66

Proc. of FGCS "84, ICOT, Tokyo, December 1994

KLIC: A Portable Implementation of KL1

TETSURO FuJise, TAKASHI CHIKAYAMA
KAZUAKI ROKUSAWA, AKIHIKO NAKASE

Institute for New Generation Computer Technology
4-28-21F, Mita 1-chome, Minato-ku, Tokyo 108, Japan
{fujise, chikayama, rokusawa, nakase}@icot.or.jp

Abstract

This paper describes an overview of the implementation
of KLIC, KLIC is a portable implementation of a coneur-
rent logic programming language KL1. The seguential
core of HLIC shows reasonable efficiency in both time
and space aspects. Two kinds of parallel implementa-
tion on a distributed memory and a shared memory, are
designed with the policy to retain the efficiency of the se-
quential core. To realize this, the parallel processing por-
tion of the implementations is built on generic objects,
which provide a framework for flexible extensions with-
out even slightly changing the core implementation.

1 Introduction

KLIC is a portable implementation of a concurrent logic
programming language KL1, based on FGHC[19]. KL1
has been proved to be a practical tool for parallel pro-
cessing software research through the development of the
FIMOS operating system[4] and various application sys-
tems on parallel inference machines Multi-PSI[16] and
FIM[11] in the Japanese Fifth Generation Computer Sys-
tems project.

Although KL1 runs efficiently on those parallel infer-
ence machines, such implementations have a serious dis-
advantage in that they are not portable and cannot be
used on commercial machines. To solve this problem,
a scheme that allows a very portable implementation
of compiling into C was investigated. The language C
was chosen as the intermediate language, because there
are widely available compilers with excellent optimiza-
tion quality for the language nowadays. Varions demer-
its exist in using C as an intermediate language, we have
designed an implementation scheme which detours them,
and built KLIC.

‘The sequential core of KLIC shows reasonable effi-
ciency in both time and space aspects. It runs about
twice as fast as the native code generated by SICStus
Prolog(2] for benchmark programs on SparcStation 10

model 30. The code size becomes larger than abstract
machine cade but is found to remain reasonable.

We designed the parallel implementation with the pol-
icy to retain the efficiency of the sequential core of KLIC.
To realize this the parallel processing portion of the im-
plementaion is built on generic objects.

Generic Objects provide a framework for fexible ex-
tensions of the implementation. The framework is
object-oriented so that the core implementation does
not have to know the representation nor manipulation
of generic objects. When some manipulation is required
on generic objects, the core asks the objects. Ceneric ob-
Jecks realized full functionality of the system with quite
coneige core implementation.

Features of KLIC implemented upon generic objects
include built-in data types with foreign language inter-
faces, as well as multiple parallel implementation.

Two kinds of parallel implementation of KLIO are
designed, called a distributed memory implementation
and a shared memory implementation. The distributed
memory implementation is based on a message passing
scheme; the shared memory implementation is based on
a shared heap area accessing scheme,

This paper gives an overview of implementation of
KLIC and the structure of this paper is as follows. Sec-
tion 2 describes the efficient technique of the compiling
KLI into C program. Section 3 describes the sequential
core of KLIC, generic objects are described in Section 4.
In Section 5, two kinds of the parallel implementation of
KLIC are described. Section 8 gives a summary followed
by concluding remarks.

Note that the KLIC system is described in [6).

2 C as the Intermediate Lan-
guage

Language C was chosen as an intermediate language,
mainly for establishing higher portability, The merits
of using C and the difficulties as following faced upon

translating KL1 programs to efficient C programs are
summarized, and our solution o this problem is given.

2.1 Merits of Compilation into C

There are various merits in using C as the intermedi-
ate language to implement KL1, among which important
ones are the following:

Portability The implementation can be made quite
portable, Porting the system will require only ad-
justing some switches and recompiling.

Low-level optimization Some © compilers provide
very good low-level optimization. By letting the C
compiler take care of low-level issues, the language
implementation can concentrate on higher-level op-
timization issues,

Linkage with foreign language programs
Linking K11 programs with programs written in C
becomes quite easy.

2.2 Efficiency problems

Although compiling inte © has the above-mentioned ad-
vantages, il is not easy to realize a reasonable efficiency
for langeages with an execution model guite different
from C, such ss K1, Typical efficiency problems in-
clude the following:

Costly funetion calls The C language and its imple-
mentation is designed with fairly large functions in
mind. Although function invocation and parameter
passing cverhead itself may be regarded not wery
large, dividing programs into functions makes pro-
gram analysis more difficult, often resulting in less
efficient objéct code. KL predicates are usually
very small, often as small as one line of O code.
Many of themn are recursive, making inline expan-
sion impossible. Thus, naive strategies such as com-
piling each K11 predicate into one O function may
result in guite inefficient code and should be not be
used.

Register allocation control Certain
global data, such as the free memory top pointer,
is accessed very frequently. It would be best to keep
such data in dedicated registers during the whole ex-
ecution. In mest C implementations, however, such
control of register allocation is not possible.

Provision for interrupts Multiprocessor imple-
mentation should process interrupts from other pro-
cessors. Interrupts may require allocating memery,
enquencing goals or instantiating wvariables. Data

67

accessed In these operations 1s also frequently refer-
enced and altered within the processor. Thus, data
locking or inhibition of interrupts may be required.
These are quite costly under conventional aperating
gystems.

Object code size Compiling logic programming lan-
guage programs tends to produce large native ma-
chine object code. Intreased working set sometimes
results in performance worse than an abstract ma-
chine interpreter. When compiled through C, this
code size increase might be amplified. Using run-
time subroutines may reduce the code size but may
also reduce speed.

