106

Proc. of FGCS 84, ICOT, Tokyo, Decemnber 1994

Knowledge Representation Language Quzrore

Hiroshi Tsuda and Kazumasa Yokota
Institute for New Generation Computer Technology (ICOT)
1-4-28 Mita, Minato-ku, Tokyo 108, Japan
{tsuda,kyokota}@icot.or.jp

Abstract

This paper outlines the language and implementation of
the knowledge representation lanpuage Qurrore,

Curxore iz o hybrid language of deductive object-
oriented database {DOOD) and constraint logic pro-
gramming (CLF) based on subsumption relations. The
new mechanisms of QurroTe are a combination of
object-orientation concepts such as cbject identity and
property inheritance, and the concept of a module that
classifies a large knowledge base. In addition, its log-
ical inference system is extended to be able to make
hypothetical reasoning and restricted abduction. Such
features play impertant roles in applications such as le-
gal reasoning, biclogical databases, and natural language
understanding.

There are two kinds of Qurxore implementation; big-
Curxore which is a full cient-server style implementa-
tien in KLIC (KL1) and micre-Qurreore which is small
restricted implementation in G,

1 Introduction

Quzxote is designed as a hybrid language for deductive
object-oriented database (DOOD[Y, 6]} and constraint
logic programming (CLP)} based on subsumption rela-
tions. The new mechanisms of Qurxore are a combina-
tion of object-orientation concepts such as object iden-
tity and property inheritance, and the concept of a mod-
ule that classifies a large knowledge base[20, 22, 24). In
addition, its logical inference system is extended to be
able to make hypothetical reasoning and restricted ab-
duction. Such features play important roles in applica-
tions such as legal reasoning, biological databases, and
natural language understanding.

Section 2 describes the Quirore language including
several new issues such as NAF (negation as failure),
disequation constraints, and special built-in modules,
Section 3 shows implementation issues for big-Qurvore
and micro-QuzroTe, Section 4 gives a brief overview
for Quzxore application such as legal reasoning, biologi-
cal information processing, and natural language under-
standing.

2 QuixoTte language

In this section, we overview the knowledge representation
features of Qurrore.

2.1 Object Term and Subsumption Re-

lation

Simple concepts can be represented as atoms called ba-
sic objects. We assume a set B of basic cbjects. For
example, the following are basic abjects:

mozart, per son, piane, violin, instrument
The set of basic objects are partially ordered by <. For
example,

mozart = person,

plang = instrument, violin = instrument
Relations between concepts such as “Mozart is o per-
son,” and “pianc is @ kind of instrument® can be repre-
sented by this partial ordering. For simplicity, we assume
that = is a strict order without circularity.

We represent complex concepts, such as “epus 73 of
Beethoven™ by object lerms:
opT3[eomposer = beethoven),
where opT3 is a basic object, composer is a label, and
beethoven is an object term as the value. There are two
kinds of labels: | € L; takes a single value and I* € L,
takes a set value, where Ly N L, =& [is called a single
value label and [* is & set value label. Similarly, there are
two kinds of variables: X € V] (a single value variable)
and X* € V; (a set value variable).
An object term is defined as follows:

[Def] 1 Object Term

Leto € B, y,~-+,ly € L; where I; # I; (i # j), and

ty,---,ta be object terms or variables (€ V,), then
0[;1=t1r‘ o :Ia"—_'th] {0 <n)

s an object term. When n=0, we simply write o fnstead

of of].]

For example, mozart and male[oceupation =pianist] are
object terms. An object term with variables is called a
parametric object term.

= among basic objects is extended to subsumption re-
lation C among object terms as follows:

[Def] 2 Subsumption Relation
Given tweo object ferms without varisbles, ol =
Jn=ta)] ond Sl =4, I =1L,
:_fr.‘-l <o and VI, 3 L= AL CE,
then ofly =t;, - la=ta] C [l =8, -, L=t
where l<ji=mand 1l <1< n.]

Example 1 Subsumption Relations
applejcolor = green| C apple,
male[age =30, secupation =pianist]
C person[occupation =musican],
where male C person and pianist C musician,]

The subsumption relation among sets of object terms
is also defined. Given two sets of object terms,
{ﬂlr) =ul1} Sl a.nd {E‘i! m} (-] E'L'I.hﬁ'l.].'III.]}'
tion relation Cg among sr.'.'t.i is dﬂﬁn.ed in Hoare order as
follows: _

S Cu S ¥ Vo€ 5,3 €5 0, T
Although the Hoare order is not partial, the represen-
tative of an equivalence class can be easily defined as a
set where any two elements cannot be ordered, and the
set of representatives is partially ordered. So We assume
without loss of generality that Ty is a partial order.

