Reference Loops Management in a
Distributed KLIC Implementation

Kazuaki Rokusawa Takashi Chikayama Tetsuro Fujise Akihiko Nakase
Institute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokyo 108, JAPAN
{rokusawa, chikayama, fujise, nakase}@icot.or.jp

Abstract

This paper describes management of interprocessor reference loops in a distributed
KLIC implementation. The reference on a reference loop does not have dereferenced
results, and simply forwarding a read request may not terminate. In a distributed KLIC
implementation, reference loops can be created by unification, and remote value fetch
operations can create loops as well. Fetching a value scheme which can cope with reference
loops created by unification, and a collection scheme which can reclaim loops created by
remote value fetch are presented.

1 Introduction

This paper describes management of interprocessor reference loops in a distributed KLIC
implementation [1].

A reference loop is a closed chain of references. The reference on a reference loop does
not have dereferenced results, and simply forwarding a read request message along the loop
may not terminate. Although several collection schemes which can reclaim cyclic structures
have been proposed, they are costly and the operations are complicated.

In previous implementations of KL1 (2] on the Multi-PSI and PIMs [3, 4], much work has
been put to aveid loop creation by unification. Some attribute is attached to each variable and
external reference, and the possibility of loop creation is examined using them before binding
[5]. The unifier which performs unification involving external reference is thus different from
the one for intra-processor processing. Although cyclic structures cannot be reclaimed, no
problems caused by cyelic structures have been reported.

In a distributed KLIC implementation, exactly the same unifier as the one of the sequential
core [6] is used to perform unification involving external reference, because the implementa-
tion is designed to provide portable system. Since the unifier allows a binding of a variable
to any reference pointer, loops can be created by unification. In addition, remote value fetch
operations can create loops as well. To overcome the problems above, new schemes for value
fetching and loop collection were invented. The value fetching scheme can cope with reference
loops, and the collection scheme can reclaim reference loops created by remote value fetch
operations.

This paper is organized as follows. Section 2 defines external reference. Creation of
interprocessor reference loops is described in section 3. Solutions to cope with reference loops
are presented in section 4.

102

Processor i Processor j processor i Processor j

,.._T export table . export table .
variable wvariable
id - L —TEx id |
<j,id> _"l_l o I_I
<5, 1d>
(1) Sending an exref 1D (2} Receiving an exref ID

Figure 1: Generation of an external reference

export table
XEE——' EX referenced

ER e

| l export table _—l
-

-

Figure 2: Creation of reference loops by unification

2 External References

When a message is sent to another processor and the message contains references to
variables, references across processors consequently appear; these are external references (fig-
ure 1).

To make it possible to perform local garbage collection independently, each processor
maintains an export table to register all locations of cells which are referenced from outside.
The entries of the export table are ones of roots of local garbage collection. An external
reference is represented by a pair < proc,ent >, called ezref ID, where proc is the processor
number in which the referenced cell resides, and ent is the entry number of the export
table. When externally referenced cells are moved as a result of local garbage collections, the
references from the export table entries are updated to reflect the moves, while the exref IDs
are not affected. '

3 Creation of Interprocessor Reference Loops

In a distributed KLIC implementation, interprocessor reference loops can be created by
unification and remote value fetch. This section presents creation of loops in both cases.

Loops Created by Unification

In a distributed KLIC implementation, loops can be created by unification, becanse a unifi-
cation scheme of binding a variable to any reference pointer is employed. Even if a variable
may be referenced from outside, the unification between an external reference and the vari-
able is done by simply binding. Therefore, interprocessor reference loops can be created by
unification (figure 2).

103

EX

]

export table
" | referenced

{1) Before fetching

export table
refarenced

Ret

export table

-

Yread(X,Ret) —=

return address

{2} Generating a return address and sending a %read message.

EX

export table
refaranced

Ret

part table

return address

J 14

(3) Generating and hooking a reply record.

export table
referenced

Ret

export table

Yanswer_value
(Ret,valua)

raturn address

—-I 'valua-] *f:,,:l:':
i

Jety

s

(4} Sending back an Yanswer_value message.

i
i
7]
]

pem -

export table
referenced

frelease(X)—

* ——-lva.luﬂ

{5) Releasze of external reference

Figure 3: Fetching a value from remote memory

104

X export table

EX referenced
Y fat
export table

return address

(1) A geal is waiting for the value of either X or Y.

export table
referenced

I Ret
__J export table

return address

{2) The goal can be resumed without receiving an }answer_value message.

Figure 4: Creation of reference loops by remote value fetch

Loops Created by Remote Value Fetch

When a goal reduction requires the value referenced by an external reference X, the following
read request message is sent to the processor referenced by X.

Yread(X,Ret)

Ret is a newly generated external reference to X, which indicates the return address for the
response of the Yread message. The goal awaiting for the response is hooked to the external
reference (figure 3 (1)(2)).

When a Jread message arrives at the referenced processor and the referenced cell is a
variable, returning of a value is suspended. A record called a reply record which memorizes
the return address is generated and hooked to the variable. When the referenced cell is
an external reference with reply records, the same operations are performed. The original
external reference and the corresponding reply record form an interprocessor reference
loop; the external reference points the record, and the record points the external reference
as well (figure 3 (3)).

When a goal awaiting for the response of the Yread message resides at the external
reference, the loop is active. It is expected that the referenced cell is instantiated with a
value and the loop is consequently reclaimed; The reply record associated with the cell is
released and an §answer_value message which carries the value is sent to the return address
memorized; When the $answer_value message arrives, suspended goals are resumed and the
original external reference is released (figure 3 (4)(5}).

