(As(y)) =c, then 4,(z) = {c,®);
— if § =d; and every variable y in V' 1 D has inst(Ao (y)) =c, then Ay () = (e, 0);
- otherwise, A,(z) = Ag(x);

s if Ap = Ay, then A = Ag else propagate_inst({A:,V)) = A.

Example 1: Consider the previous example 1. Since, after init_uni fy X may only depend on Y and
the instantiation of ¥ has become ground, the instantiation of X must become ground as well. This is
what propagate_tnst infers:
propagateinst({({X = (£,{X, Y]}, V = (e, 0)}. {X. Y})) = {X = (c,0), ¥ = (c,0)}.

Example 2: For the previous example 2, propagate_inst does not have any effect on the resulting
t-state. propagate_inst{{Ay, V1)) = A, where
A ={X = {nu, {X\Y, Z}), ¥ = (f{V, X}, Z = (c,0)}.

The function normalize: The final step is to “clean up” the dependency sets of variables and return
the resulting :-state after unification. If a variable = has instantiation ¢, then r can be deleted from the
dependency set of any other variable. Also, there is no need to keep the notations nvy and d, since
any particular information about the instantiations of variables has been considered. Thus, nvy and dy
can be replaced by nv and d respectively. For these purposes the function normalize is defined as follows®:

Definition: Let Ay be an i-state defined on a set of variables V. and let ground(4s) = {v € V. |
inst{A(v)} =c}. Then normalize(A) is an i-state 4,, with domain V;, defined as follows: for each = € V;,
if Ao(z) = (5, D), then '

The dependency set of the variables whase instantiatian is ground was set to B right efter the instantiation of the
variable had been inferred, and so there is no need for normalize to consider that as in [5].

149

o inat{A;(z)) = &', where

if § € {f,d,nv,c.e} then § = §; else
- if § =nvy then §' =nv; else
~ if § =dy then §' =d; and

o deps(Ay(x)) = I, where D' = D) = ground(o).

Examples: For the previous example 1, normalize does not have any effect on the resulting c-state.
For the second example, since inst{A;(£)) =c, £ can be deleted from the dependency set of X. Also,
the instantiation of X can be denoted by nv:
normalize({X = (nug, {X, Y, 2}, Y = (£ {Y, X}), & = {c,0)}) = {X = (nv, {X,Y]}), Y = (£ {YV. X}),
Z = {c, M)}

The main function updatei_state: We can now define a function update_s_stale that simulates unifi-
cation in the “abstract domain™:

Definition: If Ag is an i-state defined on a set of variables V;, T iz an n-tuple of terms all of whose
variables are in V,, and [ia an t-pattern of length n, then update_i_state(Ao, [, I) is an t-state defined on
Ve by:

update_i_state(Ao, |, I) = normalize(propagate_inst(init unify(Aq, £, I))).

Thus, for the previons two examp]e-s the resulting i-states after unification are:
update_i_state({X — (£, {X}}, ¥ = (£ {Y})}, (X, Y, F(Y}, £(a)), (£ {21), 4, {1]), E. {43}, (£, (31)))
={X = {(c,0), ¥V = (¢,0)}, an
update_i_state({X — (f, {X}), ¥V = (£, {Y}}, Z = (£{Z})}, (f(Y, 2). X, Z), ({£.{2}), (f. {1}). (e, 0)))
={X = {nv,{X, Y, ¥ = (f{Y, X}, Z = {c,0}}.

Debray in [3] cannot obtain such precise results.

2.4 Propagation of Flow Information

For the analysis, the user has to specify which predicates may be called from the outside and for each such
exported predicate, instantiation patterns that describe how it may be called. Thus, the module being
analyzed is of the form {P, EX PORTS(P)}}, where P is the Prolog program and EX PORT'S(P) is the
predicates p that are exported by the program®.

