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Abstract

This paper presents the embedding of Flat GHC into w-calculus and discusses
their relationship. Although GHC and r-caleulus share similar motivation and aims,
they have quite different origins, concepts and formulations. Thus, their compari-
son may provide us with new insights into concurrent computation. The embedding
is represented by the translation rules from an Flat GHC program to w-calculus
statements. First, to make the translation simpler, FGHC™ is introduced which
is an appropriate subset of moded Flat GHC. Next, the translation rules from an
FGHC™ program to polyadic w-calculus statements are described. Then, as an ex-
ample, the APPEND program in FGHC™ is translated. Through the translation
steps, the various features of Flat GHC, such as moded logical variables, passive
and active unification, predicate invocation, concurrency and indeterminism, are
reexamined in the terminology of m-calculus. Moreover, this embedding method is
applied to specify built-in predicates. As an example, the specification of the built-in
predicates to manipulate shared data is demonstrated. A translator has been im-
plemented in KL1 which generates an object program, described in a programming
language based on 7-calculus, from an FGHC™ program.

1 Introduction

Flat Guarded Horn Clauses (FGHC for short) is a concurrent logic language based on
parallelism in logic programming, while #-calculus is a model of concurrent computation
based on the notion of naming. Both are simple yet powerful frameworks for describing
concurrent processes (referred to as agents in m-calculus).

A salient feature of GHC is that interprocess communication is achieved by unifica-
tion, where logical variables play a crucial role, that is, dataflow synchronization and
broadcasting. A program consisting of clauses can be viewed as a conditional rewrite rule
of goals, and goal rewriting governs the unification of logical variables. The semantics of



GHC has been intensively studied and developed so far. Among the research on the rela-
tion between GHC and other similar paradigms, Honda et al. [4] compared GHC features
with the Actor model, and described the implementation of GHC in actors.

During the computation of w-calculus, agents concurrenily exchange names as data
via names as channels, where a name is only an entity. A name enables us to encapsulate
as a value an agent which can be instantiated, activated and applied, so we can treat it
as a first-class object. At the same time, w-calculus provides an execution model such
that independent states interact with one another. Its semantics has been investigated
intensively mainly from the algebraic point of view. Moreover, connections to other similar
models have also been elaborated: e.g. A-calculus [6], object-oriented languages [14] and
Prolog [5].

Although GHC and w-calculus share similar motivation and aims, they have quite
different origins, concepts and formulations, as mentioned above. Investigations into the
link between GHC and w-calculus have been few. Thus, their comparison may provide us
with new insights into concurrent computation.

This paper discusses the connection by embedding FGHC into w-caleulus. First, to
make the translation simpler, we introduce FGHC™ which is a subset of moded FGHC.
Next, the translation rules for an FGHC™ program to polyadic w-calculus (PPC) state-
ments are described. This embedding illustrates how w-calculus represents the language
features of FGHC. Lastly, the APPEND program in FGHC™ is translated to PPC state-
ments as an example. Moreover, this embedding method is applied to specify built-in
predicates, and the specification of the built-in predicates to manipulate shared data is
actually demonstrated.

2 Preliminaries

2.1 Moded FGHC

This section briefly reviews moded FGHC [13], which is FGHC with mode information.
In moded FGHC, every occurrence of a variable is associated with a mode, either in or
out. A logical variable is considered a one-to-n (n > 0) communication channel that
connects its occurrences. Roughly, an occurrence moded in and out corresponds to inlet
and outlet of information, respectively. If you imagine that a variable is a MOSFET, in
may remind you of a drain and out a source, although this analogy represents one-to-one
communication. All variables in a well-moded program are guaranteed to be used for one-
to-n (n > 0) communication; that is, there are one out occurrence and n in occurrences
for each variable.
Some advantages of well-moded FGHC are informally stated below [13]:

¢ Given a well-moding of a program and a goal, if the goal is reduced by one step,
the reduced goal and the program have the same well-moding.