However, when the goal is waiting for the value of one of a set of variables and external
references, the goal can be resumed without receiving the response (figure 4). In addition, the
instantiation may not be performed, and the loop eventually becomes garbage which cannot
be locally collected. This situation is common in executing nondeterministic or speculative
computations. Therefore, even correct programs can create garbage loops.

105

EX EX ——hlil-

|md|:

{1) A reply record is hooked on each external reference.

&y

(2) Au %answer value message is returned along the same path.

Figure 5: Hooking Reply Records Scheme

EX « EX

EX + BEX -—hill——@

i

(1) No reply records are hooked.

@ « BX BX N R T

ranswar_valuo
* I:T,Mlm:l

(2) An Yanswer_value message is returned directly.

Figure 6: Using a Counter Scheme

4 To Cope With Reference Loops

This section describes solutions to cope with reference loops mentioned in previous section.

Loops Created by Unification

In this subsection, a value fetching scheme which can cope with reference loops is presented.

On receiving a Yread message, if the referenced cell is an external reference X' without
reply 1ecords, the }%read message is forwarded to the processor referenced by X’. The return
address is not changed so that an %answer_value message can be returned directly. However,
simply forwarding a Yread message may result in a non-terminating operation, since the
“read message may go into an interprocessor reference loop which consists of only external
references with no reply records.

If the value fetching operation is reoriginated on receiving a Yread message, that is, if a
reply record is generated and hooked, and a %read message with the return address initialized

106

i export table
EX referanced

Ret | =+ @

export table Ycancel(X,Ret) —=

return address

(1) Sending a Ycancel message.

X export table
EX raferancad
" .,_..I -|...F Ty
" Ly
Ret :T'!P :

JBey

export table -=+— Yrelease(Ret)

return address

{2) Release of the reply record.

Figure 7: Reclamation of reference loops created by remote value fetch

is sent, termination of forwarding is guaranteed. Even when a §read message goes into a
reference loop, it is guaranteed that the message reaches such a processor where the referenced
cell is an external reference with reply records. However, this hooking reply records scheme
has the following serious disadvantages (figure 5);

¢ It is necessary to generate useless reply records even when a reference loop does not
exist;

+ An Jlanswer.value message cannot be returned directly; it is returned along the same
path as a ¥read message passed through.

To cope with reference loops, we have introduced a counter for a ¥read message which
indicates the maximum number of forwarding. The value fetching scheme using the counter
is called using a counfer scheme. .

An original ¥read message is sent with the counter initialized. When a referenced cell is
an external reference with no reply records, the value of the counter is checked. If the value is
more than one, the §read message is forwarded with the counter decremented. If the value is
one, the value fetching operation is originated; a reply record is generated and hooked, and a
#read message is sent with both the counter and the return address re-initialized (figure 6).

Setting the initial value of the counter at the number of processors, it is expected that
no useless reply records are generated and an Yanswer_value message is always returned
directly to the original external reference.

Loops Created by Remote Value Fetch

This subsection describes a scheme which can reclaim reference loops created by remote value
feteh operations.

107

If an external reference that has already sent a read request has neither associated goals
nor reply records awaiting for responses, the read request can be canceled. A cancel of a
read request leads the release of the reply record which memorizes the return address of the
canceled read request, and the loop can eventually be reclaimed.

Reclamation of reference loops are performed as a part of a local garbage collection.
Details of operations are as follows. On each external reference X that has already sent a
read request but has neither associated goals nor reply records awaiting for responses, the
following cancel request message is sent to the processor referenced by X.

%cancel (X,Ret)

Ret is the refurn address which indicates the read request to be canceled.

When the {cancel message arrives at a processor, if the referenced cell has a reply record
with the same return address, the record is released and a {release message is sent back to
the return address (figure 7). If the cell has a concrete value, nothing is done. This is the
case that an }answer_value message has already been sent.

5 Summary

In a distributed KLIC implementation, interprocessor reference loops can be created by both
unification and remote value fetch operations. To cope with reference loops, we invented the
following schernes,

* A remote value fetch scheme which ensures termination of forwarding a read request.

¢ A collection scheme which can reclaim reference loops created by remote value fetch
operations.

The remote value fetch scheme is based on counting the number of forwarding. Collection
of reference loops is performed by cancellation of read requests.

References

[1] K. Rokusawa, A. Nakase, and T. Chikayama, “Distributed Memory Implementation of
KLIC," Proc. Workshop on Parallel Logic Programming and its Programming Environ-
ments, lechnical Report CIS-TR-94-04, University of Oregon, pp.151-162, March, 1994.
Also ICOT Technical Report, to appear.

[2] K. Ueda and T. Chikayama, “Design of the Kernel Language for the Parallel Inference
Machine,” The Computer Journal, Vol.33, No.6, pp.494-500, 1990.

[3] K. Nakajima, Y. Inamura, N. Ichiyoshi, K. Rokusawa, and T. Chikayama, “Distributed
Implementation of KL1 on the Multi-PSI/V2," Proc. International Conference on Logic
Programming, pp.436-451, 1989,

[4] K. Hirata, R. Yamamoto, A. Imai, H. Kawai, K. Hirano, T. Takagi, K. Taki, A. Nakase,
and K. Rokusawa, “Parallel and Distributed Implementation of Concurrent Logic Pro-
gramming Language KL1,” Proc. International Conference on Fifth Generation Com-
puter Systems, pp.436-459, 1992,

108

[5] N. Ichiyoshi, K. Rokusawa, K. Nakajima, and Y. Inamura, “A New External Refer-
ence Management and Distributed Unification for KL1,” New Generation Computing,
Ohmsha Ltd., pp.159-177, 1920.

[6] T. Chikayama, T. Fujise, and D. Sekita, “A Portable and Efficient Implementation of
KL1,” Proc. International Symposium on Programming Language Implementation and
Logic Programming, LNCS 844, pp.25-39, 1994.

109