Since lattice construction from a partially ordered set
is & well known process, we assume that 2 =et O of ob-
ject terms (without variables) with T and L is a lattice
(0,C, T, 1) without loss of generality. The meet and
join operations of 0, and oy are denoted by o | 0y and
oy T o3, respectively. Sets of object terms without vari-
ables constitute another lattice. Given two sets, 3, and
S, we can define meet and join operations ({} and 1,
respectively) under Hoare order as follows:

8148 % (e Les ey €5, €5}
Syt Sz o S1U S5
where {T} is the top of the lattice and { } is the bottom.

2.2 BSubsumption Constraint and At-
tribut_e. Term

In the previous section, we showed how to represent so-

called “is-a" and “a-kind-of” relations between concepis

in Quzxore. To represent relations such as “the first

name of Mozart is Amadeus”™ we use & relation betwesn

an object term and a property of another object term: -
mozart. first_neme = omadeus.

(iven an object term, o, the value of a single value
label I is dencted by ol and the value of a set value
label [* is ol*. ol and ol* are called dotied terms.
The term mozart. first_neme can be read *Mozart’s first
name.” The subsumption constraints of an object term
are defined by using dotted terms as follows:

[Def] 3 Subsumplion Constraint
Letty, ts be object terms, single value variables, or dotled

a7

terms with single value labels, then &) C t is @ subsump-
tion constraint. In the case of a set, if £f and 13 are
sets of object terms, set value varisbles, or dotted terms
with set value labels, then t] Cg 5 is also a subsumption
constraint. W]

When t; C it Afy 2 £g (8] Cg 3 AL} Jg 13), weda:mte
H—t:a (i =ut3) " -

A set of subsumption constraints is saturated and re-
duced by applying the following rewriting rules:

‘zdy = yE=z
zCy, yEz = zCy, yC2 zL2
sCy, zCz = =C(yl2)
yCz 2Cz = (yT2)C=z
gy y=z = Sy ypErr=s
tEy, yEr = =y
of-- 1=z,] G - =y,]

= oCo,zCy

where * £ z and ¢ = x are removed in the procedure,
The termination and confluency of the above rules are
proved in [11]. Similar rules are also defined for set eon-
straints,

[Def] 4 Attribute Term
Leto€ B, ly,++, 1, € L; WL, where l; £ 1; (i #3), and
1,7+, by be object terms or varisbles , op; € {—, +—,=

b+ (for single value) U {— g, —g, =g} (for set value) then

ofly opy ty,+ -, ln 0pn ta] (0 < n) _
i5 an attribute term . (]

By the following rules, an attribute term is trans-
formed inte an object term with subsumption constraints
o}, where o is an object term, and C is a sel of sub-
sumption constraints.

ofl = t]|C <= o|fedCt}Ul
ofl —t)|C <= olfel Ji}UC
of[l=t]|C 4= ol{odl=t}uC
of " =g §]|C <= olfel"CrsiuC
of[I* —g 8]|C = o|fol" Dy s}l
of[I*=gs)|C <= odfei*=gstUl

An intrinsic property is a pair of a label and a value in
o. An erfrinsic property is a subsumption constraint of o
in € of an attribute term. If both an intrinsic property
and an extrinsic property have the same label, then the
extrinsic property is removed. That is,
if of--+,0=t),---][{od op t} UC,
then o op 1y s removed,

IThe semantics of QUIAOTE is cutlined in three parts:

(1) An chject term is mapped into & [obeled graph as a subclass of
a hyperset[2].

(2) The subsumption relation among ohject terms corresponds to &
bistnulation velotion among labeled graphs.

{3) A lahel or an dhject term usad as a label corresponds to & fune-
tion on & set of labeled praphs. Here the subsumption relation
among labels is not considered.

For details, see [21]

108

where op is C, 3, or 2. When a label ! does not appear,
neither in an intrinsic property nor in an extrinsic prop-
erty in an attribute term, o|C, L C ol C T is assumed.

For property inheritance, only extrinsic properties are
inherited according to the subsumption relation among
object terms as follows:

[Def] 5 Property Inheritance
Ifo £ p and o does not have an intrinsic property of a
label I (1*), then 0.l C p.l and o.l* C pd*. a

That is, by applying a label, which is not included in
an intrinsie property of the ebject terms, the subsump-
tion relation between object terms makes s property
inheritance monotonic. Property inheritance erception
corresponds to the above restriction of extrinsic proper-
ties.

Example 2 Property Inheritance

(1) If apple/[color —red),
then apple[weight =heavy]/[color = red], but
apple[color = green] does not inherit color — red.

