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Abstract

We added distributed processing functions to KLIC and developed “Handy Distributed
KLIC System” called HAYDHN. It is useful for the research on distributed AL HAYDN
allows multiple KLIC programs to be executed rather independently on multiple UNIX
WSs to solve problems cooperatively, We realized communicalion among processors using
sockets. We adopted client-sever model as logical configuration among multi-processors,
We designed protocols between a server and clients, and implemented this system on
top of KLIC 1.410. We are planning to build several application programs running on
HAYDN such as an airplane reservation system and an or-parallel MGTP.

1 Introduction

KL1, a concurrent logic programming language developed at the Institute for New Generation
Computer Technology(ICOT), was originally executable on only few machines such as P51,
Multi-PDI and PIM[1]. KLIC,a new implementation of KL1, compiles KL.1 programs into C
programs so we are now able to use KL1 on most workstations and personal computers(2].

This paper describes design and implementation of a handy distributed KLIC system
called HAYDN. It runs on UNIX worksations connected by network. HAYDN aims to provide
a handy tool for writing distributed programs as well as concurrent programs on network-
linked UNIX workstations.

To realize HAYDN, we adopted a client-server model for achieving communications among
processors. We also extended KL1 by adding several commands for communications. The
extended language is called Distributed KL1 {(DKL1).

DKL1 makes it possible to realize such distributed systems that are hard to describe in
KL1, e.g. on-line tickets-reservation systems and on-line banking systems. Thus, DKL1 is
adequate for a larger problem domain than KL1. To show its ability, we will see a tiny
airplane tickets reservation program in section 3.1.

It is also possible to modify KL1 programs into DKL1 programs by adopting message
oriented programming style. We will try to convert an MGTP program written in KL1 into
an equivalent program in DKL1 in section 3.2.
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2 A Handy Distributed KLIC System HAYDN

2.1 Design philosophy of HAYDN

HAYDN aims to realize concurrent and distributed systems based on uni-processor KLIC
systems. It allows multiple KLIC programs to be executed rather independently on multiple
UNIX WSs to solve problems in cooperation. We designed HAYDN as simple as possible to
minimize modification of KLIC and KL1.

As a logical architecture of HAYDN, we adopted a client-server model on communication
among processors. This model makes communication protocols and corresponding language
extentions very simple. The entire system consists of a server and several clients(Figure 1).
Both of the server and the clients are written in KL1 and compiled by KLIC compiler. There
i8 no limitation on the number of client. Clients never communicate with each other directly,
but always through the server.

server

client client client

Figure 1: Outline of HAYDN — a client-server model

Communication between a server and a client is very simple. It is done using ground terms;
i.e. variables cannot be used in a message to avoid problems about distributed unifications.
The server should be already in execution before any client is invoked. Each client makes
connection with the server in the first step. After connection is made, all the client can do
is to send a ground term to the server, or receive a ground term from the server, The client
sends a term with a tag, an arbitrary chosen symbol. The server add a pair of the tag and
the term to a data queue. Clients must specify a tag in case of data retrieval. The server
checks whether the tag exists in the data queue. If it exists, the corresponding term will be
immediately returned. Otherwise, the server put the message into a wait queue.

HAYDN is realized by the es module which contains only connect /4. The description of
connect/4 is as follows:

cs:connect(Host,Port,Name,Stream)

An internet domain socket of the host specified by a string Host and a port number Port is
opened. A client name should be given by an atom Name. Following functors are available
to construct a ferm for a normal Stream, each of which instructs a certain communication
with the server.
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o put(Tag,Term)
Send Term with an atom Tag to the server. We can use atoms, funetors, numbers and
strings as Term.

e get(Tag,Term)
Send a request for an atom Tag to the server. If the server already has a term for that
Tag, The result will be immediately put into Term. If not, wait for another client
coming after to put the Tag into the server.

 nget(Tag;Term)
Same as get(Tag,Term), except for the behavior when the server has not received
a term for the Tag yet. nget(Tag,Term) does not wait for another client, whereas
get(Tag, Term) does. )

* dbcontrol(Message)
Send a control message Message to the server. There are two messages provided now.
— list
Show contents of the data queue in the server.