2.3 Solutions

Our solutions to the efficiency problems described above
are as follows. -

One module as one function Compiling the whole
program inte one function may be the best for re-
ducing function call overhead. However, this will
prevent separate compilation, which will be a seri-
ous problem with programs of practical size. Qur
solution is to let the user control the size of compi-
lation. Each "module”, which defines a set of closely
related predicates is compiled into one C function.
As far as predicates within the same module calling
one another, control transfer is by goto and argu-
ments can be passed through local variables, which
might be allocated on machine registers.

Caching global variables To access to frequently ref-
arencad global variables with minimal everhead,
such variables are cached in local variables. O com-
pilers may allocate them on registers; even if not, ac-
cesses to local variables are less costly than to global
variables with most modern processor architectures.
Certain care should be taken to synchronize with
interrupt handling. Even for synchronized runtime
subroutines, passing all the cached wvariables back
and forth is quite costly. Fortunately, we could de-
sign & maintenance principle for such variables so
that only small numbers of them be passed and re-
turned in most cases.

Efficient synchronization with interrupts

Signal handlers are made to set a certain flag, which
is examined when convenient for normal processing.
This synchronizes interrupt handling with normal
processing without expensive interrupt inhibition.
This flag check is combined with a mandatory, heap
overflow check for garbage collection, and thus made
virtually costless.

runtime routines for exceptional cases
Read fwrite modes of variable occurrences can be
decided during compilation much more easily for
KL1 than for Prolog. Commen ceses are handled
in-line while exceptional cases are dealt withoul sig-
nificantly slowing execution.

3 Implementation of the Se-
quential Core

This section deseribes an outline of the experimental im-
plementation of the sequential core, and its empirical
evaluation results.

3.1 Experimental Implementation

This section describes the sequential core of our experi-
mental implementation. The parallel implementation is
built on this sequential core.

3.1.1 Data Representation

Every KL1 term is represented by a word (Fig. 1). The
lowest 2 bite are used for basic data type tags, The rest
reprezents an address or immediate data. Tags have to be
removed to access memory referenced by tagged pointers,
but this can be done easily by giving small offsets to
register-based memory accesses. The tag bits distinguish

g -
g aelangiss

reference: [eddress | [0 2

cons: address ﬁ%!-| cdr |

funictor: Lm_@/ﬂ_ functorid |1
arguments
varlable: »[acdress , J05
-

(2] primary tag bits (2)

Figure 1: Basie Data Type

the following four basic types.

variable reference: The data part has the address of
a variable cell. Uninstantiated variables are self-
referential pointers as in WAM[20]. Variables with
goals awaiting for their instantiation will be de-
scribed later,

atomic data: For atomic data, 2 more lowest bits of the
data part are used as a tag extension, which distin-

guish symbelic atom, integer, etc. The remaining
bits represent the value.

cons: The data part has the address of a two-word mem-
ory block for the cell.

functor: The data part has the address of a memory
block of a functor structure. The lowest bit of the
first word of the block differentiates functor strue-
tures from generic data objects (zee Sect. 4 for rep-
resentation of generic objects.) For functor struc-
tures, the word contains a functor identifier. The
rest is used for arguments.

The KLL implementations on PIMs have a single refer-
ence count in peints which allowed incremental garbage
collection and destructure updates [3]. We decided not
to adopt this scheme because no more tag bits can be
efficiently manipulated on widely available hardware.

Atom and functor identifiers are determined at com-
pilation time. The compiler driver keeps a database of
atoms and functors used in the programs of a project and
generate C header files with their definitions as macros.
Separate C compilation iz possible because definitions
are only added and never deleted.

3.1.2 Goal Management

Ready goals are represented as poal records in the heap
area (Fig. 2), and put into a LIFO goal stack, which is
a linked list of goal records. In each reduction step, the
topmost goal is poped up from the stack, reduced ac-
cording to the program, and the resultant child goals, if
any, are pushed back to the stack, except for the leftmost
one, which iz executed immediately. The second field of

=" NexI goal in the goal stack

——

Pointer to Module {C Function}
Predicate ID | Arity
Predicate Descriptar

Arguments

Figure 2: Goal Record

a goal record has a pointer to a predicate descriptor that
contains a pointer to the code corresponding to the mod-
ule {a C function) it belongs to, the predicate ID within
the module (an integer), and the number of arguments.
The rest contains arguments of the goal.

As KL1 allows programs to specify pricrity for each
goal, either statically or dynamically depending on the
partial results of computation, there can be multiple
goal stacks corresponding to priority levels. The priority
mechanism has been found to be very useful through ap-
plication software research on PIM systems in describing

various algorithms with speculative computation, and
now is an indispensable feature of KL1. The last en-
try in the goal stack is a sentinel goal which schedules
the goal stack with the next highest priority. The lowest
priority goal stack uses the sentinel goal for termination
detection. ‘

Goal records are allocated om the heap with other
data. This allows allocation of variable cells within goal
records, which reduces the working set size and derefer-
ence cost, On the other hand, goal records are not reused
incrementally, increasing parbage collection overhead.

