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Abstract

We hawve developed parallel application systems for ge-
netic sequence analysis. The systems are three parallel
iterative aligners and an alignment workbench for the
aligners. The parallel iterative aligners use a best-first
search, a hill-climbing search, and a genetic algorithm.
Each iterative aligner can produce higher-gquality solu-
tions than the conventional tree-based aligner. The ge-
netic algorithm shows better performance than the best-
first and hill-climbing searches. The alignment work-
bench, which features the parallel iterative aligners, re-
alizes alignment which is not only fast and high-quality—
it is also constraint-based. When & user has some bio-
logical knowledge which indicates that some characters
might be aligned in a column, a constraint can be defined
for those characters. The constraint set is considered
simultaneously in each iteration cycle of parallel aligm-
ment. Then appropriate multiple alignment is generated
by the aligner and displayed on the workbench's full-
coler display. The alipnment workbench also contains
the following characteristic sequence analysis modules:
a phylogenetic tree drawer, a motif-database matcher,
and a stem region specifier.

1 Introduction

Meolecular biology and genetic technology have been ad-
vaneing at an astonishing rate in recent years. Major ac-
tivities in these fields are closely related to DNA/RNA
and protein. This is because a set of DNA molecules
in a ecell contain the genetic information for the com-
plete design of the living organism. This information is
embodied as protein to build up the body and to keep
ite mechanisms alive. Each piece of genetic information,
represented by a sequence of nucleic acids, is translated
into a sequence of amino acids to form protein. As the
method to determine DNA or protein sequences has pro-
gressed to its current state, the amount of known se-

guenee data has grown rapidly. For example, Genbank
[1], one of the most widely distributed databases, con-
tains information on more than two hundred million nu-
cleotides. The growing number of genetic sequences in
databases inevitably makes the field of genetic informa-
tion processing one of the most important application
areas for computer science.

The fundarmental technique for analyzing genetic se-
quence data by computer is to examine similarities
among sequences. This usually requires large amounts
of computation to find the similarities, since there are a
let of sequences in the database to be examined. The
computational problem can be partly solved with paral-
lel implementation. There have been some experiments
with parallel database search [2, 3] and with parallel se-
quence analysis [4, 5].

We have developed parallel application systems for ge-
netic sequence analysis. The systems has been imple-
mented in a parallel logic programming language and
working on parallel computers. The aim of this paper
is to show the availability of parallel implementation in
the field of genetic information processing. The organi-
gation of the rest of this paper iz as follows. In Section 2,
we briefly explain our application problems. We present
our parallel iterative aligners in Section 3. Then, the
alignment workbench, which features the parallel itera-
tive aligners is discussed in Section 4. Finally, conclu-
sions are given in Section 5.

2 Genetic sequence analysis

The genetic information, stored in DNA,| is partly tran-
scribed as RNA segments. Each segment composed of a
chain of four kinds of nucleotides, represented by a se-
quence of code letters: &, U, G and C. An ENA segment
is translated into a shorter chain of twenty kinds of amino
acids, represented by a sequence of twenty different code
letters. A chain of amino acids folds to become protein
in a cell. Becanse every amino acid has its own proper-
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Figure 1: Multiple sequence alignment

ties of volume, hydrophobicity, polarity and se on, the
order of the amino acids in the protein sequence gives
structure and function of the protein.

An important way of discovering new. genetic informa-
tion is analyzing the unknown characters of DNA/RNA
and protein from their sequences, We do this by com-
paring the sequence of nucleic or amino acids. Multiple
sequence alignment is one of the most typical methods of
sequence similarity analysis. The alignment of dozens of
sequences can provide valuable information for research-
ing the function and structure of DNA/RNA or protein,
especially if one of the alipned sequence has been well
characterized,

Figure 1 shows examples of multiple sequence align-
ment. Figure 1(z) represents nine perts of different pro-
tein sequences. Indexes such as CABL are names of the
proteins [6]. Each letter in the sequences means an
amino acid. For instance, KLG stands for & row of Ly-
gine, Leucine and Glycine.