¢ Given a well-moding of a program and a goal, if the goal has been reduced success-
fully to an empty set of goals, all the variables in the goal are mapped to ground
terms.

The source language considered for the embedding is a subset of moded FGHC
(FGHC™ for short), which has the following syntax:

&



Goal i= — by, - b,

Program = ¢ ---¢,
¢ n= u(A) :—g|b1,-;-,bn_ B
gu= true | A} = f(D) | A} = Aj | gbuiltin{ E")

by = true | u(R) | bbuiltin(R) | Y2 = f(R) | Y7 = X}

The elements of var(A)} and var(D) are distinct.
AL AL € A, var(A)Nvar(D)=¢, EC A

Let Pred, Fun and Var be the disjoint sets of predicate, function and variable symbols;
u € Pred and f € Fun. Here V means Vq,-.-,V, u{fi} represents a user-defined
predicate, and mr{f:'j means the set of variables in V. Following convention, capital
letters stand for logical variables. g_builtin(E) and b_builtin{§) represents a guard built-
in and a body built-in predicate, respectively. Every occurrence of a variable is associated
with a mode, either in or out and is written V¥ or Vo,

Compared to FGHC, FGHC™ has some properties listed below:
e A goal and a program are well-moded.

e At the top level of arguments of the predicate and the function symbols, only vari-
ables oceur.

¢ Function symbols occur only as the arguments of “=" both in the guard and the
bedy.

e For a guard goal, only either a passive unification or a guard built-in predicate
OCCurs.

It is obvious that FGHC™ has almost the same descriptive power as FGHC, although
FGHC™ 1s syntactically restricted.

2.2 Communication Variable

The occurrence patterns of FGHC™ variables are classified in Table 1. In the table,
‘4 (= 1)’ means that there is more than one occtirrence moded in.

Let a communication variable (c-var for short) be defined as a variable occurring with
both #n and out modes simultaneously in the body. Cases 3.1~3.3 in Table 1 correspond
to c-vars. Intuitively, in FGHC™, the occurrence of a c-var implies that a variable which is
single-assigned to and possibly multiple-referred to by other processes is allocated at that
time. In particular, the c-var occurring in the body and moded out is written e.g. ¥;° and
Z¢ in this paper. On the other hand, if a variable detected is to be used for a one-to-one
communication channel, the variable is not a c-var. We do not care about whether or not
the variables moded in is a c-var.

2.3 Polyadic m-Calculus

w-calculus agents (processes) exchange data through communication channels concur-
rently [7]. The data and the communication channels are represented by names, which
are only entities in w-calculus. The syntax of polyadic m-calculus (PPC for short) is as
follows:



Table 1: Occurrence Patterns of FGHC™ Variables

Head | Guard Body

Case | u(A)-| AL | f(D) | b1, ba
11| i i(>1)
12 [ 1 |1 (=1
1.3 0 i(>1)
2.1 o 0

2.2 i 0

3.1 oand ¢ (> 1)
3.2 o o and i (> 1)
3.3 i |oandi(>1)

Pi= TP | PIQ | (v2)P | A@z) | 1P| 0

7 is called prefix and has two basic forms: Zy,, - - -,ya] (polyadic output) and
z([y1,- -+, ¥al) (polyadic input). Z[yy, - - -, yn].P sends the tuple [y, - -, y,] along the name
T as an atomic action and then behaves as P. On the other hand, z([y, - -, y,]).P atom-
ically receives a tuple [z,---, z,] along the name z and behaves as P{z,/y1, -, 2a/tn}.
Thus, in a sense, ([y1, - -, ¥a]) works like the lambda prefix Ay; -+ -y,. P | Q represents
concurrent agents P and ( interacting through names that they share. (vz)P means that
z is private to P; this is interpreted as a fresh name declaration which is local to P as
well. And 0 means an inactive agent; this term is no longer reduced. We often write o
as an abbreviation for «.0. -

The following examples show how reduction proceeds (supposing that = does not oceur
freely in F and @):

(vey)(@y | (2).P) — (vy)(P{y/z})
(vzyz)(Ty | 2(2).P | 2(w).Q) — (vyz)(P{y/z} | z(w).Q)
(vey)(Fy | y(z)) — drreducible,

where — means one-step reduction at the PPC level.