A variable with goals waiting for ite initiation iz also
represetited by a pointer with the variable reference tag
{Fig. 3). The pointer part references a suspension record

variable cefl

-Ig-&"-lh - =

Figure 3: Suspended Goals

that starts & list of Rook records. The first word of the
suspension record contains a pointer back to the variable
making a two-word loop®. The rest of the suspension
record contains a heek record that records & goal waiting
for the variable's value. Hook records, including the first
one in in the suspension record, are linked by their first
wards to form a loop. This loop allows efficient unifica-
tion of two variables each with many suspended geoals.
The first field of goal records for suspended goals is
used to keep their priority values, rather of linkage as
for the goal stack. The lowest bit of the field is set for
suspended goals. A goal awaiting for instantiation of
one of a set of variables is referenced from multiple hook
records. When the goal is activated by instantiation of
ene of the variables, it is sent back to the goal stack. As
the first word of the goal record is used for chaining the
goals in the stack, the lowest bit of the word is naturally
cleared. On instantiation of other variables in the sef,
goals put back already can be recopnized by this bit,
The hook records are deleted and reclaimed only by
the garbage collector. Recognizing them as invalid at

YThis tdea is originated Hircshi Nakashima.

variable instantiation is less costly than incremental dele-
tion, but may burden the garbage collector further,

3.1.3 Heap Area Management

The heap area is organized as shown in Fig. 4. Memory

exceptional

e

Figure 4: Organization of Heap Ares

heap bop pointer -

heap linvit

allocation is usually made from the heap pointer down-
wards. At the end of each reduction, the heap pointer
ia compared with the heap limit, If it poinfs helow the
limit, the garbage collector will be invoked. The garbage
collector uses a copying scheme with modifications to
cope with directly referenced structure elements.

Allocations in certain runtime subroutines, such as
those implementing some of the built-in predicates, are
made with the system heap pointer which points to the
bottom of the free heap area upwards. C allows only
a one-word value to be returned efficiently as the result
of functions. Refurning multiple values has to be done
through global variables or by passing variable addresses,
which are significantly slower. Thus, for subroutines that
allocate memery only in exceptional eases, it is more effi-
cient to avoid passing and returning the heap top pointer.

When allocations are made at the bottom, not only the
system heap pointer but the heap limit pointer as well
is moved upwards by the same amount, always keeping
a certain gap between the system heap pointer and the
heap limit. The size of the gap is kept greater than
the maximum memory allocation in one poal reduction
made in the compiled code. Runtime subroutines check
this dynamically at memory allocation.

When the garbage collector copies data from the old
space to the new space, it makes no distinetion between
the systermn heap and the normal heap; active data in the
system heap is copled to the top of the new space.

3.1.4 Interrupt Handling

Cn multiprecessor implementation, normal goal reduc-
tions may be interrupted by other workers. On inter-
rupts {e.g. Unix signal), the signal handler will be used
only for notifieation of interrupts: it will set a flag in

T

a global variable and, at same time, medify the heap
limit?, so that the check at the end of the current reduc-
tion will find it. The garbage collector called through the
check can examine the flag and determine the need for a
garbage collection and/or interrupt handling, The inter-
rupt handler will be called as normal processing. Thus,
no extra interrupt checking is required during normal
processing, except that the heap limit has to be stored
in memaory.

The same mechanism s used to notify and resume
newly available goals with higher pricrity, by instantiat-
ing their hooked variables. It ia also used by the stepping
tracer.

3.2 Performance

We compared the sequential core of KLIC with a rep-
resentative Proleg system, SICStus Prolog version
2.1 patchlevel 8, and two experimental logic program-
ming systems, Aquarius Prolog version 1.0[10] and
JC version 2.0[9], a Janus[18] to C compiler. For SIC-
Stus, both native code{fastcode) and abstract machine
code(compacteode) were measured,

The execution time for the benchmark programs are
shown in Table 1.

Table 1: Comparison of execution time
_program K Si. Sc A J
nrev 2,430 | 4,789 10,440 | 1,610 2,740 |
qeort 3,300 | 7,320 14,980 | 1,920 3,240
times1) | 2,430 | 5,659 12,569 | 3,090 3,240
dividelD | 2,900 | 5,890 14,300 | 3,240 4,370
loglo 1,060 | 3,319 6,209 | 1,830 1,670

ops& 1,620 | 4,460 9,270 | 2,560 2,330
primes | 1,600 | 2,869 5340 | 2,780 2,170
tak 3,620 | 6,789 14,820 | 1,460 1,590

mean | 2,205 | 4,008 10,343 | 2,219 2,532

K: KLIC; 5f: 5ICS5tns Tastcoede; Sc: SICStus compactcoode;
A: Aquarius; J: JC. Timing data are in milliseconds. The “mean”
shows geometric means,

When compared to SICStus, the sequential core runs
about twice as fast as native code and 3 1o § times as
fast as abstract machine code. Aguarious and JC show
similar speed with the sequential core. Both consider-
ably outperform the sequential core with tak. One rea-
son may be in the implementation scheme of the goal
stack. As the sequential eore allocates goal records in
heap, garbage collection overhead becomes very high for
programs that make many non-tail recursions. Actually,
simply setting a larger heap size speeds up the execution
to 3,170 ms.

Aguarious is faster for programs with much integer
arithmeties. This ray be at least partly due to the global

Meal heap Hmit i saved in a separate variable.

analysis that can delete redundant dereference and type
checks. This suggests the divection of further improve-
ments of the sequential core.

Further details can be found in {5).

3.3 Portability

The sequential core has been ported to many systems,
Major systems which KLIC has ported to are shown in
Table 2.

Table 2: Portability of the sequential core

Madel 03 Manufacturer
SparcStation SunOS, Solaris Sun Micro.
DEC 3000 D5F/1 DEC

RS G000 ATX IBM

HP 9000 HP-UX HP

IRIS IRIX 801

EWS 4800 EWS-UX,/V NEC

Luna 83k Mach OMRON
M-880 HI-O8F/1-MJ Hitachi
S-3800 HI-0SF/1-MJ Hitachi

IBM AT clone MS-DOS, 08/2, Linux IBM ete.

4 Generic Objects

The generic cbjects feature allows easy modification and
extension of the system without changing the implemen-
tation core. This section describes why and how such a
feature is incorporated and how it is used.