During static analysis, given a calling pattern for a predicate, only those success patterns will be
considered admissible that might actually correspond to computations for that predicate, starting with
a call described by that calling pattern. Similarly, only some of the possible calling patierns will in fact
be encountered during computations and therefore, during static analysis not all calling paterns for a
predicate will be admissible. For n > 0, let 'y, denote the set of pairs A x 2{1-"} With each n-ary
predicate p in a program we associate a set CALLPAT(p) C(Ta)”, the set of admissible calling patterna,
and a relation SUCCPAT(p) C ()" = (Tn)", associating with each calling pattern an edmissible success
pattern. Given a module (P, EX PORTS(P)}, these sets are defined to be the smallest sets satisfying the
following:

o If {p,I) € EXPORTS(P), then [is in CALLPAT(p).

e Let go be a predicate in the program, I, € CALLPAT(q), and let there be a clause in the program
af the form

qul_'_-’iq} T =g {Xf_l, el X))

Let the i-state at the point immediately after the literal ,(X;), 0 € 7 € n, be A,, where
A" iz the initial i-stale of the clause; Ap = u;x!'ﬂ.te_:_statei:ﬂ'“" Xu. I.); then, for 1 <i<n,
cpi = ipab(Ki, Aic1) is in CALLPAT(q:); and if {cpi,sp:} is in SUG’G’PAT[Q.} then A, =
update_i_state{ Ai_y, X, ap:).

s The success pattern for the clause is given by I, = i_pat{ %y, An), and {f., f.:} isin SUCCPAT (qa).

TEX PORTS{P) may contain mare than one entry for 2 predicate if it can be called with different ealling pacterna.

150

2.4.1 The Algorithm

We use the same algorithm as Debray used, which can be found in [5]. The global data structures main-
tained by the algorithm consist of a worklist, NEEDS_PROCESSING, which contains the predicates
that have to be processed, and the tables CALLPAT(p) and SUCCPAT(p), for each predicate p in the
program. Initially, NEEDS_ PROCESSING contains the set of predicates appearing in EX PORT S{ P);
CALLPAT(p) contains the calling patterns for p that are specified in EXPORTS(P) if p is an exported
predicate, otherwise it is empty, and SUCCPAT(p) is empty for each predicate p in the program.

During analysis, if a new success pattern is found for a predicate p, every predicate that calls p has to

be reanalyzed. For this reason, before analysis begins, the call graph of the program is constructed, and
is used to compute, for each predicate p, the set CALLERS(p) of the predicates that call p.

The analysis begins with the predicates and their calling patterns specified in EX PORTS(F). For each
such predicate and calling pattern, the clauses for the predicate are analyzed by propagating instantiation
states across the literals of each clause. This yields instantiation patterns describing how the clause may
succeed. In erder to propagate instantiation states across these clauses, it becomes necessary to analyze
predicates called by the exported predicates, and so on, This is repeated until no new calling or success
patterns can be obtained for any predicate in the program, at which point the analysis terminates.

The algerithm returns the tables CALLPAT(p) and SUCCPAT(p) giving the admissible calling and
success patterns, for each predicate p in the program P, with respect to the set of exported predicates and
external calling patterns specified in EX PORTS(P). To compute the mode of each predicate p when it
is called we use the set of calling patterns CALLPAT(p):

IFUCALLPAT(p) is {{f,51),...,{fa, Sn)}, then the mode of p is {f,...,4.).
2.4.2 Example

To illustrate the method described above, we give the following example, taken from [5]. It illustrates the
handling of aliasing and shows the effect of our improvements on [3].

Example: Consider the program

p(X,Y): —q(X, ¥}, r(X),s(Y).
o(Z, Z).
ria).
().
Assume that the user has specified that p is the only exported predicate and is called with the following
calling pattern:

({F,0), (f,0)).

Initially, the table CALLPAT(p) contains only ({f.®), (f,8)), and the table SUCCPAT(p) is empty
as well as every table for the rest of the predicates.