A is an agent identifier that is associated with the agent definition A(z) & P. The
agent identifier is regarded as a lazy macro expansion from the execution point of view.
The following is an example of an agent definition:

o) % p(=).2() | £lp))

(vabp)(flp] | e | a() | Bb | b() = E}V!‘??J{f[;?] | Bb | &())

To end, we use = for the definition of an agent including recursive calls; while we use
macro expansion, indicated as =, if an agent does not include recursive calls.

A summation };e; 7. P; behaves like one or other of the P.. Although ! represents
replication, our embedding does not use ! since it is difficult to practically deal. Instead,
a guarded recursive call is used.



3 Embedding

This section describes how to translate a source program in FGHC™ to agent definitions
in PPC.

3.1 Representation of FGHC Terms in Polyadic #-Calculus

We start with Milner's [7] idea for representing general data structures. Let us consider
the following sorting:

{ TERM w (CONS,NIL,INT),
CONS — (TERM,TERM), NILws (), INT — (V) }

According to the sorting, the macro definitions for cons, nil and int are given by:

const,z,y] = t{[c,n,i]).qz,y]
will] = t(]c,md])7()
nt[t,v] = i([e,n,1]).i[v]

For instance, we may assume that the cons definition represents the following protocol
sequence: (1) a cons structure is located at ¢, (2) a reader agent sends a tuple [c,n,i]
as a probe via t, (3) after receiving the tuple the name c is picked up, and (4) the tuple
[#,y] is returned to the reader via c. Since ¢ is used for a channel, the reader can see that
the sort is cons and the return value is a two-element tuple, This method can encode
a [unction symbol with any arity. Let a PPC statement in the above form be called
c-agent and [c,n,i] sort tuple. A sort tuple should include all the sorts occurring in an
FGHC™ program to be translated.
The following PPC statement reads out the value of a c-agent:

(wp){(vzy)(p(le, n,i])-glz, ) | (veni)(B((e,n, 1) | c([a, b]).P))
—* (vay}(P{z/a,y/b})
Let the underlined fragment be called a-agent !. Once an a-agent reads a c-agent, the

c-agent terminates.
For simplicity, we introduce abbreviations for a c-agent and an a-agent:

cagent: . p(s)[i] = p((st]).3[d
wagent:  B)OMQ = Plst] | s([6]).Q

where p means the location of the ageﬁts, s the sort and ¥ the values, and st stands for a
sort tuple. This notation avoids having to explicitly write sort tuples. Now let us consider
the reduction of a c-agent and an a-agent, again:

(vp)(F(s)}(AD)Q | p(s}[w]) —" Q{w/v}

Our embedding scheme interprets this reduction at the PPC level as follows; (1) the
structure s{10) is actively unified with a variable, (2) the variable is then passively unified

1C for c-agent and a for a-agent originates from coneretion and abstraction, respectively, according to
[7].
7



with s(%), (3) the substitution {w/7} is consequently obtained, and (4) the execution of
Q{d/7} proceeds. Interestingly, our embedding also uses the form of this reductmn to
achieve predicate invocation in FGHCpm™.

