A Parallel Real-time Garbage Collection Scheme for
Shared-memory Multiprocessors

Khayri A. M. Ali

Swedish Institute of Computer Science, SICS
Box 1263, 5-164 28 Kista, Sweden
Phone: 446 8 752 15 00
Fax: 4+46 8 751 72 30
khayri@sics.se

Extended Abstract

A common problem for realizing many advanced programming environments, such as
functional, logic, and object-oriented programming environments, is how to manage ef-
ficiently the heap storage with automatic garbage collection (GC). These languages are
based on dynamic object creation and automatic reclamation of storage during computa-
tion. A garbage collector retains a program’s data that is in use and reclaims data that is
unreachable (garbage) by the program. In addition to reclaiming storage, a garbage col-
lector can also restore locality to fragmented data by dynamically compacting it, thereby
improving the performance of caches and virtual memory systems and reducing memory
requirements.

With growing the number of commercial parallel computers, many researchers try to
utilize this opportunity to speed up the execution of programs. The garbage collection
problem for parallel computers has not yet intensively studied. Further more, not too
many researchers have studied the real-time (or incremental) garbage collection problem
for parallel computers. Here, we are interested in parallelization of Baker's algorithm [2]
for shared-memeory multiprocessors.

Our scheme parallelizes a general version of Baker’s scheme where processors in the system
cooperate to reclaim storage for a single program. It works for contiguous and non-
contiguous memory blocks of the storage heap. The heap space is dynamically allocated to
processors according to their demands for free space. The scheme supports dynamic load-
balancing and improves locality of references. Dynamic load-balancing has contributed
by (1) guaranteeing garbage collection progress in every allocation of a2 new object, (2)
guaranteeing successful termination of every GC cycle, and (3) improving efficiency by
making processors that have no computation work, due to lack of parallelism in the
program, to perform most of GC work leaving the other processors to concentrate on
computation work.

In our scheme, the space devoted to the heap is subdivided into two semispaces: OLD and
NEW. The could be constructed from contiguous or non-contiguous memory blocks. The
only condition is to have a given address that separates the two semispaces. The space of
each semispace is dynamically allocated to processors according Lo their demands for free

110



space. During program execution new objects are allocated in the NEW semispace and
each accessed object in the OLD semispace is moved to the NEW semispace. Each time
a new object is allocated, an increment of scanning and copying is done. This increment
is calculated at execution time. The scanning and copying work is balanced between
processors to guarantee garbage collection progress in every allocation of a new object.
Processors with shortage of memory space will give their work to processors with free
space to guarantee completion of each collection cycle. Processors synchronize only at
the beginning of a new collection cycle to reverse the roles of the two sermispaces. The
space requirement for the scheme is very small; a three-fields object per each piece of GC
work (unscanned area). The scheme has no space overhead for locking objects in OLD
semispace.

A number of atomic memory operations are defined and their implementations are spec-
ified. The operations are: read a value or pointer from an object cell, write a value or
pointer into an object cell, assign a pointer to a cell in the root set, and creale a new ob-
ject given its arguments. The mutator is never allowed to see objects in OLD semispace.
Whenever the mutator accesses a heap object in OLD semispace, it immediately copies
it to NEW semispace if it is not already copied.

We discuss also how to extend the total heap space during program execution and how to
dynamically balance GC work between idle processors leaving the other (busy) processors
to concentrate on cornputation.

Our scheme is like Halsted [5] and Herlihy and Moss [6] schemes where all are paralleliza-
tion of the sequential Baker’s scheme [2]. The essential differences between our scheme
and the other schemes are in the way of allocating the total heap space to processors and
in the way of balancing the load between processors. In our scheme, the semispaces are
dynamically allocated to processors according to their demands for free space whereas in
the other two schemes the entire heap area is statically divided by the number of pro-
cessors. In our scheme, the scanning and copying work is balanced between processors
whereas the other schemes do not support load-balancing. Since the other schemes do
not support load-balancing, they cannot guarantee successful termination of every garbage
collection cycle. This is because processors allocate objects in their memory block with
different rates. The result could be a situation where some processors may have GC work
and have no free space available and other processors have no GC work and have free
space. This problem can be solved only by moving GC work from the former processors
to the latter processors, i.e., by load-balancing. The other advantages for supporting dy-
namic load-balancing have mentioned above. To the author knowledge, our scheme is the
first parallel real-time garbage collection scheme for shared-memory multiprocessors with
dynamic load-balancing and dynamic allocation of heap space to processors.

The other schemes that support dynamic load-balancing and dynamic allocation of heap
space are proposed by Imai and Tick in [7] and by the author in [1]. None of them is a real-
time scheme. The two schemes are parallelization of two variants of stop-and-copy garbage
collection for shared-memory multiprocessors. Imai and Tick scheme [7] is parallelization
of the basic sequential copying GC scheme [3] whereas Ali’s scheme [1] is parallelization
of a sequential copying GC scheme in which live data is traversed depth-first [4].

111



Keywords

Storage heap; real-time garbage collection; parallel algorithms; shared-memory multipro-
CessoTs.

References

[1] Khayri A. M. Ali. A Parallel Copying Garbage Collection Scheme for Shared-memory
Multiprocessors. Submitted to NGC Journal, August 19, 1994,

[2] Henry G. Baker. List Processing in Real Time on a Serial Computer. Communications
of the ACM, 21(4): 280-204, 1978.

[3] C. J. Cheney. A Nonrecursive List Compacting Algorithm. Communications of the
ACM, 13(11): 677-678, November 1970.

[4] Bjorn Danielsson, Sverker Janson, Johan Montelius, and Seif Haridi. Design of a
Sequential Prototype Implementation of the Andorra Kernel Language, Draft, May
1994,

(5] R. H. Halstead. Implementation of Multilisp: Lisp on a Multiprocessor. 4CM Sym-
posium on LISP and Functional Programming, Austin, Texas, pages 9-17, 1984.

[6] M. P. Herlihy and J. E. B. Moss. Lock-Free Garbage Collection for Multiprocessors.
IEEE Transactions on Parallel and Distributed Systems, 3(3): 304-311, May 1992.

[7] Akira Imai and Evan Tick. Evaluation of Parallel Copying Garbage Collection on
a Shared-Memory Multiprocessor. [EEE Transactions on Parallel and Distributed
Computing, 4(9): 1030-1040, September 1993.

112