(2) If apple[weight =heavy)/[area* —g {aomori}]
and apple[color = green]/lores* «—g {nagano}],
then apple/[area* +—g {aomori, nagano}|
(by the join operation between sets), o

Notethat, in the cases of + and +—p, extrinsic properties
are inherited upward by the above rule, while intrinsic
properties are not, even though apple[color = green| is
apple|color = green) f[color = green).

As property inheritance is constraint inheritance in
Chrxore, multiple inheritance corresponds to the merg-
ing of constraints without preferences.

2.3 Rule and Module

ChirxoTe objects are defined by rules which are modu-
larized into several modules.

m:{ry, etk
where m is a module identifier (mid) (in the form of an
object term) and rq,- -+, 7 are rules defined below,

For simplicity, we use the notation 'a module m’ in-
stead of 'a module with 2 mid m.” Modules can be
nested. When a mid has variables, it is called a paramet-
ric module. Variables in a mid are global in the module,
that is, variables in a mid can be shared by rules in the
module. A module can be explicitly referred to by rules
in other modules.

2.3.1 Rule

[Def] 8 Aule

Let ag (=00fCy), a1 (=0:[C1), -+, @ (=0a|Ch) be at-
tribute terms, mg,mq, -+, Ty be mids, and D a set of
subsumption constraints. A rule 45 defined as follows:

Mg 't Gg =11 1 @1, +, My ¢ Gy || Dy

Oy must not contain any subsumption relation between
object terms. ag is colled the head and my 1 aq, -+, Mg :
an || D is called the body, (]

The rule in the above definition intuitively means that
a module my has a rule such that if a; is satisfied in a
module miy, « ++, and ay, is satisfied in & module my, under
constraint [, then ayp is satisfied in & module mg.

The rule may be transformed:

my s op|Co = my oy, g o || AUGS;

where O is called a head constraint and AU C =
Cy WU, U I is called & body constraint. Purther,
a body constraint can be divided into a set A of con-
straints containing dotted terms and a set O of the rest
of the constraints. The restriction of O in the above def-
inition is to aveld destruetion of the latties by assertion
of a subsumption relation during derivation. If a body is
empty, the rule is called a fact.

From an object-oriented point of view, the rule gives
an intentional definition of Gurxore objects. An ob-
ject in Quzrore consists of an object term and a set of
methods. An object term without variables plays the
role of an object identifier {oid)[1, 10], while each extrin-
sic property plays the role of a method. That is, a label
corresponds to a message and the value corresponds to
the returned value.

For the case in which there is no head constraint,
QurxoTe may be considered as an instance of CLP{X)
[7], where a constraint demain is a set of labeled graphs
— as a subclass of hypersets[2] and (extended) subsump-
tion relations, Withont set subsumption constraints,
QurxoTe becomes a subclass of CLP{AFA), with a hy-
perset constraint domain [11).

2.5.2 Submodule relation and rule inheritance

Medule mechanism is introduced with the following ob-
jectives:

e modularization and classification of knowledge,

s co-existence or localization of inconsistent knowledge,
o temporal storage of tentative knowledge, and

introduction of a modular programming style.

To meet these sbjectives, we define submodule relalion
among modules:

[Def] T Submedule Relations

GFiven twe modules, m; and ms, ¢ submodule relation
my Jg me means that my inherils all the rules in mg,
when my i called a submodule of my. O

The submodule relation specifies rule inheritance, while
the subsumption relation specifies property inheritance,

To realize the exception of rule inheritance, each rule
can have an inheritance mode o, I, or ol. A rule with
o overrides inherited rules from the supermodule which
hawve the same head as shown in Example 3. A rule with

[is a local Tule, which is not inhérited by the submodules.
Inheritance mode of is the combination of o and L

Example 3 The following program describes the
knowledge “In Europe, cars usually drive on the right.
But cars drive on the left in England. W

england g europe;; france Js europe; ;

europe : car/[drive = right];;

erigland :: (o)ear [[drive = le ft];; -

In the current framework of Qurxore, the names of
object terms, the subsumption relation, and the submod-
ule relation aze global in a database; while the existence
of objects and extrinsic properties are local. That is,
if there is no submodule relation between two modules,
then their extrinsic properties do not mutually interfers,
that is, inconsistent kmowledge can co-exist separately in
such modules,

For example, the following program becomes inconsis-
tent because john has a different extrinsic age property
in the module year_1994.

year_1994 :: john/[age = 20);;
year 1994 :: john[age = 30];;

However, the following is not inconsistent, when the
submodule relation does not hold between year 1982 and
year 1984,

year 1982 :: john[age = 20);;
year_ 1084 = john/|age = 30];;

2.4 Database and Query processing

We define a database or a program as atriple (S, M, B},
where S, M, R correspond to definitions of subsumption
relations * , submodule relations, and rules. Definitions
of rules can be considered definitions of objects or defi-
nitions of modules.