Figure 1(b) is & good multiple sequence alignment ob-
tained by our parallel iterative aligner. Each sequence is
shifted by gap insertion—dash characters. Each column
of the alignment has the same or similar amino acids.
An identical pattern such as L3.G.FG.V is considered to
be an important site called a sequence motif, or simply a
motif [7], because an important protein sequence site has
been conservative along with evolutional cycles between
mutation and natural selection. Multiple sequence align-
ment is useful not only for inferring the structure and

funetion but alse for drawing a phylogenetic tree along
the evelutional histories of the creatures.

Computers partly solve the problem of multiple se-
guence alignment automatically, instead of relying on the
hands and eyes of experts. The results obtained by com-
puters, however, have not been as satisfactory as those
by human experts. That is because multiple sequence
alignment s ene of the most time and space consuming
problems. Dynamic programming (DP) [8, 9], theoreti-
cally, provides an optimal solution according to a given
evaluation score. This, however, requires memory space
for an N-dimensional array (where N is the number of
sequences) and calculation time for the N-th power of
the sequence length. Theugh a method was propasad to
cut unnecessary computation in DP [10], it still needs
too much computation te solve any practical alignment
problem,

Figure 2: Two-way dynamic programming

Figure 2 shows the algerithm of two-way DP applied



to two tiny sequences. The algorithm searches the best
path in the fignrative network from the top left node to
the bottom right node optimizing the total score along
the arrows. Bach score indicated on an arrow reflects the
similarities between the characters being compared. The
best path corresponds to the optimal alignment; each
arrow in the path corresponds to each column in the
alignment. Vertical and horizontal arrows indicate the
insertion of gaps.

A number of heuristic algorithms for multiple align-
ment problems have been devised using two-way DP in
order ta obtain approximate solutions within 2 practical
time. The most popular one is the tree-based method
[11, 12). In this algorithm, similarity between each pair
of sequences is first estimated with its pairwise alignment
score obtained by DF. Using a matrix of the similarity
scores, a clustering technique constructs a gnided tree.
Sequences are merged to form a multiple alignment based
on the bottom-up branching order of the gnided tree.
Each node of the tree shows two bunches of sequences to
which two-way DF is applied (Figure 3).

seq 1 [ Two-way o8
seg 2

seq 3
Final alignimant
seq 4

s8g b5
s8q B
seq 7

Figure 3: Tree-based alisnment method

The tree-based method is fast enough to be applied
to practical-scale problems. If sequence similarity is low,
however, it often produces low-quality alignment. This
happens because once an error occurs in the alignment
process, the error cannot be corrected. Figure 1(c), an
example of tree-based alignment, is not as good as Figure
1(b), because two seguences are miss-aligned at motif
LG.G.FG.V and &.K in 1(c). Biologists, users of the tree-
based algorithm, frequently have to correct such miss-
aligned parts by hand.

3 Parallel iterative aligners

In this section, we propose three multiple sequence align-
ers for penetic sequence analysis. All the aligners, written
in parallel logic programming language KL1, are work-
ing on parallel computers. They are based on an iterative
improvement technique {13, 14], but use different paral-
lel search algorithms: a best-first search, a hill-climbing
search, and a multi-group genetic algorithm,
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3.1 Parallel best-first search

Figure 4 shows the algorithm of the parallel best-first it-
erative aligner [15, 16]. First, N sequences which have no
gaps are input into an iteration cycle. The sequences are
divided into a sequence and N — 1 alignment sequences.
The N different sets produced by the partitioning are
then recombined in parallel by two-way DP. The results
are compared and the best-score alignment is set at the
starting point of the next iteration eyele. In this way,
the iteration cyecle gradually improves alipnment of all
the sequences. Iteration terminates when none of the N
partitions can be improved further. This parallel routine
requires IV processing elements (PEs).