Processing the clause for p, let the -state after the kth literal [counting the head as the Oth literal)
be Ag. The i-state resulting from unification of the head with the call is

Ao ={X =2 (£, {X}.Y = (£ {V}}

The calling pattern for g is therefore {{f, 8}, (F,0)} and is added to CALLPAT(q).
The clause for g is then analyzed. The t-stake resulting from unification of the head of the clause for

g with the call is A; = {Z = ({f,{Z]} and so the success pattern of the call to g is {{f, {2}, {f, {1]}).
Thus, the pair ({{f,®), {f,®)), {{f, {2]}), {f.{1}}}) is added te SUCCPAT(q). The i-state after the literal
gl X, Y) in the clause for pis

Ay = {X - {f: {x: F}I Y= {fl {F,X}}}

The calling ‘pa‘wtern for r is {({f,0}), and is added to CALLPAT(r). Its success pattern is infered to
be {{¢,0)) and so the pair ({{F,0)), {{c,0}}) is added to SUCCPAT(r).
Sinee the instantiation of X became ground and Y is uninstantiated, depending on X, the instantiation
of ¥ becomes ground as well. Thus, the 1-state after the literal »(.X) in the clause for pis
Az ={X = {e,0,Y = (c,0}].

The calling pattern for s is therefore ((¢, 8)), and is added to CALLPAT(s). Its success pattern is
the same and, so the pair ({{c,8)), ((c,0)}) is added to SUCCPAT(s).

151

The s-state Aa at the end of the clause for p is the same as A2 = {X — {¢,0,Y — (c,0)}, and
therefore the success pattern of the call to p is {{c,0), (¢,0)) and the pair ({{f,0), {f,0)), {(c,®), {c,D))) is
added to SUCCPAT(p).

For the same example, the calling pattern that Debray infers in [5] for s is {{d, {1})}, and the success
pattern inferred for p is {{c,), {d, {2]}}}, which are not as precise as our inferences.

3 Inference of the Input/Output Modes in a Prolog Program

To infer the Input /Output modes in a Prolog program, we can firsi use the mode inference system described
in the previous section to infer the calling modes of the arguments of each predicate. After having inferred
these modes we have to classify the arguments in the heads of the clauses for a predicate into input
arguments and output arguments. So, for every clause for that predicate, we check the instantiation
of each argument in its head and compare it with the calling mode that we have already inferred for
that argument. To decide whether the mode of an argument is input or output, we make the following
assumptions: '

Inferred calling mode | Instantiation of argument. | Input/Cutput

of argument in the clause head maode
C f Input
C C [nput
C nv Input
nv f Input
d f Input

f f Output

f [Outpuat

f nv Cutput

nv C Output

nv nv Output

d C Output

d nv Crutput

To infer the Input/Output modes for each predicate, we assume the following: If an argument in the
head of a clause for a predicate is inferred to be an output argument, then it is assumed that every argument
in the same position in the head of any clause for that predicate is an output argument. Otherwise, we
assume that every argument in that position in the head of any clause for that predicate is an input
argument. Thus, for the case where we infer different Input/Ouput modes in the same position in the
head of different clauses for a predicate, we handle the argument in this position as an OUEPUL argument
for this predicate. So the output unifications that are imposed in this position in the head of some clauses
will later be moved to the body of the clauses and a possible deadlock will be avoided.

If the inferred calling mode of an argument is ground or the instantiation of the argument in the
clause head is free then we assume that the mode of the argument is Input, otherwise it is Qutput. The
case (f,f) is excluded from these assumptions. If an argument in a clause head is a free variable and the
inferred calling mode for this argument is free as well, then this variable may become instantiated to a
ground or non-variable term during the execution of the clause, and so it can be assumed that it is an
output argument. '

The mode information that we have is not always enough to infer the directionality of an ATZUNENE,
This happens in the cases (d,nv) and (nv, nv), where the first element of the pairs is the inferred mode
of an argument and the second element is the instantiation of that argument in the head of a clause, For
these cases, the above assumptions give a sound result, by inferring an output mode for such an argument,
so that the output unification that this argument imposes will later be moved to the bady of the clause
and a possible deadlock will be aveided®.