Next, we introduce a forwarder agent:

fwlr,w] = r(t).wt
The forwarder represents dereference as follows:
(vpa)(B(s}(AD)Q | fwlp,q] | o{8)[]) —* Q{u/
(vpar)(B(s)(A0)Q | fwlp,q] | fwlg,r] | r{5}[w]) — Q{w/7}
However, if there is no a-agent, the reduction cannot proceed:
(vpgr)(fwlp, q] | fwlg,7] | r(3)[@]) — irreducible

The forwarder can connect a c-agent and an a-agent. To connect a c-agent and n(> 2) a-
agents, we introduce a new PPC agent, var[r,w]. As mentioned in Section 2.1, a variable
occurrence of moded FGIIC has a mode, in or out. The in and the out occurrence
corresponds to r and w for var[r, w], respectively, since the w channel works as an outlet
of data and the r channel inlets (Fig. 1). The agent var[r,w] can synchronize write and

inlets outlet
W=Y?
e
var[r w]

Figure 1: Moded Logical Variable and var(r, ]

read operations and duplicate the data written via the w channel as many times as read
operations are issued. Here var[r,w] and its auxiliary agents are defined as:

var[r,w] = (ven)(Wle,n, i | (c([z,y]).rep-cons|r, z, y|
+ n().rep_nil[r]
+ i([v].rep_int[r, v]))

rep_cons[p, z,y] = p(lc, n,i]).(efx, 4] | rep_cons[p, z, u])
rep-nillp] *  p([c,n, i)-(m() | rep.nilf)
rep.int[p,v] = p([c, n,4]).(Fle] | rep-int[p,v])

The sort tuple is [e,n, ] (implying cons/2, nil/0, int/1, respectively). The agents whose

symbol names begin with rep_ are responsible for data duplication. On the other hand,
fw[r,w| just synchronizes write and read operations and does not duplicate data.

3.2 Translation Rules

The notation [t]p represents a PPC agent to which the FGHC™ term ¢ is translated and
which includes the name p added by the translator.

8



T1: Clauses An entire program in FGHC™ is translated to an agent definition,
clause[p], in PPC. That is, given a set of all clauses ¢; - - - ¢, of all predicates,

clauselp] ® (ver)(varfr,p) | () | [ei]re| -~ | [emlre)

is created. The definition clauses for different predicates are merged in an agent definition.
Here, var|r, p] duplicates a predicate invocation as many times as the number of definition
clauses.

T2: Head For this translation, the vocabulary with which source programs are writ-
ten in FGHC™ is used as the sort names of PPC as it is. However, for distinction the
FGHC™ variables are described in capital letters, while the PPC names are in small let-
ters; e.g., the variables of FGHC™, fi correspond to the sort names of PPC, a. Fach
clause ¢; is translated to [¢;]re. The term b stands for by, -- -, by.

[u(A) - g | B]rc = (vst)(F[st] | u({al).[g | b]c)
= #u)(Aa)[g | ble
The translation of a head literal works as an a-agent. Note that a commit operator of

FGHC™ is distinguished from parallel composition of PPC, although both are indicaled
b}’ :l:‘

T3: Guard The translation, [g | b]e, is given by:

| _[.true]]c = «o).[b] B
[A; = (D) | Ble = (ust)(mlst] | £((d])-c0)-[8])
3 = a@;(f)(\d)(e()-[b]) )
[45 = Ay | ble = (vs)(p-unif[s, aj, ai] | s().c().[b])
[g-builtin(E¥) | blc = (vs)(gbuiltin[s, & | s().c().[5])

The term decomposition by the passive unification, Aj = f{ J'_j], is implemented by an
a-agent; then, the obtained substitution is applied to [E]] The passive unification of two
variables is translated to a system-supported agent p_unif(s, a,b] (details in Section 3.3).
Here, p_unif[s, a, b] reads in the information of instantiation via the a and b channels that
correspond to the two logical variables. If @ and b are instantiated to the same ground
structure, p_unif(s, e, b] sends a signal via s. Thus, the passive unification of our embedding
conforms to that of KL1 {12].

The prefix ¢) implements a commit operator. Since all the clauses of all predicates
are merged into an agent clause[p], in general, more than one c{) waits for a signal from
#) introduced in T1. Hence, from the property of m-calculus reduction, with respect to
indeterministic clause selection, a translated agent behaves as follows:

¢ If an instantiation is enough to achieve guard checking of a clause, the clause is
selected.