Partitioning

Asignmarit

(men) [ be] ] ][]
el N LT LY

Figure 4: Parallel best-first iterative aligner

Thus, the iterative aligner gradually improves global
multiple alignment. Improvement is evaluated by the
alignment score defined as follows. The alignment score
is a total summation of the similarity scores of every
pair of aligned sequences, each of which is derived by
summing the similarity values of every character pair in
the column. Each similarity value is given by Dayhofl's
odds matrix [18], each value of which is a logarithm of
the mutation probability of a character pair (zero is the
neutral value). A gap penalty corresponding to each row
of gaps in the two sequences is added to the similarity
score. The gap penalty imposed on a row of & gaps is a
linear relation: a-+bk where o and b are parameters. We
set @ = —7 and b = —1 as default values,

Soonm

Initial State

Sclution space

Figure 5: Best-first search

The parallel best-first iterative aligner can produce
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better resulting alignments than the conventional tree-
based algorithm. The resulting alipnments rarely need
any manual corrections (Figure 1(b)). On average, the
alignment score is about twenty percent better than that
cbtained by the tree-based algorithm.

The best-first search (Figure 5) is rapid, but has the
problem of local optima. Since the solution space has
hundreds of peaks, the best-first search converges to one
of the nearest peaks. The parallel hill-climbing search
described below relaxes this problem.

3.2 Parallel hill-climbing search

Figure § shows the algorithm of the parallel hill-climbing
iterative aligner. Every PE starts iterative improvement
from a no-gap alignment. In each iteration cycle of the
improvement process, IV sequences are randemly divided
into a sequence and N — 1 alignment sequences, and then
recombined by two-way DFP. The result of parallel hill-
climbing is the best-score alignment ameng PEs. Ttera-
tion terminates when none of the PEs can improve their
alignment further. This parallel routine doesn't limit the
number of PEs.

| JPEn

o

Figure 6: Parallel hill-climbing iterative aligner

When we solved twenty-two sequence alignment prob-
lems using twenty-two PEs, the parallel hill-climbing
gearch resulted in the average alignment score of two
percent larger than the besi-first search. The superior-
ity increased to three percent, when using two hundred
and fifty-five PEs. The parallel hill-climbing search, how-
ever, showed slower speed of improvement. On average,
it took one and a half times as much time to reach the
alignment score obiained by the best-firsi search [17].

Although the parallel hill-climbing search (Figure 7}
relaxes the problem of local optima, its convergence is
too slow to solve a large alignment problem. The hy-
brid search by multi-group genetic algorithm described
below presents faster convergence keeping the ability of
escaping local optima.

Initial Hate

Salution epace

Figure T: Parallel hill-climbing search

3.3 Multi-group genetic algorithm

We intended to implement the hybrid search (Figure 8)
utilizing the merits of both parallel best-first and hill-
climbing searches. The framework of the multi-group
genetie algorithm could sueceed in forming the hybrid
search. We deseribe the mechanism of genetic algorithm
{GA) and its multi-group strategy applied to alignment
problems [19].

Solution space

Figure 8: Hybrid search

Mechanism of GA

GAs are stochastic search algorithms based on the bio-
logical evolution process [20, 21]. As in Figure 9, GAs
simulate the survival of the fittest in a population of so-
lutions which represent points in a search space. In our
GA system, each sclution, though usually represented
by a binary string, corresponds to a possible multiple se-
gquence alignment. A fitness function corresponds to the
alignment score. The number of solutions in a popula-
tion 1s the same as the number of available PEs, becanse
each PE manages a selution.

The aim of a GA is to find the global optimum of the
fitness function by applying genetic operators in each
generation. The genetic operators consist of modifica-
tion, selection, duplication, and crossover.

The modification operator changes certain parts of a
solution. Figure 10 shows the modification of an indi-
vidual alignment. A sequence is randomly chosen from
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Figure 9: Mechanism of Genetic Algorithm (GA)

among the aligned sequences, and iz re-aligned against
the other seguences with two-way DP-matching. Al
though modification means a random perturbation un-
der the orthodox concept of a GA, it is considered an
iterative eycle of improvement in cur definition.

Alignment

——

>—DF matching===

Figure 10: Modification of alignment

The selection operator chooses good solutions from a
population according to fitness and the given selection
strategy. This operator aims to increase the quality of
sohitions in the population while maintaining a certain
level of diversity. The operator first calculates the rela-
tive fitness of all sclutions, then discards several of the
lesser ones as determined by a parameter value, The
same number of solutions are compensated for by du-
plication operator so that the number of solutions in a
population is constant generation after generation.