— clear
Initialize the data queue in the server, i.e. clear all data.

The client-server model makes it possible to designate a destination processor of commu-
nication. This ability can be used to realize distributed systems which are dominating in real
life applications. See section 3.1 for detail.

Since we specify a logical symbol as a message destination, it is also possible to send a
message without knowing physical address of the destination, provided both sides use the
same logical symbol. See section 3.2 for detail.

2.2 The implementation of HAYDN

We wrote the entire HAYDN system in KL1 to make it portable. Communication among
processors is implemented by UNIX sockets.
Let us illustrate how communication predicates shown in section 2.1 work in a program.

| Predicate | Message from client to server | Return from server to client |

::s:cunneEEHost?Purt,Namn,Stream} connect | Name [\n

put(Tag, Term) put n —
get(Tag, Term) get Term [\n
nget(Tag,Term) nget @ n
dbeontrol(Message) dbcontrol 11 -

— close\n

In sending process, Term is transformed in the following manner:
Functor Name(Functor_Argl Functor Arg2 Functor Args ...)

is transformed into
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Functor Name Functor_Arity Functor_ Argl Functor_Arg2 Functor Arg3

Of course, Functor_Arguments can be also a functor. For example,

“functor, (arg,, functor,(functors(arg,), arg,))”

is transformed into
“functor; 3 argy 0 functory 2 functory 1 arg, 0 argy 0"

In fact, terms are going through the socket stream in this transformed format.

A server accepts connection from clients, reads requests, and serves for each request,
concurrently (Figure 2). Service of get, nget and put are always done through the database
(‘db’ in Figure 2). All the results of ‘service’ will be merged and owned by database. The
data queue mentioned in the earlier section is realized by this merged results. The database
has one more queue, the wait queue. A tag might not exist in the data queue when clients
specify the tag to retrieve a term. There is no problem if the message is nget. In case of get,
however, the client must wait for the tag till it will be put into the quene by another client.
The database memorizes such jobs by putting them in the wait queue. In service for puf, the
database checks the wait queue first whether there are hanging requests for the tag. If it finds
any, it gives a term to the waiting jobs, in addition to putting it into the data queue.

Messape from client __

.= Message from client

-

L

I.I.l.--}'l.l-'II.‘I.-.‘-'I.-I-'IIl--l.l'l:‘u\l..“'I-I-'I-I-ll'lll"iliiiiil‘-

’ ™

Message from client TEmsemeee Messaee from client

Figure 2: Mechanism of server

Let us see a very simple KL1 program as an example to send some terms to the server
and receive them back from the server.
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:= module main,

main :- ce:connect(string#"soukckn”,10003,test, [dbcontrol (clear)|8]),
put(§,81),
get (51, [1), _
io:outstream([print(S),nl]).

put(S,s1) :- 8 = [put(a,blc)),put(b,c(d)),put(c,e(£))|s1].
get(5,51) :- S5 = [get(a,X),get(c,¥)|S1].

This program initializes the data queue and sends three terms with tag a, b, ¢. Then it
retrieves terms with tag a and e.

2.3 Efficiency

1500
Following are two programs for calculating Z i. One is using HAYDN, and the other is not.

i=1
» PROGRAM 1 (Using HAYDN)
500 1000 1500
We use four clients. The first, second and third clients caleulate Eaﬁ, E i and Z %,
i=1 =501 i=1001

respectively. The forth client gathers the result of other three clients through the server
and outputs sum of them.

» PROGRAM 2 (Not using HAYDN)
1500

Simply ealculate Z i by the single process.
=]
1500
When caleulating ) i, no difference exists between execution time of PROGRAM 1

=1
G000000

and PROGRAM 2. However, in case of calculating z i, there is a big difference between
i=1
them; 1 seconds for the former and 3 seconds for the latter.
So, we can say HAYDN programs can be much faster than equivalent KL1 programs if
each of divided jobs is large enough compared to communication, though we should be careful

to estimate gain and loss when writing programs.

3 Application of DKL1

3.1 A simple airline reservation system

DKLL1 is designed to make it possible to realige such distributed systems that has some
difficulties when written in KL1.