For the case (d,f), where the corresponding argument in the head of a clause for a predicate is a free
variable, there is a possibility for that variable to appear more than once, both as an input and as an
output argument in the head of the clause, so that during unification of the head of the clause with a call
to that predicate, the variable becomes instantiated in both position. In such cases, most of the times,
the mode of the argument in the output pesition is inferred to be output from the other arguments in the
same position in the rest of the clauses for that the predicate. However, this is a point that we have to be

S This is what we regard a sound result,

152

aware of, because the resulting transformed program may deadlock in KL1. Of course we may sacrifice
partial accuracy in favour of soundness by changing these assumptions to infer the output mode, so that

a possible deadlock would be avoided.
For the rest of the cases the above assumptions give both accurate and sound results.

Example: Consider the clauses for the append/3 predicate :

append([], L, L).
append([H|L1], 1.2, [H]L3]) : —append(L1, L2, L3).

Using the method described in the previous section, we infer that for the calling pattern (¢, ¢,) the
success pattern for append/3 is (e, ¢, ¢). '

So, according to the previous assumptions, for the first clause for append/3 we infer that the first and
the second arguments are input arguments and the third argument is an output argument. For the second
clause we obtain the same results. Thus, we finally infer that for append/3, when it is called as mentioned
above, the Input/Output modes are (In, In, Out).

4 Guard Analysis and Shift of Output Unifications

In the next step of the transformation, an analysis for each predicate in the given Prolog program is
required to find any “mutually exclusive” built-in predicates appearing in the clauses for that predicate,
which we call test guards (because they act like guards in KL1) or any other appearance of such fest
guards in the program and to interpret any occurrence of the cut operator. Since our system is a prototype
implementation that is still used for experimental purposes, and to make this analysis easier, we impose
some restrictions at this point on the Prelog program that is to be transformed:

¢ The cut operator is allowed in the Prolog program only if it acts like a commil operator and the
test guard is an arithmetic built-in predicate (i.e. >, <, »>=, =<, =:= =\ =) or a built-in predicate
used for comparison of terms (i.e. @ > @ <, @ >= @ =<, ==\ ==)7,

o Instead of the cui operator, an exclusive test guard may be used. For this reason if a built-in
predicate from those previously mentioned is the first subgoal in the body of a clause, it is assumed
to be a test guard.

o Only one test guard may be used at each clause and only two consecutive clauses may be “mutually
exclusive”,

e The variables appearing in two “mutually exlusive” test guards must have the same name and
appearing in the same order in both test guards.

Example: A Prolog program that satisfies the above assumptions is

(X, Y, Z): =X =Y, 1,q(X, 2).
WX,Y.2): —a(Y.).

gl X,a): =X >=0.

gl X, b)) :-X <0,

Thus, for the transformation, when we find a test guard at the begining of the body of a clause followed
by the cut operator, we replace the cul operator by the commit operator® and we add its *mutual exclusive”
test guard together with the commil operator at the begining of the body of the following clause.

If the test guard we find is not followed by the cut operator, then we add the commit operator after
that lest guard in the same clause, and if the next clause in the program contains the “mutual exclusive”
test guard of the previous one, we also add the commit operator after it.

The final step of the transformation is to move the output unifications in the head of each clause to the
clause body. That means that, if the mode of an argument arg in the head of every clause for a predicate
is found to be an output argument, then it will be replaced by a variable v that does not appears anywhere
else in the clause, and the unification “v = arg” will be added to the body of the clause. If the output
argument is a free variable that does not appear in the place of any input argument in the head of the
clavse then no change needs to be made for this argument (no output unification occurs in the head of
the clause because of this argument). If the body of a clause is empty but the clause has a guard, then

TA test guard can only be ane of these built-in predicates.
B The aperator *,' before and after the eut symbal must alss be removed.