Figure 11: Crossover of Alignments

The crossover operator produces two descendants by
exchanging parts of two solutions. This operator aims to
improve a solution by replacing a part of a solution with
a better part from another solution. Figure 11 shows the
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crossover of two individual alignments. The sequences
to be aligned are randomly divided into two sefs: the
exchange and unexchange sets. The sequence members
in the exchange sets are exchanged between the individ-
ual alignments by fixing the current alignment within
each set. The exchanged and unexchanged sets are re-
aligned with two-way DP-matching, Candidate align-
ments which should be done with erossover operators
are chosen randomly. The number of candidates are de-
termined by a parameter value.

Multi-group GA strategy

We focused on the selection rate of our GA system. By
arranging the selection rate, we can implement fairly dif-
feremt search strategies. When the system has the high-
est selection rate and no crassover (Figure 12), the search
hecomes narrow and concentrated, which is very similar
to the best-first search. On the other hand, without se-
lection and crossover [Figure 13), the search becomes
wide and distributed, which is equivalent to the parallel
hill-climbing search.
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Figure 12: Best-first search in GA
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Figure 13: Parallel hill-climbing in GA

The muolti-group GA technique can dynarmically
change search strategies by migration during a GA pro-
cess [22). We have devised a multi-group GA as shown
in Figure 14 characterized by the following.

# The selection rate varies group by group: 90%, 60%,
30% and 0%.

e Solutions which have higher scores than the maxi-
mum score of the next high-selection-rate group mi-
grate to the group.
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= Solutions captured in local optima are eliminated;
when more than half of solutions in a group have
the same score, a solution is randomly selected out
of each two same-score solutions and thrown away.

s New solutions are produced in the lowest-selection-
rate group by duplication. This keeps the total num-
ber of solutions in all groups.

Sedection rate
50%

Figure 14: Multi-group G A strategy

In the multi-group GA strategy of our system, a high-
score solution migrates to a high-selection-rate group in
order to do a concentrated search around its vicinity, and
solutions captured in local eptima surrender their com-
putational resources to a distributed search in the lowest-
selection-tate group, We tested the performance of our
GA systermn using two-hundred and fifty-five PEs. The
test alignment problems are the same as those used for
the best-first and hill-climbing searches. We found that
the GA search reached the alignment score obtained by
the best-first search as rapidly as the best-first search,
and that the GA search converged to the score level ob-
tained by the hill-climbing search earlier than the hill-
climbing search.

4 Alignment workbench

Such iterative aligners improve an alignment with re-
spect to its score. Whatever scoring systemn we use, the
optimal-score alignment is not always the most signif-
icant result from a biological perspective. In addition
to optimizing alignments under some scoring system, it
is also important to refine them using biological knowl-
edge. Alignment workbenchs {23, 24] have been devel-
oped for this purpese. We introduce our alignment work-
bench [25] which features constraint-based parallel iter-
ative alignment.

In this section, firstly we menfion a recommended

alignment process. We then describe the features of

constraint-based aligners. Finally, we discuss refinement
tools. The entire workbench is written in the C program-
ming language and works on UNIX workstations with

Figure 15: Alignment environment

OS5F /Motif. The exception is the paralle]l aligners, which
work on a PIM or & UNIX-based parallel computer such
as OMS5 and provide the workbench with aligned data via
internet. The alignment environment of the workbench
15 shown in Figure 15,

Sequanceas

Rough alignment

Consiraint-based alignment

Refinement
considering motifistemiphylogeny

L
Result

Figure 168: Alignment process

4,1 Alignment process

Figure 16 shows a recommended process for using this
alignment workbench. Sequences are initially aligned
roughly with the conventional tree-based aligner, which
is rapid enough to deal with a lot of long sequences. The
rough alignment often reveals some half-aligned patterns,
which can be recognized as constraints and forced into
alignment. Sequences are elaborately realigned part by
part with constraint-based iterative aligners, Being eval-
uated with respect to sequence motifs, secondary struc-
tures, or phylogenetic relationships, the alignment can
then be refined manually by mouse-oriented operations
and realigned repeatedly based on some newly imposed
constraints, Thus, the final alignment can be arranged
to meet user specifieations.
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Figure 17: Constraint-based alignment

4.2 Constraint-based alignment

The workbench features constraint-based alignment, in
which the tree-based and parallel iterative aligners de-
scribed in the previous sections are available. The iter-
ative aligners are also useful for keeping a current align-
ment to some extent, becanse they are executed starting
from the current alignment as the initial state of itera-
tion.