We borrowed the basic idea of generic cbjects from
AGENTS[14], modified and extended it for KLIC, In
AGENTS, the distinction of three calegories of generic
objects described below is not made; there are no gen-
erator objects and the functionality of consumer objects
is provided by ports which are data objects, as porls are
names of sireams rather than streams themselves.

4.1 Objectives

With the KL1 implementation on PIMs, we experienced
severe difficulties in trying out different parallel execu-
tion schemes, as the schemes were too integrated into
the system core. This gave rise to the principle that sys-
tem extensibility and modifiability should be put abowve
bare efficiency. On the other hand, as the system is for
stock hardware, only a limited number of tag bits can be
handled efficiently. We thus needed some other ways to
distinguish various built-in data types.

Generte objects were introduced to KLIC to achieve
these two objectives simultaneously. Some of the stan-
dard built-in data types and non-local data references

for parallel implementation were implemented as generic
ohjects. The core runtime system and compiled code
enly know that there are data types generically called
“generic objects”. Generic objects of all classes have the
same interface; new object classes can be freely added
without changing the system core.

Bodies of data objects can be allocated to the heap
area®, and they can contain both KL1 data and C data
there. This means that structured data in C, that is,
tag-less data is allowed to be allocated on the heap area
by the framework of data objects. The garbage collector
calls the gc method of their own. This method can be
defined easily. This idea originated in AGENTS.

4.2 Three Categories of Generic Ob-
jects

KLIC has three categories of generic objects: data ob-
jects, consurmer objects and generator cbjects.

4.2.1 Data Objects

Data objects are treated exactly as data of extended data
types. As described in Sect. 3, only four basic data
types are supported in the KLIC system core. Data ob-
jeets provide a framework to add and maintain more data
types in the whole KLIC system,

Data object are accessed via built-in predicates and
generic method calls. Method calls have the inter-
face generic:Method(0bj, Args, ...). They are log-
ically immutable objects without time-dependent states.
Time-independence only means that they always look the
same to the KL1 program; physical representations may
be modified. For example, multiversion arrays are data
objects, but their actual representations are mutated on
update, Multiversion vectors and character strings are
implemented as data objects, and various other object,
such as bignum are alsc planned. New data uhjects can
be defined easily in C.

4.2.2 Consumer Objects

Consumer objects behave exactly like suspended goals
which associate with logic variables. They are activated
by variable instantiation i.e. consumer ohjects ave dafa-
driven objects. When a variable asscciated with a con-
surner chject is instanciated, the unifier subroutine rec-
ognizes that, and calls the unify method of the object.
Consumer objects are also mutable, time-dependent ob-
jects. A consumer object is allowed to re-associate with
ancther logic variable again after it has been activated
by the instantiation of its pre-associated variable, For
instance, suppose a logic variable 0BJ is associated with

IBodies of coustants of data objeet deseribed below may be
allocated outsides of the heap area

7L

some consurmer object. When the object is activated
by variable instantiation, 0bj = [Message|Newlbjl, the
unifier calls the unify method of the object. The object
performs the task specified by Message or creates a new
goal to do the job, and re-associates itself with NewObj
again (Fig. 4.2.2). Thus, if the task is simple enough,
the owverhead of goal suspension and resumption can be
avoided, Mofe that this is not disturbing the pure serman-
tics of the language; consumer objects behave exactly like
a KL process waiting for instantiation of a variable. If
the task specified by Message is a method call, the unify
method of the objects is treated as a generic method just
like a body generic method {see below) for data objects.
Since the association of an object with a new variable
implies the change of the process to a new state, objects
can rewrite their own bodies every method call. There-
fore, in the case that a C program with side-effects is to
be included in a KLIC program, the C program should be
implemented as & consumer object. Stream mergers and
file I/ O interface ohjects are implemented as consumer
objects. For example, the unify method of the I/O in-
terface chject for message put(C) will simply write the
character C to a file. In ﬂt.her words, pute(C) is one of
the generic methods,
[Mewos)

ATATSRS

Figure 5: Re-association of Consumer Object

=1 ru
(o] = [e

H/

Obj = [Msg|MewObj]

4.2.3 Generator Objects

Generator objects associate with logic variables. These
logical variables look like a reference to a eell which
has been instantiated or may be instantiated with some
value. Unlike consumer objects, generator objects are
activaied by dereference operations, that is, a genera-
tor object is a demand-driven chject. Generator objects
define 2 genercte method. When the goal suspension
handling routine finds that a suspended variable is asso-
ciated with a generator object, the generate method of
the object will be invoked. The object may immediately
generate some value and instantiate the associated vari-
able, or it may spawn a goal that will eventually do it.
(Generator objects are alse mutable, with time-dependent

T2

states, and allowed to associate with another logic vari-
able like consumer chjects. Generator objects can alsa
implement lazy computation. Generator objects are ac-
tivated enly when the values they generate are required
by some other goal,

4.3 Representation of Generic Objects

All kinds of generic objects have a pointer to its method
table (Fig. 6). The rest of the object s accessed only
through their methods; the core implementation does
not touch the object itself. Commeon operations, such
as copying for garbage collection, are standard meth-
ods shared by all cbject classes, Non-standard methods
are logically called through the guard and body generic
method. Actually all non-standard methods of some
class may be implemented only on & function which per-
forms its generic method.

Body of Generle Obgect
- addrass 1]
class-specified
daln
painter to © fune. Mathod | © fune
pesinter to C func. &&L
poénter to C func. .E""d L
pointer 1o T thod | © func.
o, - P —
Mathod Talie

Figure 6: Body of Generie Object

Data objects are represented by pointers to bodies of
data objects with the functor tag (Fig. 7). Data objects
are distinguished from functors by the lowest bit in the
first word of the hlock,

| address |11

(____-"

Body
of
Data Object

Figure T: Representation of Data Object

Consumer objects are referenced by the second word of
hook records (Fig. 8), as for suspended goals. Consumer
objects are distinguished from suspended goals by the
lowest bit of this second word.