153

the built-in predicate true has to be added as the clause body.

Example 1: For the program given in the previous example, let the modes for p be {In, In, Qut) and
for g (In, Out), Applying the above transformations the resulting program is:

p(X.Y.Z): =X >Y |¢(X, 2.
X, Y. Z): =X =<Y | qlY, 2Z).
g X, Y): X >=0]¥Y =a.
X, Y): -X<0|¥ =bh

Example 2: For the append example presented in the previous section the transformed KL1 program
is :)
append([], L, K} : =K = L. .
append([H|L1], L2, K) : =K =[H|L3],append(L1, L2, L3).

5 Example Results

Some example results obtained by our current implementation of the system are now presented:

Example 1: Considering the following Prolog program, for generating a list, of integers from B to [,

integers(B.E, [1):~ B>E.
integerz(B,E, [B| Ints]):- B=<E,B1 iz B+1,
integers(B1,E,Ints).

and assuming that the calling pattern for predicate integers/3 is [(c,[]),(¢,[1),(f,[]})], we obtain the following
results from our system:

The calling patterns and the corresponding succeas patterns for the predicate
integers/3 are:

Calling Pattern: [{c,[1}, (c,[1),(£,[1)]
Success Pattern: [{c,[1},(c,[1),(c,[1}]

{c:ground term, f:free variable)

The Input/Outpot modes for each predicate are inferred to be:

integers(in,in,out)

The transformed program is:

integers(4,B,Ch:=A>B | C=[].
integers(A.B,C):-A=<B | C=[A|D],E:=A+1,integers(E,B,D).

Example 2: For the quick soré Prolog program

qzort([1,01).

geert ([XIL],R):-split(L,X,L1,L2},
gsort{L1,R1},
gsort(L2,R2),
append (R1, [XIR2],R).

ﬂpllt{[] - D » UJ "

BPlit{[ﬂYS] |x| [Y|Lal lnﬁ} i=Y=cX, ! '
splis(¥s,X,Ls,Bs).

split([¥|Ys],X,Ls,[¥|Bs]):~split(¥s,X,Ls,Bs).

append{[],L,L}.
append ([X[L1],L2, [X[L3]) :~append(L1,L2,L3} .

154

assuming that the user has specified gsort/2 as the only exported predicate and [(c,[]),(f.[])] as its calling
pattern, the following results are obtained:

The calling patterns and the corresponding success patterns for the predicate
qeert/2 are:

Celling Pattern: [(c,[1),(£,[D]
Success Pattern: [(c,[1),(c,[0}]

The calling patterns and the corresponding success patterns for the predicate
split/4 are:

Calling Pattern: [{(c,[1),(c,[1),(£,00),(£,00)]
Success Pattern: [(c,), (e, [1), (e, [1),(c,[1}]

The calling patterns and the corresponding success patterns for the predicate
append/3 are:

Calling Pattern: [{c,[1),{c,[1}, (£,012]
Success Pattern: [{e,[1),{c,[]),(c,[]}]

{c:ground term, f:free variable)

The Input/Jutput modes for each predicate are inferred to be:

qsort{in,cut)
split{in,in,out,out)
append(in,in,out)

The transformed program is:

gsert ([],4):-4=T].
gsort([AIB],C):-split(B,A,D,E),qsort (D,F) ,gsort (E,G) ,append(F, [A]G],C).

split([1,A,8,C):-B=0],c=0.
eplit{[A|B],C,D,E) :~A=<C | D=[A|F],split(B,C,F,E).
split([AlB1,C,D,E):=A>C | E=[AIF],split(B,C,D,F).

append{ [],A,B) :=B=A,
append ([A|B],C,D):~D=[AIE] ,append (B,C,E) .