A typical operation of the constraint-based alignment
is shown in Figure 17. In the upper window, protein se-
quences in the rhodopsin super family [26] are roughly
aligned. The displayed alignment corresponds to the
G helix of the bacteriorhodopsin family, whose struc-
ture has already been mapped [27]. The first three se-
quences, from the bacteriorhodopsin family, are not sim-
ilar enough to the other sequences to be well-aligned in
the rough alignrment. It is, however, known that proteins
in the bacteriorhodopsin and rhodopsin families contain
a retinal whaose hinding site is the lysine position in the
G helix. This knowledge can improve the alignment. A
constraint is imposed on the thirteen lysines, which are
indicated by the Ks surrounded by black frames. The
other sequences, from the signal receptor family, are not
constrained, because proteins in the family have no reti-

nals,

Based on the constraint, the parallel iterative aligner
realigns partial alignment specified by the user. The
small window at the bottom of Figure 17 displays the
improved alignment, in which the thirteen lysines are
aligned at the column indicated by an arrow. If the user
accepts the partial alignment, it will be embedded in the
main alignment.

4.3 Refinement tools

The alignment workbench contains three characteristic
analysis tools: a motif-database matcher, a phylogenetic
tree drawer, and a stem region specifier. FEach tool is
useful for refining alignment from a biclogical point of
view,

The matcher identifies sequence motifs in a protein se-
gquence alignment, retrieving motif data from the Prosite
database [28] (release 9.00). Figure 18 shows the display
when a signature motif for G-protein-coupled receptors
was found in an alignment of the rhodopsin super fam-
ily with more than eighty percent consensus. The region
iz indicated by a black rectangular frame. The motif is
represented in Prosite as follows:
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Figure 18: Seguence motif identification

[GSTALIVHC] - [GSTAFDE] -{EDPKRH}-x(2) - [LIVMEG] -
x(2)=[LIVMFT] - [GSTANC] - [LIVMFYWAS] - [DEN]~R~
[FYWCH] -=({2)-[LIVM].

The drawer constructs an evolutional tree, dependent
on the current editing alipnment, with UPGMA [29] or
NI [30] method. Trees of aligned sequences are intro-
duced in Figure 18 as well. The upper tree is drawn
by UPGMA (unweighted pair-group arithmetic average
clustering), and the lower one is done by NJ (neighbor
joining). The estimated number of mutation events is
represented on each branch., The order of sequences in
an alipnment display can be changed according to the
evalutional tree.

The stem specifier indicates some possible stacking re-
gions in an RNA sequence alignment [31). Connectable
pairs of nuclestide locations are displayed with lines in
a circular representation. Each number surrounding the
circle corresponds to a location (column) number of the
alignment. Figure 19 shows a rough alignment (top)
and its refined alignment (bottom) for LeucinetRNAs,
in which the first eight sequences are mitochondrial and
the others are nucleic. In the rough alignment, the four
main stemns specify less than fifty-four percent consensus

in whitened parts of the alignment. Four pssudostems
are also displayed in the cirele, After refinement con-
sidering the real stems as constraints, the stem regions
aligned with more than seventy percent consensus and
no pseudostemns,

5 Conclusion

We have developed parallel application systems for ge-
netic sequence analysis: three parallel iterative aligners
and their workbench. The parallel iterative aligners use
a best-first search, a hill-climbing search, and a mmiti-
group GA. The best-first aligner searches solution space
in a concentrated way, whereas the hill-climbing aligner
searches in a distributed manner. The multi-group GA
forms a hybrid search which features the merits of both
best-first and hill-climbing searches.

In the alignment workbench, the iterative aligners
work in a constraint-based way which helps wsers align
sequences from various biclogical perspectives. The
workbench also provides a motif-database matcher, a
phylogenetic tree drawer, and a stem region specifier to
help refine alignments.
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Figure 19: RNA stem specification
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