Generator objects are referenced by the second word
of suspension records (Fig. 9). Generator objects are

wvariable cell
L4
e
. * - -
i ¢
;
prigrity body
of
aoal = ComsEmar
L abject

Figure 8: Representation of Consumer DEject

distinguished from the hook records list by the lowest
bit of this second word.

varlable cell
s
oo
1 of
| P generator
— object
(1A

Figure 9 Representation of Generator Object

4.4 Standard Methods

Generic ubjects of all classes have the same standard
methods. The following describes major cnes.

body unify The body unify method is invaked by the
body unifier.

guard unify Only data objects have a guard unify
method. This method is inveked by the guard gen-
eral unifier.

generate Only generator objects have a generate
methed, This method is invoked when the goal
sugpension handling routine finds that a suspended
varizble is associated with a generator abject.

ge The g method is invoked by the garbage collector.
This method copies a generic object to a new heap
area when the garbage ecollector has found the ob-
Ject.

body generic Only data objects have a body generic
method. This method is a meta-method which calls
user-defined methods appearing in body paris of
clauses.

guard generic Only data objects have a gnard generic
method. This method is a meta-method which calls
user-defined methods appeared in guard parts of
clauses. :

encode Consumer objects do not have this methoed. It
is used for parallel implementation when chjects
are translated to packets for communication with
other processors. Consumer objects do not have this
method because making their copies will change the
semantics.

5 A Parallel Implementation of
KLIC

This section describes the parallel implementation of
KLIC,

Two different implementation on, distributed memory
and shared memory, were designed depending on the
memory architecture to use. Both were designed with
a common policy that no modification should be made
to the sequential core in order to retain its efficiency.
Under this pelicy, mest of the extensions reguired for
the parallel implementations were realized using generic
ohjects.

This section gives the use of generic objects and the
scheme of interrupt handling for parallel implementa-
tions are described. Owverviews of the two types of par-
allel implementation are described. Brief description of
a performance tuning tool is also given.

5.1 Common Mechanisms

5.1.1 Generic Objects for Parallel Implementa-
tion

In parallel implementations, non-local references are rep-
resented as generator objects. On suspension of a goal,
the genercte method of a generator object associated
with a suspension reason varizble i3 called. It may send
a value fetching message to a remote processor or read
data from shared memery. If it does not get a value im-
mediately, the generator object mutates to a consumer
object or another generator object and waits for the as-
sociated veriable to be instantiated or dereferemced. In
this way, remote references are casily implemented with
generic objects.

5.1.2 An Interrupt Handling for Parallel Imple-
mentation

On parallel implementations, a worker that sends goals
or data (the “sender™) notifies their arrival to another
worker (the “receiver”) which should receive them. To
realize that, the sender rewrites the heap limit of the

T3

receiver to zero, i.e., the receiver is reported the arrival of
goals or data as a request of a garbage collection. Thus,
2 KLIC interrupt handling routine may receive messages
of goals from other processcrs between reductions in a
synchronous manner. Unix Signals or active messages
are often used for rewriting the heap limit.

5.2 The Distributed Memory Imple-
mentation

5.2.1 Basic Design

In a distributed memery implementation, goal and data
migrations among workers are performed with message
exchanges. The scheme of this implementation inherite
its basic design from the distributed implementation on
FIMs' (e.g. two level addresses, local and global, are
used with address translation table called “export table” }.

In the distributed memory implementation, portabil-
ity was put above efficiency.

Mest part of the communication processing is imple-
mented with generic objects as methods of generic one
called only cn demands, it does not degrade the perfor-
mance of the sequential core. Machine dependent com-
munication proceditres are strictly separated from the
management of the high-level communication such as
distributed unifications, giving high portability.

5.2.2 Configuration

To execute a KLIC program in parallel, a communication
library is attached to the sequential core. The core runs
on each processing node as a worker.

Creation of workers and communication with other
worker are done via a communication library, This li-
brary is divided into two levels for portability; “KL1
communication library™ and a “machine-dependent com-
munication library™.

The KLL communication library is directly involked by
the sequential core, and performs KL1-level management
and contral, including goal migration, distributed uni-
fication, distributed parbage collection and distributed
termination detection.

The machine-dependent communication library is in-
voled by the KLl communication library. 1t initiates
workers and passes actual messages among them.

The configuration of this implementation is shown in
Fig. 10. It can be ported by replacing the machine-
dependent communication library for the target machine
architecture and communication media.

Further details can be found in [17).

T4

Sequential core] [Sequential core

KL1 comm. lib. KLI comm, U,
" ™ " Muchine-dep. Machine-dep.
comm. lib, comen. lib.

Communication
Path
Muchine-dep. Machine-dep.
comam.ts. f | _ coma. Jib,
KL1 eomm. lib. KL1 comm. lih.

Sequential core] Sequential core J

Figure 10: Configuration

5.2.3 The KL1 Communication Library

The KL1 communication library manages goal migra-
tien, distributed unification, distributed garbage collec-
tion, and distributed termination detection. The basic
scheme of the distributed implementation is based on
those of Multi-PSI and PIMs, and oplimized to fit for
KLIC.

Goal migrations should be explicitly specified by a goal
distribution pragma, “@nede(X}", For instance,

a(X):- true | b{X)}¥node{l).

means Lo migrate & goal b to worker 1.
Goal and data migration is performed as follows.

 Migration of Goal

— When a goal is migrated to another worker,
the goal is encoded in the message named
*Fthrow” and sent to the other worker.

— If this goal has arguments, this message has to
include the encoded data of these arguments.