6 Conclusions

A system for transforming deterministic Prolog programs to KL1 is described in this paper. The results
obtained from its implementation show the effectiveness of the method used, when it is applied to a certain
class of Prolog Programs.

The work on mode inference described in this paper is based on the ideas presented by Debray 5],
but with some important innovations:

e In the way we define instantialion palterns we distinguish these terms where there is a variable
appearing more than once, from the rest of the terms, so that we can obtain more precise information
about their dependencies after unification.

o Debray [5] uses a function called c.closure to indicate sharing of variables after unification, By using
this function he does not take advantage of the information that we have about the occurrences of
variables in the known tuple of terms. By considering the instantiation patterns for both terms,
his treatment becomes conservative and general at this point. Instead of the function c_closure, we
use the function inherited_dep which exploits any information that we have about the two tuples
of terms that unify.

155

s With the way Debray (5] handles abstract unification, he does not encounter every possible instance
that may appear during actual unification of two terms. For example, given an t-stale Ay = {X —
(£.{X}), ¥ = (f.{Y})} and considering the unification of the tuple of terms f; = {X, f(Y)) with
the tuple {U/,U) represented in static analysis by the i-pattern I = {{f, {2}}, (£, {1}}), the result that
update_i_state returns, according to the treatment that Debray [5] proposes, is {X — (f, {X, Y,
¥ = (f, {¥, X}}} (in his treatment, he assumes that if an instantiation of a variable X is free, after
a.unifyanit (which correspons to init_unify, that we use), and X depends on a variable ¥ whase
instantiation is free, then X remains a free variable). It is obvious that this result is wrong, because
X in the above case is instantiated to f(Y') after unification. It was shown when we described
abstract unification that in the way we handle cases like this one, using the notations nvy and dy,
we obtain the right results.

o Debray [5] is also interested in the inference of data dependencies in logic programs, and for this
reason he propagates any changes in the dependency set of a variable to the dependency sets of the
other variables. In this way, the inferences that we can make for the modes of a predicate are often
conservative. We are actually interested in propagating any change in the instantiation of a variable
to the instantiation of the variables that it depends om, so that we can infer any possible changes
to their instantiation as well. If we know the variables that a variable directly depends on, then
we can more precisely infer any change in its instantiation and use any information about variahle
groundness. By propagating the changes in the dependency set of a variable to the dependency sets
of the others variables, we may lose such information and obtain conservative results. This can be
noticed in the given example in 2.4.2, where we correctly infer that during analysis in the clause
for p, after the literal r{X), since the instantiation of X is ground and Y is still free but depends
on X, the instantiation of ¥ becomes ground as well. Debray [5] for the same example infers that
the instantiation of ¥ becomes d “don’t-know”, which is sound but also conservative.

Even if the way we handle unification in “abstract domain” is more precise than other treatments
previously used, we are still not able to always get precise results. This is because for the unification of
two nonvariable terms we cannot precisely infer the instantiation of the variables appearing in these terms.
Of course we always have sound results.

To improve the analysis we used, we can try to propagate information like those that we obtain by
using the notations nvy and dy during abstract unification across the literals of a clause, so that we do
not lose and can exploit any extra information.,

The system can also check before the analysis of a clause of a predicate if its head actually unifies with
the calling tuple and if it does not, ignore it and go on with the rest of the clauses. In principle, this can
improve the precision of the analysis.

As other future work, the class of Prolog programs where the described transformation can be applied
can be enlarged by relaxing the restrictions that we impose on the Prolog program that is to be transformed.
This can be achieved by applying a more efficient guard analysis to the given Prolog program.

Of course, the system will become more powerful if it can be extended to handle non-deterministic
Prolog programs, as well.

Acknowledgements

[would like to express my gratitude to Dr. Steve Gregory and Rong Yang for their help and support
during the preparation and writing of this paper. Their time and contributions are deeply appreciated.