¢ [f more than one clause can be selected, any one of them will eventually be selected.

¢ Clauses that cannot be selected never produce a side effect (never export instantia-
tion}.



T4: Body Goals Translation of the goal and the body, by,---, b, is given by:

18] = (v)(vp2)([oalp | clauselpm]) | -+ | (vpm)( Lol | claselpn]
| Tl | - | [ta])

Let W be a set of c-vars moded out except for the variables occurring either in the head
or in the guard (case 3.1 in Table 1). The above corresponds to the W. And b, ---b,,
(0 <m < n) are user-defined predicates. The c-agent [b;]p; (0 < i < m) and the a-agent
clause([p| defined in T1 form a predicate invocation.

T5: Predicate The arguments of predicates are divided into c-vars moded out (f"]

—

and the rest (R). The translation is given by:

[true] = 0
[, Z)]p = (vor---u)(p(st) Tl 0, v | varlzy, 0] | - | varlz, u)
Lo = (o) (p@)F v, v [varfz, e |- | var(z, v))
[bbuiltin(R, Z)] = (vu;---u)(b builtin[7, vy, -- cuy) | var[zy,vp] | - | var[z, )

Since the occurrence of a c-var moded out acts as a source for one-to-n communication,
var[r,w| should duplicate the data on demand that is supplied just once by the source. A
predicate is obviously implemented by a c-agent.

T6: Active Unification We need to provide two kinds of translation rules for a body
goal b; for the cases including and not including c-var’s.

Ye=J(R 2] = [FRZ)Nw
[V = f(R,Z)] = (vo)(varl,v] | [f(E, Z%)]v)
[P =Xi] = fwly;, =]
Y =Xl = Vaf{ﬂjaﬂkl

[f(R,Z)]p = (vor - w)(p([st]). FIF 01, -+ wi] | varlzy, vi] | -+ | var[z, u])
= (vur o)D) v, - 0] | varlzy,w] | - | var(z, v])

Note that the translation method for a function symbol f (R, Z°) is the same as that for
a user-defined predicate u(F, f‘]. Thus, considering T1 through T6 together, both the
invocation of a user-defined predicate and the passive and active unification are achived
by the same mechanism, that is, the combination of a c-agent and a-agents.

3.3 System-Supported PPC Agents

The translator must provide a runtime library that reflects the information of all sort
names occurring in a given source program. The runtime library consists of p-uniffs, a, b]
for the passive unification of two variables, guard and body built-in predicates, varr, w]
and fw(r, w].

Supposing a sort tuple is [¢,n,i] (implying cons/2, nil/0, int/1, respectively),
p-unif(s, a, b] is defined as:

10



p-urlif[s,a, b} = (Pﬂaﬂaiacbnbib){ﬁ[cmﬂmiﬂ-] | bles, ”ﬁ!""lﬁ] I
((cal[zas Ya])-co{ 20, Wol)-(v525,) (p-unif]sz, Za, 2]
o | pouniffsy, e, 1]

| 52().8,()-30))
+ (na()-ns()-3())
+ (ia([va]) -5 ([vs])-punif[s, va, a])))

The guard built-in predicates, such as X < 0, X > Y and print(X), are translated to
the agents of the form g builtin[s, &]; € represents input arguments and s is a channel via
which the guard built-in agent sends a signal for successful termination. The body built-
in predicates, such as modulo(X,Y, M) and. minus1(X, R), are of the form b_builtin[].
While this agent does not have a signal channel, ¥ possibly includes input and output
arguments. The definitions of var[r, w] and fw[r, w] are already given in Section 3.1, which
supposes the same sort tuple, [, n, 1].

As mentioned earlier, a well-moded FGHC program is guaranteed to have the single-
write property. Thus, even if all +’s are substituted by |'s in the above definition,
p_unif(s, a, b] (and var[r,w] as well) can work, since only one of its sub-agents is activated.