In KL1, the processor for each goal is automatically determined by KLIC system. There-
fore it is impossible, in general, to specify a processor for a certain goal. This is reasonable
when programs run on a multi-processor machine, but the situation will change when we deal
with distributed systems. Considering a simple request-and-reply system, for example, the
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reply should be processed at the same host the request comes from. In DKIL1, programmers
can write such a designation by specifying tags which represent proper names of hosts.
Following is a simple airline tickets reservation program called SATR to show the expres-
sive power of DKL1 as a programming language for distributed systems 1.
SATR consists of two kinds of clients: a SATR manager and SATR windows. It is possible
to have more than one SATR windows so that we can make reservations in different places
at the same time. A client configuration of SATR is shown in Figure 3.

DKL1 SYSTEM SERVER
reserved
reserve!
cancelled
// k \ RBN cancell!
DATABASE DKLI
| SYSTEM

| CHEWSI

SATR SERVER SATR CLIENTS

Figure 3: A client configuration of SATR

The manager program shown in Figure 4 consists of eor/2 and record/5. The process
eor/2 plays a role of generating new database entries. The process record/5 plays a role
of managing a reservation condition for each request. These processes construct an object-
oriented database where each entry is an individual object,

Asyncronous ifo is essential to these problems. Assume that asyncronous i /o was not
supported. Then, the get_requests/2 program shown in Figure 5 would suspend, even if
there were other ready goals, until the HAYDN server received a message with a 'db’ tag.
DKL1 supports asyncronous i/o because the latest version of KLIC supports it.

3.2 A theorem prover MGTP

MGTP is a theorem prover developed at ICOT(3][4]. It tries to build models in a bottom-up
fashion. The original MGTP is written in KL1 and runs in parallel on PIM, the dedicated
parallel processors for KL1. To investigate expressive power of DKL1, we selected MGTP as
a target program to be converted into DKL1.

At first, we describe the structure of original MGTP program briefly. Figure 6 shows its
program structure,

In “mgtp” predicate, if no more candidate exists, the answer for that problem is “sat-
isfiable” (model is found). If it fails, that is, the current model satisfies antecedent of a
negative problem clause, its branch is “closed” and if all branches are “closed”, the answer
is “unsatisfiable”. If the consequent of a selected clause is satisfied (i.e., it is redundant with

'We took no account of the problem concerning authenticity.
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% eor( +MsgToDB, -PutMsgToSvr )
eor( [insert{Num,Name)|RestMsg] ,PutMsgToSvr }:- true |
record( ReatMsg, MagToNext, Num, Name, PutMsgToSvri ),
eor( MsgToNext, PutMsgToSvr2 ),
merge ({PutMsgToSvrl, PutMsgToSvr2}, PutMagToSvr) .
eor( [reserve(Mado,Name) |RestMsg] ,PutMsgToSvr ):= true |
PutMsgToSvr=[put(Mado,full) |RestPutMsgToSvr],
eor( RestMsg, RestPutMsgToSvr ).
eor( [cancell(Mado,Name,Num) |RestMsg] ,PutMsgToSvr ):- true |
PutMsgToSvr=[put (Mado,notfound }|RestPutMsgToSvr],
esor{ RestMsg, RestPutMsgToSvr ).
eor( [1, [1 ).
% record( +MsgToDB,-MsgTolNext,+Num,+Namel,-PutMsgToSvr )
record( [reserve (Mado,Name) |RestMsg] ,MagToNext ,Num, Namel,PutMsgToSvr ):-
Nemel = empty |
PutMsgToSvr = [put(Mado,reserved(Num)) |RestPutMsgToSvr],
record( RestMsg, MsgToNext, Num, Name, RestPutMsgToSvr I,
record([reserve(Mado,Name) | RestMsg] ,MagToNext ,Num, Namel,PutMsgToSvr }:-
Namel \= empty |
MsgTollext = [reserve(Mado,Name) [RestMsgToNext],
record( RestMsg, RestMsgTollext, Num, Namel, PutMsgToSvr ).
record([cancell(Mado,Name,Num) |RestMsg] ,MsgTolext , Num,Name , PutMsgToSvr) : -
PutMsgToSvr = [put(Mado,cancelled) |RestPutMsgToSvx],
record( RestMsg, MsgToNext, Num, empty, RestPutMsgToSvr ).