I would also like to thank Prof. D.H.D. Warren for his comments and guidance that have been very
important to me.

The system described in this paper was developed as part of my M.Sc. Thesis and is partially supported
by ICOT as part of the FGCS Fellow-on Project.

References

(1] M. Bruynooghe,G. Janssens,A. Callebaut and B. Demoen, “Abstract Interpretation: Towards the
Global Optimisation of Prolog Programs”. In Proceedings of the Fourth IEEE Symposium on Logic
Programming (San Francisco, September 1987). IEEE, New York, 1987

[2] M. Bruynooghe and G. Janssens, “An instance of abstract interpretation integrating type and mode
inferencing”. In Proceedings of the Fifth International Conference on Logic Programming (Seattle,
Wash., August 1988), MIT Press, Cambridge, Mass., 1988, pp. 669-683

156

{3] Keith Clark and Steve Gregory, “PARLOG: Parallel Programming in Logic®, ACM Transactions on
Programming Langnages and Systems, Vol. 8, No. [, Jamary 1986, pp. 1-49

[4] 8.K. Debray and D.S, Warren, “Automatic Mode inference for Logic Programs”, J. Logic Program-
ming 5,3 (Sept.1988), pp. 207-229

.[8] 8.K. Debray, “Static Inference of Modes and Data Dependencies in Logic Programs”, ACM Transac-
tions on Programming Languages and Systems, Vol. 11, No. 3, July 1989, pp. 418-450

[6] H. Mannila and E. Ukkonen, “Flow Analysis of Prolog Programs”. In Proceedings of the Fourth IEEE
Symposium on Logic Programming (San Francisco, September 1987). IEEE, New York, 1987

[7] C.8. Mellish, “The Automatic Generation of Mode Declarations for Prolog Programs”, DAl Research
Paper 163, Dept. of Artificial Intelligence, Univ. of Edinburgh, August 1981

i8] C.5. Mellish, "Some Global Optimizations for a Prolog Compiler®, J. Logic Programming 2,1 (April
1985), pp. 43-66

[9] C.5. Mellish, “Abstract interpretation of Prolog programs”. In Proceedings of the Third International
Logic Programming Conference (London, July 1986). LNCS 225, Springer, Mew York, 1986

{10] U.5. Reddy, “Transformation of Logic Programs inte Functional Programs”. In Proceedings of the
1984 International Symposium on Logic Programming (Atlantic City, N.J., February 1984). [EEE,
New York, 1984, pp. 187-196

[11] H. Tamaki, “Stream-based Compilation of Ground I,i'd Pm]-:.g into Committed-cheice Languages”.
In Proceedings of the Fourth International Logic Programming Conference, MIT Press, 1987, pp.
376-393 -

[12] Kapunori Ueda, “Making Exhaustive Search Programs Deterministic”. In Proceedings of the Third
International Logic Programming Conference, Springer-Verlag, 1986, pp. 270-282

[13] Kasunori Ueda, “Making Exhaustive Search Programs Deterministic, Part I[". In Proceedings of the
Fourth International Logic Programming Conference, MIT Press, 1987, pp. 356-375

[14] Kazunori Ueda, “A New Impementation Technique for Flat GHC®. In Proceedings of the Seventh
[nternational Logic Programming Conference, MIT Press, 1990, pp. 3-17

[15] K. Ueda and T. Chikayama, “Design of the kernel language for the Parallel Inference Machine™.
Computer Journal 33, 1990, &, pp. 494-500.

[16] D.H.D. Warren, “Implementing Prolog — compiling predicate logic programs™, Res, Reps. 39 and
40, Dept. of Artificial Intelligence, Univ. of Edinburgh, 1977

[17] Reng Yang, “CHUKL: Constraint Handling Under KL1". In Prl.)c::cdings of the Workshop on Parallel
Logic Programming and its Programming Environments. [COT, Oregon, March 1904

157