— When the other worker receives this message,
the Hthrow is decoded to a new goal on this
worker {Fig. 11).

s Migration of arguments of a goal
— Arguments of a goal are encoded when the goal
migrates to the other worker.

— When the argument is an atomic or structured
constant data, it is encoded as it is.

= When the argument is a structured data (ex-
cept constants) or a variable, this iz decoded

Worker 1 Worker 2

Figure 11: Goal Migration with Variable

to a variable associated with a remote refer-
ence called an external reference to the struce
tured data or the variable on the sender worker,
This means arrival of a Fihrow may make re-
mote references from the recejver worker to the
sender worker. As described above, external
references are represented as generator objects.

+ Unification

— When unification of concrete value with a vari-
able associated with an external reference is
made on the receiver worker, the generator ob-
ject, which is an external reference, sends back
the message “ Hunify” to the sender worker and
where it is done. '

= The Hunify message includes a unified data.
This data is an atomic or a structured data
whose elements are encoded to external refer-
ences to the receiver worker (Fig. 12).

— If this element has already been an external
reference, it is sent as it is.

= The variable on the sender is unified with the
value decoded this message.

e [

with e T i

B § - Oererpior
e | { O
Waorker 1 Warker 2

Figure 12: Unification

e Dereference

— When a dereference fo a variable associated
with an ezlernal refevence is made on the re-
ceiver worker, the external reference sends back
the message “Hread” to the sender and mu-
tates itself to a consumer object which waits
for a unification message described below from
the sender or a unificaiion on the receiver,

— 1f the variable on the sender is not yel instan-
tiated, this variable is associated with a con-
sumer object for sending a reply value to the
consumer object on the receiver after the vari-
able is instantiated to some value (Fig. 13).

— If the variable on the sender has already been
instantiated to a value, the message “Han-
swer” including the value is sent and a message
named a *%release” is sent back to the sender
to removes the reference (Fig. 14}).

Workar T

Figure 13: Dereference (1)

M—_— e
@El“ T |
o _Cbiect _ s

Worker 1 Warker 2

Figure 14: Dereference (2}

o

5.2.4 The Machine-Dependent Communication
Library

The machine-dependent communication libraries have
two functions: initiation of workers and actual message
communication ameng them.

Initiation: In initiation, workers are spawned and com-
munication paths are established mutual. Special
warkers for congole 1/O and termination detection
are algo invoked., The console worker is used for
interaction for tracing.

Message passing: This implementation performs mes-

sage passing simply. It is not necessary to send so-
phisticated messages passing primitives, such as for
broadeasting or message tagging.
Message sending and receiving procedures are as
follows: initiating a send buffer, packing data into
buffer and sending the message; initiating a receive
buffer, receiving a message info the receive and un-
packing data from the buffer.

The following summarizes typical communication
paths,

(General purpose message-passing library:
Several message-passing libraries have been devel-
oped recently, such as PVMI8] and MPI[7]. These
libraries have been ported to many kinds of parallel
and distributed machines. KLIC on these libraries
are portable.

Shared memory: On shared-memory
machines, shared memory segments can be used for
high performance message paths.

Machine-specific communication path: Most par-
allel machines have their own message passing li-
braries for ma:dmizihg parallel execution perfor-
mance.

We adopted PVM as the basis of 2 machine
independent portable paralle]l version of KLIC.

5.2.5 Performance

We show parallel speed-up of two kinds of implementa-
tion where communication paths are PVM and shared
memory in Table 3. Programs for this eomparison are
n-gquesn (13}, the distinet order factorization[15] and ge-
netic sequence alignment analysis[13]. All measurements
are on SparcCenter 2000, with 40MHz Super-Sparc pro-
cessor with 1 M Byte of external cache and 16 Khbyte
of internal cache. The result of distinct order factoriza-
tion shows the PVM version got similar speed up as the
shared memory version. The alignment analysis program

T8

got lower performance on both of them, but the result of
PVM version got worse than that of the shared memory
VErsion.

‘Tahle 3: Execution times
(a) PVM

13-quean
[Werkers 1 [2] 4 | 8
Wall Clack | 176 HE 47 25 1] 19
Speed Up 10| 20| 3.7| 6.3 8.5 2.3
Distinct Order Factorization
[Workers 141 [241 [441 [841 [1941 [1641 |
Wall Clock || 148 [38 19 13 i
Speed Up 1071 20 39 V8| 115 | 1449
Alignment Analysis
Workers 141 | 841 | 41 | 841 | 1241 | 1641
Well Clock || 116 | 106 [T a7 18 b2
Speed Up 10| 11} 1LEB| 20 2.4 2.2

(b} Shared Memory (NORMA)

1¥-gueen

Workers 1 2 i a 12 16
Wall Clock |[165 85 45 24 16 14
Speed Up 1.0 19| 37| 69| 103 | 118
Distinet Order Factorization
Worlers I+1 | 241 | 4+1 | &+1 | 12+1 | 16+1
Wall Clack || 145 73 ar 18 12 10
Speed Up 10 20| 39| 80| 120 145
Alignment Analysis
Workers 141 | 241 | d=1 | 841 | 1241 | 1641
Wall Clack G4 54 a4 23 19 16
Speed Up 101 12 16| 2.8 34 4.0

Timing data are in seconda.

5.2.6 Portability

This version of KLIC has been ported or is being ported
on several systems in Table 4.

5.3 The Shared-memory Implementa-
tion

5.3.1 Basic Design

Shared-memory implementations of concurrent logic pro-
gramming languages developed so far have taken either
a UMA model (all memory is shared) or & NORMA
model {ne memeory is shared). The PIM implementa-
tion adopted a UMA model. In that implementation,
many lock operations degrade the performence of each
worker.