4 Example: APPEND Program

This section demonstrates the translation of the APPEND program in FGHC~. The
SOULCE program is:

app( X', Y, Z°) - X'=nil | V= 2°,
app(X*, Y, Z°) = X'=cons(E™ XJ) | Z° = cons(E™,Z),app(Xi, Y}, 2°).

Zs in the second clause is a c-var, and its second occurrence should be treated carefully
(i.e. Z,%). The translation result is shown below:

clausefuy) &

v1()
(vst)(T2lst] | app([z, v, 2]).(vst)(Z(st] | nil().ua().fw(z,]))
(vst}(walst] | app([z,y, 2]).(vst)(Z(st] | cons([e,z,]).v1().
{Ws}f[ww}f{WmJ'ﬁvl?f[ﬂt]LTE% Y, 1)
|CIGHSE[1?17]:IM ‘

| z([st]).comsle, z,]))))

In the above agent definition, st stands for a sort tuple and includes cons, nil, app.
The names v, are created during the translation; e.g., v; implements a commit operator.
Although the agent identifiers, var[r, w] and fw[r, w], should be macro-expanded in place,
the result without macro expansion is shown above for readability of the translated PPC
code. The two clauses in FGHC™ are merged into one agent definition. The active
unification in the first clause ¥ = Z° is translated to fw[z, y]. The c-var Z, in the second
clause is translated to var[z,,v5g]. In addition, the translator also must generate the proper
runtime library.

{vmvg]'{uar (v, vg]
|
|
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5 Specification of Built-in Predicates

5.1 New Built-in Predicate for Shared Data Manipulation

This section specifies a new built-in predicate of FGHC™ for shared data manipulation in
PPC 2. Let us call the predicate swap_shared_data(P, Old, New, Q), which is abbreviated
to swap.sd, here. Figure 2 shows its operation. The arguments P and @ represent the

Old New Oldt = VE New
P Q F ¢
™~ {(undefined) ™~ ~
v = New
Atomic Operation
Before Execution After Execution

Figure 2: Operation of swap_shared_data/4

reference to the shared data (the location where the shared data exists). Suppose that
the location P holds the value V; then, if swap_sd/4 is carried out, V referred to by P is
replaced by New, and Old is unified with V. On the completion of the swap operation,
( is lastly unified with the reference to the shared data. This sequence of operations
is performed atomically. It is different from set_vector_element/5 of KL1 [12] in that
no duplication occurs even if P is shared by other processes; that is, data are always
destructively rewritten in place.

By using swap_sd/4, we can implement a nondeterministic merger without using non-
determinism among clauses which FGHC has by nature. The program is given by:

merge(X*, Y4, Z°) - true | alloc_sd(P?), .
swap_sd( P, r, Z°,Q°), I° = init,
mg_in( X%, QY), mgin(Y?, QY.

mg-in(X*,*) = X' =nil | true. .
mg-in(X*, P*) = X' = cons(H™,T°) | swapsd(P*, A',R°,Q"), A® = cons(H™, RY),
mg-in(T, Q%Y.

Depending on the context where the merger is used, mode m is determined either in
or out. Next, the shared data manipulator swap_sd/4 and the shared data allocator
alloc_sd/1 are specified in PPC below:

swap.sdlp,o,n,q] = P(s)(Am)(vr)(@lr,n].(r(v).fwv,0] | ¢(5)[m])))
allocsdlp] = (vm)(p(3)[m] | (vv)(swap[m,v]))
swaplm,v] = m([r,n]).(Fv | swap|m,n])

A new sort s should be added to the sort tuple, correspoinding to the introduction of
a new data structure allowing destructive rewrite. Note that m{r,n] in the definition of
swap_sd guarantees the atomicity of the swap operation. The modes of the swap._sd/4’s

*The basic idea of this predicate originated from Mr. K. Kumon {ICOT).
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arguments in the above merge definition are swap_sd(P',0', N°,Q"). To implement
swap_sd{ P*, 0°, N*,Q°), the invocation fw[v, o] in the swap_sd definition should be re-
placed by fwlo,v].