record([cancell (Mado,Name ,Num) |RestMag] ,MsgToNext , Numl,Namel,PutMsgToSyr ):

(Fum1 \= Num) |

MsgTolext = [cancell(Mado,Name,Num) |RestMsgToNext ],

record({ RestMsg, RestMsgToNext, Numl, Namel, PutMsgToSvr ).
record([insert({ ¥um,Name )|RestMsg] ,MsgTollext,Numl,Hamel,PutMsgToSvr ):~

MsgToNext = [insert( Num,Name )}|RestMsgTolext ],

record( RestMsg, RestMsgToNext, Numi, Namel, PutMsgToSvr ).
record([], MsgTolext, Num, Name, PutMsgToSvr ):-

MagToNext=[].

Figure 4: SATR manager program

-

p

% get_requests( -GetMsgToSvr,-RgMsgToDB ).
get_requests{ GetMsgToSvr,RgMsgToDB ):- true |
GetMsgToSvr = [get(db,Rq) |RestGetMsgTolvr],
RgMsgToDBE = [Rq|ReatRqMsgToDRE],
gotten_requests( Rq,RestGatHngnSur,HasthHs?TnDB 3.
gotten_requests( Rq, RestGetMsgToSvr, RestRqMsgToDB ):- Rq \= finish |
get_requests( RestGetMsgToSvr, RestRgMsgToDB ).
gotten_requests{ Rq, RestGetMsgToSvr, RestRgMsgToDB ):- Rq = finish |
RestGetMagToSvr=[1,
RestRgMsgTeDB=[].

Figure 5: A program which needs asynchronous ifo
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redundant

no more candidate

non redundant sat
and conjuncti mgtp
update model I edariant
and disjunctive

/
[ooe ] [ ] oo

— = :control flow

Figure 6: Structure of original MGTP program

respect to the current model), it neglects the clause and repeats this process by calling itself
recursively. If the consequent is unsatisfied (non-redundant) and the clause is conjunctive,
the model is updated. If the state is non-redundant and the clause is disjunctive, it calls “cas-
eSplit” predicate. This predicate is defined recursively. It adds disjunct case to the new model
expansion candidate, and calls “mgtp” predicate, taking the new candidate as its argument.

The feature of this program is that all activations of all “mgtp”s are done by recursive
calls. In program code, “mgtp” and “caseSplit” predicates are defined recursively.

To convert KL1 programs into DKL1 ones, we need to divide them into modules each of
which is to be allocated to a (logical) processor. Then, we need to design messages among
those modules.

Figure 7 shows an image of the module configuration of distributed MGTP, which we are
implementing on HAYDN, and messages Howing among them.

In this figure, {---) show conditions to select that message-sending actions. The major
difference of these two programs is control mechanism. While recursive calls are mainly used
in KL1 version, message passings are used in DKL1 version.

We prepare a “manager” module for collecting answers from each branch. An “mgtp”
module sends a message to a “manager” module, or to another “mgtp”module. For example,
if the result of a certain “mgtp” module is “fail”, it sends a “closed” message to the “manager”
module. There are two more messages, “case_splited”, “sat (model)”, to be sent to the
“manager”. If the state is non-redundant (either conjunctive or disjunctive cases), it sends
the message to ask for solving sub-problems to another “mgtp”. When an “mgtp” receives a
new sub-problem, it repeats the same process described above.

Unlike the original program, the DKL1 program has a fixed number of “mgtp” modules,
and does not create additional “mgtp”s in the process of solving problems. On the other
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Figure T: Image of distributed MGTP which we are implementing

hand, each “mgtp” performs perpetual invokation. Another feature of this program is the
separaiton of invoking for perpetual process and processing sub-problems, while “mgtp” in-
vokation for perpetual process is done by recursive call, sub-problem solving is activated by
message passing.