In reality, a database tends to be partial, that is, nec-
essary definitions might be missing, rules might be am-
bignous or indefinite, and a Charors object might be
incompletely defined[23]. To treat the partiality of infor-
mation, Charrore has features like hypothetieal reason-
ing and ansvwer with assumption.

In Qurrore, a query is defined as follows.

[Def] 8 Query and Answer
Let mg,-+-,m, be mids, ag, -+, d, atfribute lerms, and
' o set of subsumption constraints, H a set of additional
rules called hypotheses. A query is defined as follows:
T—mg:ag,- -, Mu:aa || C[ii H]

An answer in Quryore is in the form of

if Assumption then Result hecouse Explanation
where Assumptions corresponds to information not in the
database, Result is a set of subsumption constraints, and
Explanation shows what knowledge is used to derive the
answer, O

0nly the =-relation is defined in 5.

109

2.4.1 Hypothetical Reasoning

In general, hypothetical reascning in & database DB is
defined as ressoning in a database DB U H, where H is
a hypothesis [4].

Example 4 Consider the following DB.
music :: buv1009/[composer = bach];;
Iuten_bumque[mt;mc = X] 4=

barogue : C, music : X /[composer = CJ;;

(listen to & piece composed by a baroque composer.) '
For a query ?-listen_baroque[music = X] , the answer is
simply no because there are no objects in barogue mod-
ule, For the same guery, however, with a hypothesis such
that

- 7= listen_barogue[music=X];;
baroque :: back /[first_name = jahaﬂ)
the answer is X = bwvl008. - B

To a Qurxore database (S, M, H), a hypothesis con-
sists of a triple (Hs, Hu, Hg), where Hs, Hy, and Hg
are a set of hypotheses for §, M, and R. A query Q with
a hypothesis (Hg, Hyr, Hg) to a database (3, M, R) is
equivalent to a query @ without hypotheses to a database
{S U Hs, M UHy, RUHg).

In the sequence of queries, such hypotheses are incre-
mentally inserted into a database. To control such inser-
tions, nested transactions arve introduced into Quzxors:
that is, even if a database is reorganized by hypotheses,
the original image is recovered by rollback operations. .

Example 5 Query Sequence

The following is an example of a query sequence with
nested transaction:

% Open a database named DB .
% Begin a transaction (level 1},

7-open_db{DB).
?-begin_trans.

T-quy 1 H;. % Same as T-q to DBEUH,,
T-begin_trans. % Begin a transaction (level 2},
T-ga; 1 H3. % Same as 7-gg. to DBUH,UH;.

7-abort.trans. % Abort a transaction (level 2.
% H, is rolled back.
% Same as 7-g3 to DBUH|UH;.
"% Commit a transaction (level 1).
% DB is updated to DBUH,UH;.
T-close db{DB}. % Close & database DB,

T-gs; 1 H3.
F-end trans.

2.4.2 Answer with Assumption

Example 6 Answer with Assumption

majer 2 comajor; _
music = k551 /[type = symphony, name = jupiter];;
music = k467 [type = piano_concert, key = comajor];;
m 1 listen[mood = gloom, music = X <=

music: X /[key — magjor];;
[When gloomy, a piece with a major key is preferable.)

110

For a query T-listen[mood = gloom, music = k467],

the answer is simply yes. Then, what answer is expected
to a query ?-m : listen[riood = gloom,music = kB51]
? Although there is an object k551 in music module,
it does not specify key (extrinsic) property. Without
making any assumptions, the query fails. However, as

we focus on the pa.rtla.ht].r of the information, the lack
of information suggests an assumption be taken. So,
in Qurxere, the answer is that if music : kB51.key C
major then yes, that is, unsatisfied constraints of other
objects’ extrinsic properties in bodies are assumed. O

In logic programming, finding a lack of information
or unsatisfiable subgoals corresponds to abduclion, that
is, hypothesis or explanation generation [5). Remember

that a rule in Qurrors can be represented as follows (see.

23.1)
mg 2t og|Cadsmy o, g ton || AU,

In QuzxoTe, only dotted term constraints can become
assumptions, that is, when body constraints about dot-
ted terms are not satisfied, they are taken as a condi-
tional part of an answer. Although A and € are disjoint,
when variables in ' are bound by dotted terms during
query processing, constraints with the variables in & are
moved inte A. If the subsumption relation between ob-
ject terms is taken as assumption, it might destroy the
soundness of the derivation because it affects property
inheritance and does not guarantee results in the former
derivation. _)

Abduction iz closely related to procedural sernantics.
Here we will only briefly explain the relation [14]. In
general, derivation by query processing in CLP is the
finite sequence of a pair (&, C) of a set & of goals and &
set O of constraints:

(G0, Go) = (Gh, C1) = -+ = (G- 1,(3“—:} = (0,C,).
On the other hand, derivation in Qurxore is a finite
directed acyclic graph of the triple (G, A, C) of the set
& of goals, the set A of assumptions, and the set ' of
constrainte.