Now, we can obtain the translated PPC statements for our merger show below:

clause[vg] = E”Uﬂ-‘zjlf‘-"agvzaﬂu]
71
| (vst)(Ta[st] | merge([z,y, 2]).vi().
(vpig)((vvrr)(vir([st]). mgin[z, q] | clause[vs])
| (vuss)(vis([st])-mg_infy, q] | clause[vis])
| (vv19)(alloc_sd[vy] | var[p, vys])
| (vvao)(swap_sdlp,i, z, vy] l_’-"i*[qs Van])
| (v )(var(i, vai] | vaa([st]).2nsi()}))
| (vst)(walst] | mg_in([=,p]).(vst)(z[st] | nal().v1(}))
| (vst)(Ta[st] | mg-in([z, pl).(vst)(Z(st] | cons([h, t]).v1().
(varg)({vven)(vae([st]).mg-nlt, q] | clause[vg])
| (vvaavay)(swap.sd(p,a,vas, vaa] | var(r, vag] | var(g, vas])
| (vuns)(varla, vas] | vas([st]).2oms(h, 7])))))

The new sort s in the deflinitions of swap_sd and alloc.sd always sends and receives the
identical name m, which has been declared during initialization in alloc_sd (the data
passing through the channel ;5 in the above definition). Since swap_sd/4 and alloc_sd/1
are built-in predicates, they are translated into the invocation of PPC agents with the
same names, according to T5. The PPC statements of our merger can be actually reduced
at the PPC level. From the result of this reduction, we can verify that merge/3 defined in
FGHC™ can work like the conventional merger without using swap_sd. However, taking
into account the case in which streams are closed by putting nil, merge/3 defined here is
not identical. There are two ways to make merge/3 identical to the conventional merger;
record the number of input streams by a counter implemented by swap_sd/4, or detect
the termination of all the mgin/2 processes by the short circuit method.

5.2 Specification of Port

Besides swap_sd/4, many primitives for shared data manipulation in concurrent logic
languages have been proposed, such as port [2] and mutual reference cell [10] (MRC). To
uniformly describe them in PPC makes fair comparison possible.

First, let us consider port. The open_port/2 primitive creates a port, and the send/2
primitive sends a data structure to the port. An example of their usage is given by:

- open_port(P, S), send(F,2), send(F,3), send(P,5),---.

Here, S is nondeterministically instantiated to either [2,3,5, -}, [3,2,5,---], [3,5,2,- -]
Suppose that the port primitives can be defined in FGHC™ by alloc_sd/1 and
swap_sd/4 as follows: '

open_port(P°,Z°) — true | ccHac.sd{S"_},Stlmpdsd(S", I",E",Pf’}, I° = init.
send(P', E™) - true | swap_sd(F*, A*, B°, °), A° = cons{ E™, B*).
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To verify these definitions, they are firstly translated into PPC and, then, are slightly
simplified (reduced) at the PPC level. So, we obtain their PPC definitions given by 3:

open_portlp,zl = (vm)(p(3)[m] | swap[m,z])
sendip,e] = (vuarbobyv)(swap-sdlp, ar, by, 1]

| Var{ar, Gu] | au(Z0S)e,by] | varlbr,bu])
Now, we translate a simple FGHC™ goal,
i— open_port( P, Z), send(P, E;), send(P, E;).

and examine the result of reduction. The above goal is translated into the following PPC
statement, (vpwp.)(open_port[p,, z] | varlp., p.] | send[p,,e] | send[p,,es]). Since this
statement can be reduced nondeterministically, an example of its reduction 1s demon-
strated below:

(vPupr )(open_portlpw, 2] | varlpr, pu] | send[p,, e1] | send[p,, ea])
o (umrpe){(vm) (@) m] | swaplm, ) | Varipr, pu]
| (varawbrbyv)(swap_sd[pr, ar, bu, v] | varlar, ]
I ﬂw{m}[‘ﬁl: br] | var[b,, b'm]} '
| ‘SEM[PT: Eg]}
—* (vpe)((vbu ){(vm)(swap[m, by] | repsd[p,, m]}
| (vasb; ){fw(z, ar] | rep_consfa;, e1,b;] | var(b,, b))
| SE'ﬂlen ﬁz]j .
— (vpe ) ((Vbudyw )((vm) (swap[m, dy] | repsd[p,, m])
| (varb.)(fwz,a;] | repconsa,,eq,b;] | var[br, by])
| (Vcrdr}{ﬁ"r[bWs ':r] i rep.t:uns[c,.,cg,d,-] | Var[dr# dw]})}
—* (vp N (vdy )((vm)(swap[m, dy] | repsd(p,, m])
| (va,b,d.)(fw(z,a.] | repcons|a,, ey, b;] | repcons|b,, es, d;]
| var(d,, dy])))

The above rep_sd[p,, m] processes, invoked within var[p,, p, ], duplicate the value m. This
reduction tells us that the cons chain, including e; and ey as its elements, is being con-
structed at the location z.

Also, we can proceed with the specification and verification of MRC in the same
way. The creation and the access primitives for MRC are allocate_mutual_reference/2 and
stream_append/3, respectively. As a result, they are also specified in PPC, although
the PPC specifications are not presented here for space limitation. When you look
at the specifications, it is clear that the specification of open_port/2 and that of alle-
cate_mulual_reference/2 are identical and the specification of stream_append/2 is quite
similar to that of send/2.

6 Related Work

The SCL Language: The purpose of SCL (simple concurrent language) [8] was to
examine the various properties of concurrent logic languages from a semantically simpler

3 pAceording to the full port definition, when a system detects that there are no references to a port,
the system automatically closes the port. However, this port termination is not taken into account here

for simplicity.
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and clearer standpoint. Actually, SCL was designed without the notion of a logical vari-
able. Nystrom showed the translation of FGHC to SCL. Although the term formation in
SCL is quite different from ours presented in this paper, the basic idea for the execution
of FGHC programs is similar. Thus, SCL cannot either treat the passive unification of
non-ground terms or the failure of occur check.

Specification of Prolog:  Li [5] translated the Prolog’s control strategy to (non-
polyadic) w-calculus, and then encoded the Prolog terms using the disjoint union type.
Therefore, some primitives for equality checking and type checking at the wr-calculus level
are needed. Although this might be an obstacle for formal treatment, Li successfully
encoded a non-moded logical variable.

v-calculus and Oz: To express object-oriented features and higher-order functions,
m-caleulus has been extended by adding a logical variable [11] [3]. This implies that it
is not straightforward to represent a (full) logical variable within the m-calculus setting
becaunse a logical variable has no directions in terms of read and write operations. In
contrast, our approach restricts FGHC to its subset that can be embedded into PPC.

7 Concluding Remarks

This work shows how to embed moded Flat GHC into polyadic w-calculus (PPC), and
FGHC™ has been introduced as the source language for translation. Through the trans-
lation steps, the various features of moded Flat GHC, such as moded logical variables,
passive and active unification, predicate invocation, concurrency and indeterminism, have
been reexamined in the terminology of PPC. A translator, which generates a PIC pro-
gram [9] from an FGHC™ program, has been implemented in the KLIC system [1]. PIC
is a programming language that was designed based on PPC. The specification of the two
built-in predicates for shared data manipulation, swap_shared_data and port, has been
demonstrated. By describing the built-in predicate specifications in PPC, we could clearly
understand the resemblance and the difference between the two predicates.

The author thinks that the embedding into PPC is a basis for a new operational
semantics for moded Flat GHC. For instance, this new operational semantics can be used
for specifying new built-in predicates and provide a theoretical foundation for program
transformation for efficient execution.
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