Our implementation adopted such memory model that
each worker owns its local heap area in addition to a
shared heap area, in order to decrease the number of lock
operations even in garbage collections. Since basic data

Table 4: Portability of the distributed implementation

Model 05 Comrm. Manufactor
Path

SparcStation SunDS PVM Sun MMicro.

SparcStation Solaris PVM Sun Micro.

SparcCenter Solaris PVM Sun Micro.

SparcCenter Solaris Shared Sun Micrao.,
Memory

DEC 7000 OsFf1 PVM DEC

RS 6000 ATX PVM IBM

Paragon GSF‘I."'I VM Tntel

OMs Sun(8 CMAML TMC

AF 10001 i 1 Fujitsu

Cenju-3 Mach MPI NEC

SR 2001° HI-UX Express Hitachi

1 porting

AP 1000 has a private 05 and a commumication path.

types of KLIC has no reference count, the garbage col-
lection requests may occur more frequently than PIMs,
But its is more significant to decrease the number of lock
operations.)

Further details can be found in [12].

5.3.2 Local and Shared Heap Areas

Memory is divided into local heap areas and a shared
heap area [Fig. 15). Each worker has a local area which
it can read and write without coordinating with other
workera. A worker can also read and write to and from
the shared heap area, but it must coordinate with other
workers to do so since some of them may be accessing
the data simultaneously.

[Sequential Core } [Sequential Core

Conz
Shared Heap

Figure 15: Configuration

A local heap area consiste of the maintenance data for
dynamic allocation of loeal goals and KLI data. The
maintenance datza includes the local heap top pointer,

the root of the local goal stack; ete. The shared heap
area consiste of the maintenance data for worker inter-
action and the shared heap for dynamic allocation of
shared goals and K1 data. The shared maintenance
data includes external goal pools {one for each worker),
interrupt flags (which of course include a local heap limit}
for each worker, ete. A worker’s external goal pool helds
the goals given to the worker by other workers for load
distribution. Goals are inserted by workers other than
the ewner worker and removed by the owner worker for
execution. Interrupts flags are allowed to be set by other
WOTKETS.

Each local heap area is divided into two apa-:ea for
copying garbage collection. No lock operations are re-
quired to collect garbages in local heap areas.

The shared heap atea is divided into three spaces
which are used in a circular manner. At any instant,
there is one old space, one new space, and one unused
space. Active data can be in the old or new space, or ex-
tend across both of them, but there must be no pumt.ers
from the new space to the old space.

The unused space is used for the asynchronous garbage
collection as described below.

5.3.8 Goal Distribution

When a goal moves, the data directly and indirectly ref-
erenced by it is copied to the shared heap area.
For example, in the following code,

pl%) : ..
glX, fao{‘ﬂ}&nade(-l-},

the goal (X, foo(Y))@node(4) is allocated in the shared
heap area. [t involves copying the data structure pointed
to by the variable X from the local to the shared heap
area, and allocation of the compound term foo(Y) in
the shared heap area. Y is a new shared variable, If X is
an uninstantiated variable, a shared variable is allocated
in the shared heap area and the local variahle will be
converted to a reference to the shared variable. After
the gozl has been copied to the shared heap area, the
pointer to it is inserted into the external goal peol of the
target worker, the interrupt flag for the target worker
is set so that the new goal can be scheduled right after
the current reduction, Otherwise, the target worker is
not interrupted. A worker checks its external goal pool
whenever it moves to a lower prierity level.

MNote that these shared variables are 1mplemeubed with
generator and consumer objects,

5.3.4 Asynchromous Garbage Collection of
Shared Heap Area

In our experience, synchronous garbage collection of the
shared heap area (1.e.when all workers stops normal exe-

cution and garbage collection is started at the same time)
makes the shared bus a bottleneck, there is little locality
in garbage collection.

To remove this bottleneck, an asynchronous garbage
collection scheme iz designed for the shared-memory
garbage ecollection while others are executing normal
code,

The asynchronous garbage collection requires three
spaces: old space, new space, and unused space. Each
worker has one “current” space [either the old or the
new) for allocation of shared data. Each space has a list
of the workers currently using the space.

When some worker detects memory shortage in the
old space, it copies data it references to the new space,
while other workers may be still executing normal KL1
code. The new space becomes the current space for the
worker, -

Suppese that the new space has run out. If the old
space is still used by some workers, they are interrupted
to be foreed to do garbage collection. They copy the
active data in the old space to the unused space. At this
point, the spaces aré rotated: the old space becomies the
unused space, the néw space becomes the old space,’and
the unused space hecomes the new space.

5.3.5 Performance

We compared a shared memory implementation with a
sequential core of KLIC using the 12-queen program and
evaluated the performance this implementation. The re-
sults are shown in Table 5. All measurements are on
SparcCenter 2000, with 40MHz Super-Spare processor
with 1 M Byte of external cache and 16 Kbyte of inter-
nal cache.

Table 5 Comparison of execution limes

The type of KLIC | Wall Clock
Hequential version 22,390
Shared Memory version (1 worker) 22 400
Shared Memery version {12 workers) 2,340

Timing data are in milliseconds.

The result shows this implementation does not degrade
the performance of the sequential core and 9.5 fold speed-
up is achieved with 12 workers,

5.3.6 Portability

This implementation is fairly portable and has been
ported to several machines (Table).
Machine dependent routines are as follows:

shared memory segments: This implemen-
tation uses the mmap function for getting shared
memory segments.