A query is also transformed in the form of 7-
L PRRT ” A{F U cﬂ! i'e'! a trlple {{a].l v !all-}f"‘!'{h Cﬂ}'
For anode ({GIUG, A), arule &0 <= B || AuC,
and 3§ G#=0G"8, where B is a set of object terms and 8
is a substitution, the transformed node is:

({G:u B8, (Af\C'H)u 48, (CyuCuUC)8)?
The derivation image is illustrated in Figure 1, If there
are two nodes, (7,4, C) and (G, A',C), where A C A",
then the derivation path of (G, A", C) is thrown away.
i.e., only the minimal assumption is made. If there
are two nodes, (&, 4, C) and (&, A,C"), then they are
merged into (&, 4, CUC").

Yote that, here, we ignore that some elements in ((UCUC)H
might be moved into (A8 C'8) U A48,

2.5 Other New Features of Qurxore

To describe an actnal application, the above basic
QurxoTe features are sometimes insufficient. Negative
information and arithmetic computation are essential in
various experiments. NAF (Negation as Failure) and dis-
equetion constraints are new ft_&turea to treat negative
information. For arithmetic calculation and compari-
son, Qurrore is equipped with a special built-in module
called math module mechanism.

2.5.1 Negation as Fa.llu.re

One of the crucial defects of Qurvore is that it cannot
represent negative information such as “if there does not
exist some object, then" or "if a certain relation does
not hold, then ..."

One of the new feature of Qurxore is NAF (Negation
As Failure). As with NAF in Prolog, when the derivation
of a goal (object) fails, negation of the gosl is considered
to have succeeded. Using NAF, the user can check for
the existence of an object in a module. For the follow-
ing example describing “the ticket price is 1000 yen for
members and 1500 yen for non-members.”

E:ckctf[pﬂcs = 1000] 4= is_member;;
: ticket/[price = 1500] <= —is_member; ;

when there exists an object is.member in module m,
? —m : ticket/price = X). has an answer X = 1000. i
is_member does not exists, the answer is X = 1500. *

2.5.2 Element of and Disequation constraints

For actual applications, there are constraints like “a vari-
able can be bound to mozart, beethoven, or bach.” or
“a variable does not have the same value of another vari-
able.” Totreat such knowledge, Quryore has element _of
and disequation constraints.

[Def] 8 FElement_of Constraint

Let ¢ be object terms, single value variobles, or doited
terms with single value labels, s be a set of ground object
terms, then ¢ € 5 45 an element_of constraint, o

[Def] 10 Disequation Constraint

Let t1,1 be ground object terms, single value variables,
or dotted terms with single value labels, then 41 £ &5 s a
disequation constraint. o

n an implementation {big-QUIXETE, see 3.1}, the QuzxoTs
program including NAF must be stratified; that is, every object in
a program can be attached to a level value {non-negative intager)
50 85 to mest the following condition:

In every rule h <= B, the positive objects in B have -
equal or lower levels than & and negative goals have
lower levels than k.

(Go, Aa, Co) < '

. {Gﬂ A‘.’t Ui]

o —(Gy, A4, Cj)

111

>{th1h Uk:‘——"" ot —-{’31 Ay, Cn}

Figure 1: Derivation Network

In addition to rewriting rules in 2.2, the following
rules are added to treat element_of and disequation con-
straints.

cEsl, tES2 = resalnsl
z€{a} = z=a
r#a, €8 = z€s5—{a}

Constraints such as © # y (r and y are not unifiable)
and o € {o,---} are removed. When 2 # 2 ,0 € 5 (o
is ground and s does not contain o), or z € {} occurs
in the constraint rewriting process, the constraints are
unsatisfiable.

2.5.3 Math module

Knowledge in actual applications contains various do-
mains of constraints other than subsumption ones, such
as arithmetic, combinatorial, and so on. To cope with
such variety of constraints, heterogeneocus cooperative
problem solving system Helics iz under development in
ICOTI[3]. In Helios, various constraint selvers, DBs, and
applications are wrapped by & capsule mechanism to be-
come communicating agents.