Next, we explain implementation details of distributed MGTP on HAYDN. Figure 8 shows
the client-server model for it. In figure 7, the “manager” module is a kind of server collecting
answers of all branches. However, in relation to the “DKLI1 system server”, it is one of
clients. So, when message passing occurs, the “DKL1 System Server” mediates between the
“manager” module and “mgtp” modules (dotted lines in the figure). On the other hand, the
“DKL1 System Server” itself plays the role of “sub-problems pool”. If the state of executing
“mgtp” module is “non-redundant”, it puts a sub-problem to the server with infomation of
D and M, where D means model expansion candidates, and M means model candidates.

At the beginning, an “mgtp” module gets a sub-problem from the server through mes-
sage “get(to_mgtp, (D, M))”, and if it expands a branch, it puts a sub-problem to the
server through message “put(to_mgtp, (D, M))". If it does not expand a branch, that is,
the branch is terminated, it puts the result of the branch to the server through message
“put(to_manager,message(closed or model({M) or case_splited))”. In this way, communication
among modules is realized by message passing.

To clarify the difference, we show the essential parts of the two program codes below.

<original> |<distributed>
mgtp(D,M,Cn,Cg,5, . ........ .,08-0z):- | mgtp(S,Cn,Cg,D,H):-
.........
,,,,,,,,, I
#F F 4B @ omoEw | --------
mgtp(liewD, [DeltalM}l,........... Oy-0z)) | S=[put(to_mgtp, (NewD, [Delta|M]})|S1]

Another difference is the method for collecting answers. Answers are collected via message
passing to the “manager” module. Three types of messages, “closed”, “case.splited” and
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DKL1 System Server

mgtp  clients

DKL1 System Clicnts

Figure 8 Client server model for the MGTP on HAYDN

“model( M)” are used to inform solutions to the “manager”. The final answer is decided by the
set of answers for all branches. If a model exists, the final answer is “satisfiable”, otherwise
(if no model exists, that is, all answers are “closed”), the final answer is “unsatisfiable”.
Precisely speaking, in our program code, the module of finding the final answer is not the
“manager”, but “checkSatUnsat”. This module decides the final answer by investigating
“Models”, generated by the “manager” module.

Next, we explain termination detection in the “manager” module. We cannot use differ-
ence list and the short circuit technique because of the limitation on message passing that
only ground terms can be used. The “manager” module counts visited terminal nodes, and
when the count becomes equal to 0, it detects termination. When it receives a message of
“case_splited”, the number of open nodes increases by one, but when it receives a message of
“closed” or “model( M)", the number decreases by one since one of open nodes is lost. There-
fore, “manager” module not only collects answers of all branches but also detects termination
by counting the number of visited terminal nodes.

To make the entire “mgtp” module as a perpetual process, we added a recursive call
to itself. This recursive call allows multiple theorems to be proved concurrently in a single
tail recursive process. This strategy solves the problem of handling indefinite number of
sub-theorems in proving a theorem by a fixed number of processors.

4 Conclusion

We designed a language DKL1 as an extension of KL1 to write distributed programs. It
is a very slight extension of KLIC so that it can be easily installed on any UNIX machines
connected with networks. We also developed a run-time supporting system HAYDN on which
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DKLI1 programs can run in parallel and distributed way. ‘The entire HAYDN system is written
in KL1 to make it readable, portable and maintainable.

We adopted client-server model to realize communications among prosessors. All messages
are sent to other (logical) processors via a central server located at some workstation.

We showed two programs to prove the feasibility of DKL1 and HAYDN. The first one is
a gimplified airline reservation system, which makes each UNIX workstation as a terminal for
ticket reservation. We selected this example to show the expressive power of DKL1/HAYDN
as a distributed programming language /system.

The second one is a concurrent theorem prover, MGTP. We succeeded to convert original
MGTP in KL1 to a distributed version with relatively few efforts by adopting message oriented
Programming,.

There are several research problems to be done in the future. First, we need to improve
our current implementation of HAYDN. We have not fully evaluated the preformance of
HAYDN architecture yet. We recognize that there are two major problems to be solved in
order to attain a reasonable performance on HAYDN; one is an overhead of ground term
communication via socket and the other is a2 communication bottle neck in a single server.

Second, our experiences of writing DKL1 programs are not enough and we need to write
programs extensively in order to develop programming techniques for DKL1.

Finally, we want to find applications for real use to show the feasibility of our approach
in the fields of both distributed and concurrent systems.
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