T8

Table 6: Portability of the shared implementation

Mode] 08 Manufacturer

SparcCenter Solaris Sun Micro.
DEC T000 O5F/1 DEC

lock: The lock operation has to be implemented sepa-
rately for each machine.

store ordering: For example, the store barrier opera-
tiom is needed for the implementation on SparcCen-
ter and DEC 7000,

5.4 A Tuning Tool

We ported 2 runtime monitor, one of the PIMOS real-
time visual tuning tools[1]. This tool displays that each
column represents load averages of all workers in various
colors (a gray scale is used in this paper). As shown in
Fig 5.4, this tool displays a load average of a worler at
specified interval on an element of each column. Fach
column appears at the interval, is displayed from left to
right en the screen.

N
=
a.
i N3
g.

Figure 18: Runtime Maonitor

In PIM, the load average of each worker is measured
by the firmware. We adopted the following probabilis-
tic method similar to “prof” command of Unix to aveid
recompiling KL1 programs.

1. Each worker sends signals to itself by an interval
timer (an interval is about 10 ms, which does not
affect the performance much). These signals are
counted, and another counter is incremented if it
is idle when the worker receives this signal (this
counter is called the “idle counter” in this paper).
An active message from the profiling worker to a
target worker can be also used, too.

2. The profiling worker collects values of all counters
from all workers on some interval (which we usually
use about two seconds). The profiling worker sends

ratios of idle counts and signal counts to the display
worker. For example, suppose & worker has 100 sig-
nal eounts and 50 idle counts, this means 50%% load.

This probabilistic method can be applied Lo collect
other profile information.

6 Concluding Remarks

The preceding sections gave an overview of KLIC. These
parallel implementations are based on the non strict ar-
gument passing feature of the programming language
KL1 and can be made portable,

Various efforts are on-going to make the system more
useful in parallel software research, including the follow-

ing:
& Implementation of more language features

& Providing better software development tools, such
as tuning tools

* Further optimization through static analyses

& Various automatic load balancing libraries

7 Acknowledgments

Hiroshi Yashiro contributed in early design phases of the
system, Daigo Sekita contributed to the runtime library
of the sequential core. Masao Morita and Nobuyuki
Ichiyoshi contributed to the shared memory implemen-
tation,

Discussions with Kazunori Ueda, Hircshi Nakashima
and other members of KLIC Task Group helped the de-
SigT.

Finally, the authors would like to express their grati-
fude to the users of KLIC, who gave helpful comments.

References

{1] Aikawa, S, Kamiko, M. et al: “ParaGraph: A
Graphical Tuning Tool for Multiprocessor Systems”,
FProceedings of FGCOS'98, pp.286-293, 15592,

[2] Carlsson, M., Widén, J. et al:
User's Manual, 1993,

SICS5tus Prolog

[3] Chikayama, T., Kimura, Y.: Multiple Reference
Management in Flat-GHOC, Proceedings of ICLP8T,
pp.276-283, 1987,

[4] Chikayama, T., Sato, H., Miyazaki.T.: Overview of
the parallel inference machine operating system (PI-
MOS), Proceedings of FGC5'88, pp.230-251, 1988,

[6] Chikayama, T., Fujise, T. et al.: A Portable and
Efficient Implementation of KL1, Proceedings of

PRILP'3{, Lecture Notes in Computer Science,

#884, Springer-Verlag, 1994,

[6] Chikayama, T.: Parallel Basic Eo&waré, Proceedings
af FGCS'94, 1994,

[7] Dongarra, J. ., Hempel, R. et al.: A proposal for a
userlevel, message passing interface in a distributed
memeory envirenment, Technieal Repert TM-12231,
Oak Ridge National Laboratory, 1993,

8] Geist, A., Beguelin, A. et al: PVM 3 USER'S
GUIDE AND REFERENCE MANUAL, Technical
Report TM-12187, Oak Ridge National Laboratory,
1994. '

[9] Gudeman, D. et al.: "jc: an efficient and portable
sequential implementation of janus”, Procesdings of
JICSLE, The MIT Press, 1892,

[10] Haygood, R.C.: Aquarius Prolog User Manual,
15863,

[11] Hirate, K., Yamamoto, R.: Parallel and Distributed
Implementation of Concurrent Logic Programming
Language KL1, Proceedings of FGCS'92, pp.436-
459, 1992,

[12] Ichivoshi, M., Morita, M. et al.: A Shared-Memory
Farallel Extension of KLIC and Its Garbage Col-
lection, Proceedings of Workshep on FParallel Logic
Programming attached to FGCS'94, 1994,

[13] Ishikaws, M., Toya, T. et al.: Parallel Application
Systems in Genetic Information Processing, Pro-
ceedings of FGCOS'04, 1994,

[14] Janson, 8., Montelius, J. et al.: AGENTS user man-
nal, SICE technical report, SICS, 1594,

f15] Murao, H., Fujise, T. Modular Algorithm
for Sparse Multivariate Polynomial Interpolation
and its Parallel Implementation, Proceedings of
PASCO'3Y, pp.304-315, 1594,

[16] Nakajima, K., Inamura, Y. et al.: Distributed Im-
plementation of KL1 on the Multi-PSI/V2, Procesd-
ings of JCLP°8S, pp436-451, 1989,

[17] Rokusawa, K., Nakase, A. et al.: Reference Loops
Management in a Distributed KLIC Implementa-
tion, Proceedings of Workshop on Parallel Legic
FProgramming atfached to FGOS'W4, 1994,

[18] Saraswat, V.A., Kahn, K. et al.: “Janus: A step
towards distributed constraint programming”, Pro-
cesdings of NACLP, The MIT Press, 15990.

T4

[19] Ueda, K., Chikayama, T.: Design of the Kernel Lan-
guage for the Parallel Inference Machine, The Com-
puter Journal, Vol 33, No.6, pp.4%4-500 (1990},

[20] Warren, D. H. D.: An abstarct Prolog instruction
set, Technical Note 309, SRI International, 1983,