A special built-in module called math module is de-
signed as an experimental device to call external con-
straints in Qurxyore, which allow caleulating and com-
paring of simple numerical expressions (Example 7).
math module offers several built-in predicates as follows
to caleulate and compare numerical expressions,

add(A1, A2, R) : R — Al+ A2
subtract{Al, A2, R) : R+« Al — A2
multiply(Al, A2, R) : R+« Al= A2
less than{Al, A2} : check Al < A2
ete.

The evaluation of a geal in maeth module is delayed
until proper arguments (Al and A2 in the above predi-
cates) are bound to ground terms.

Example T Math module
The following program calenlates at what age a musician
composes a plece of musie.
composer :: mozart/[bern = 1758, dead = 1761];;
music ;: k467 [[year = 1785, composer = mozart);;
music :: X/[ageof _composer = A] <
music : X/[year = ¥, composer = O],
comgposer : Of[born = H),
math : subtract(Y, B, A);; G

3 Implementation

This section explains implementation issues of Quzxore.
Until now, there have been two kinds of implementation:
big-Qurrore and micro-Qureore. Both system are reg-

istered as ICOT Free Software (IFS) 3.

3.1 big-QuixoTe

big-ChirxoTe is an implementation of Quzrxore language
described in Section 2, which consists of QurxroTe-client
and Qurarors-server modules as shown in Figure 2.

Big-Quixote
Queixpte-cliont Quixote-server

Figure 2: System configuration of big- QurxoTe

CherroTe-server, which is composed of the following
modules, is mainly implemented in the KL1 language on
PIMOS and KLIC systems.

. Quzxore server: TCP /TP communication interface,

KL1 IF: data transformation, ete.

(35: manages external DBs.

. Persistence Manager: interface to external DiBs.

. Data Manager: manages internal representation of
Cuizxore objects.

. Interpreter: makes inference.

. Censtraint Solver: solves subsumption, set, and dis-

equation constraints.

o s DS BE

e =1

In the latest version of big-Qurxore (ver.d), there are
three kinds of client interface: Qmacs, Qshell, and mo-
gaic and an X-Windows interface.

*ICOT free software is available by ancnymous FTP from
ftp.icet.or.jp

112

1. Qmacs: interactive user interface on top of GNU-
Emacs.
. (Jshell: batch user interface with QIF libraries,
. GIMI: interface between Quzaores and mosaic,
4. window: window interface to display lattice strue-
tures, module hierarchies, and derivation trees.

B

Figure 3: Mosaic interface of big-Quzxore

Figuh.r 3 shows the mosaic interface of big- QuzroTe
through QML

3.2 micro-QuUIXYoTE

Because the Qurxore language has various features, its
full implementation tends to be too heavy to run a small
program. micro-Qurxore is designed to extract cen-
tral features of Qurxore as a programming language
and offers a small system for knowledge information
processing[13]. micro-QurxoTe supports the following
feature of QurroTe.

object terms (without set),

subsumption constraints,

property inheritance,

module, and

answer with assumptions, hypothetical reasoning.

L I

For simplicity, micro-CQurarore uiilizes a Prolog-like
depth-first search without merging derivations. Accord-
ingly, micro-QurxoTe sometimes returns different an-
swers from big-Quixore. :

micro-Currore is implemented in the C language in-
dependent of big-Quzvore and has the following fea-
tures. '
» Everything is implemented in C and has high porta-
bility,
» small system {199KB of source code), and
external call mechanism.

System configuration of micro-Qurxors is shewn in
Figure 4.

> Extarnal fall

CFE

Salvar
Usaz
Ml
 tsputiOutps f talsticn
(parser/prieter} | e agemant

Figure 4: System configuration of micro- Quzagre

micro-Qurxore allows the representation of e_x-t,.e:rnal
constraints, whose operators begin and end with “#",
such as

?-K/[name=A] || _
{X=<male, A #regexp# '‘on’'’}.
{search a man whose name contains-“on.”)

When an external constraint binds to ground, micro-
Suzxore throws it out and waits for the result (true
or false). This is the external call mechanism. In Fig-
ure 4, external call messages are dispatched in GNU-
Emacs to the windows interface or be (binary calcula-
tor), etc. External call mechanism plays an important
role when micro-Qurrore is embedded into the hetero-
geneous cooperative problem solving system Helios [3].

4 Application

We have developed several applications in Quryore,
Among these, this section introduces three kinds of appli-
cation: legal reasoning, genetic information processing,
and natural language processing, Details are reported in
other papers [19, 16, 17, 22|.

4.1 Legal Reasoning

Our legal reasoning system [19, 22] aims at the prediction
of judgments for given new cases. To meet this objec-
tive, many databases have been written in QuryoTe: for

example, statutes, theories, precedents, and a legal con-
cept dictionary. Each of these corresponds to a module in
Suzxore. Usually, the analytical legal reasoning process
consists of three steps: fact finding, statutory interpreta-
tion, and slatulory application. Among them, we focus
on statutory applications, which can be considered:

analogy detection: Given a new case, similar precedents
‘to the case are retrieved from existing precedents.

rile transformation: Precedents (interpretation rules)
extracted by analogy detection are abstracted until the
new case can be applied to them.

deductive reasoning: Apply the new cage in a deductive
-manner to abstracted interpretation rules transformed
by rule transformation.

In these three steps, the analogy detection strategy is
essential in legal reasoning for more ¢fficient detection of
better precedents, which decides the quality of the results.
To investigate the Qurryore's potential for legal reason-
ing, we developed an experimental system [19, 22]. Here
we describe a simplified example of legal reasoning.

The features of Qurxors closely relate to the process
and work effectively and efficiently:

1. To find similar precedents, the constraints embed-
ded in the precedents and a new case are gradually
relaxed according to subsumption hierarchy. For ex-
ample, if @ © b, then X C a can be relaxed to
X C b, As the control of relaxation is not a feature
of QuizeTe, it is written by the vser.

2. As connection among modules is dynamic, hypo-
thetical reasoning in QurxoTe is essential. For ex-
ample, users try to connect or disconnect various
modules to improve judgment.

3. As precedents are generally incomplete descriptions,
abduction in Qurrore plays an important role in
the process. For example, if we could find one new
fact in some precedent, the precedent might become
gimilar to a new case.

4. Explanation of an answer is also indispensable to
the verification of derived judgments. For example,
users want to know which statutes, precedents, or
theories are used for some judgment.

A legal reasoning system, which needs a large number
of databases and knowledge-bases, is a typical applica-
tion in artificial intelligence and seems to be good for
database communities too.

4.2 Biological Information Processing

There are various kinds of data and knowledge in molecu-
lar biclogy, such as sequence and structure data of genes

113

and proteins, maps of sequences, and metabolic reac-
tions. Such data is stored in two kinds of databases:
public (text-based) databases such as GenBank, PDB,
and ProSite, and biologists’ private databases. There is
frequently duplication and ineonsistencies between these
databases. :

The problem in our environment is to provide a frame-
work for an integrated “inconsistent’ database with vari-
ous kinds of data and knowledge, which help biologists'
experiments, and to build such an integrated experimen-
tal database. However, as the information partiality
mentioned in 2.4, all the complete and consistent data
and knowledge cannot be stored in QuryoTe. So, we
recognize two kinds of data: low-level data to be stored
in & nested relational database such as Kappa [25]; and
high-level data to be written in QuraoTe, although users
must be responsible for their integration into the current
implementation of Kappa and Qurrore.

The following three examples show how QurroTe is
used in biological information processing.

1. Description of protein functions and motifs:
Chemical reactions correspond to rules and the
chains correspend to transitive rules.

2. Descriplion of experimental dala:
For example [16], the knowledge item cytochromes
have 6 certain feature is sometimes reconsidered as
follows: ' :

» cytochromes and hemoglobins have a certain
feature, or
o cytochrome ¢ has a certain feature.

As most erroneous identifiers change their abstrac-
tion level, an oid and subsumption relation in
QurroTe is appropriate for representing such ob-
jects.

3. Imconsistent ezperimental dala:
A module in QurroTe s appropriate for storing and
classifying data with hypotheses,

4.3 Natural Language Processing

In our environment, we are engaged in various prob-
lems concerning natural language processing, such as
discourse understanding, constraint-based grarnmar, and
situated inference. Of these, we focus on constraint-
based grammar and situated inference as applications
of Quixors, Here, we describe an example of sitnated
inference.
We first define a situated fnference rule as follows:

ssEcyEsn EoLn EG, 8 EMC (1)

This sample rule can be interpreted as: if s; supports
71, 5y supports oz, and so on, thus we can infer that s

114

supports og, under constraint . Concepts in situation
theory are rephrased in Quzxore as follows [17, 22]:

sifuation theory QurxoTe
situation & module

infon 4« ohject term

role . <+ label

supporting (=) <+ membership {:]

We described some examples of situated inference in
SuzxoTe, according to the above correspondence for the
following objectives:

L. How to explicate hidden parameters by constraints,
2. How to describe situated inference from perspectives
such as tense and aspects.

For example, consider the different knowledge held by
two speakers ((uine's example).

A: MIf Bizet and Verdi are compatriots, then Bizet is
Italian.”

B: “If Bizet and Verdi are compatriots, then Verdi is
French."

Each speaker has different hidden knowledge, that is, A
assumes knowledge such that Verdi is Italian and such
knowledge is taken as an assumption in Quryors query
processing. The example is written in QuzxoTe as in
Example 8. Details in the query processing are reported
in [18].

Example 8 Quine's example

gpeaker o Jg world;; speaker d Jg world;;

speaker o :: bizet/[nationality = italy] <=
compatriots[per] = bizet, per2 = verdi];;

speaker_b :: verdi|{verdinationality = france} <
compatriots[per] = bizet, per? = verdi};;

world :: compatriotsperl = X, perl =V] +=
X/[nationality = N1), Y/[nationality = N2|||
{N1LC nation, N2 C nation, N1 = N2};;

world : bizet;;

world 2 verdi;;

For a query
? — speaker_a : bizet/[nationality=X],
the answer is that
if bizet.nationality =verdi.nationality
and verdi.nationalify=italy
then X =italy.
On the other hand, for a guery
T — speaker_ b : verdi/[nationality= X],
the answer is that
if verdi notionalifty = Mzelf.nationality
and bizetnationality = france

then X = france.

Even if there is insufficient data in a database,
CuzxroTs explicates hidden knowledge.

The query processing process s more complex than
conventional processing becanse modes may be merged,
Additionally, we might get different answers from the
same query if the query is made to different modules,
In such cases, the derivation process of an answer is re-
turned including an ezplonation, if necessary. By refer-
ring to this explanation, users can verify which rules are
used for the answer.

5 Concluding Remarks

This paper describes overviews of Quzaore from lan-
guage to implementation issues and applications. Here,
we compare Qurrvors with related works. It resembles F-
logic [8] in the sense that it is a DOOD language and in-
troduces object-orientation concepts into logic program-
ming. Though, as a knowledge representation langnage,
Chitxore has additional convenient features such as a
module mechanism, abductive inference, and so on. Un-
like the conventional CLP language [7], Quzrore has
a symbolic constraint domain and abductive réasoning
mechanism which are suitable for various knowledge pro-
cessing application. The concept of a complex object
in Qurxore inherits PST (partially specified term) in
CIL [12], that is another ancestor language developed in
1COT.

The features of QurryoTe is summarized as follows:

» object-orientation concepts such as object identity
and property inheritance are introduced into the
logic programming as the fundamental philosophy,

& the concept of module enables us to have local defi-
nition in a large knowledge-base,

» its logical inference system is extended to be based
on abduction and hypothetical reasoning,

employs several peripheral mechanisms for applica-
tion: such as NAF, disequation constraints, math
module, and external call mechanism, and

e two kinds of implementation: big-Chorors and
micro- QuryoTe,

Tao show the effectiveness, we applied QuzroTe to legal
reasoning, natural language processing, and biclogical
database, and so on. Especlally Qurxore features to
treat partial information, such as property, constraint,
and hypothesis/assumption-based Q& A, play important
roles in the above applications.

. There still remains, however, some future research top-
tes, if we make Quzxyors a more efficient and applica-
ble knowledge representation language. For examnple, in
legal reasoning, there often occurs information such as
modal representation and external {especially temporal)
constraints [15]. Modal representation is information us-
ing modal operator { must, may, can, and so on), such as

“there may exists an object” and “an attribute of an ob-

ject must be something.” If such modality is embedded
in the medule and constraint, Quzrore will be useful in
not only describing legal knowledge but treating seman-
tics in natural langnage processing in general.

Temporal information also eceurs in various applica-
tions; such as “event A occurred earlier than event BY
and “event C occurred during event D" Besides tem-
poral constraints, kmowledge in actual applications i
usually composed of various heterogeneous information
as suggested in 2.5.3. To cope with such variety, it
is not a promising approach to extend Qurxore itself
every time to handle the appropriate domain of con-
straints. Ancther way to tackle the heterogeneity is
o combine QurxeTe with other constraint solvers and
databases and solve a problem cooperatively, as intro-
duced in Helios[3, 25]. As there already exist various con-
straint solvers, datahases, and knowledge representation
languages, such a distributed and cooperative approach
is becoming important. The math moduole in QurroTe
and the external call mechanism in micro- Quzrore give
an experimental view of knowledge processing in dis-
tributed and integrated environments.

As for 2 DB query system, an important feature of the
QurxoTe system is that the user can ask to a database
with hypotheses and pet the answer with certain assump-
ticns.. By repeating the exchange under nested trans-
action mechanism, the user.can freely add and extract
knowledge to and from the Qurxore system. QuIxors
provides an experiment device of knowledge handling.
One of important topics missing in the current QuzxoTe
implementation is the programming environment. When
constructing 2 Quivore database, the user has to con-
sider various sspects concerning objects; which concepts
in the application correspond to objects, what is the sub-
sumption relation, and how objects are stored locally in
several modules, and so on. Programming environment
that supports such design methodology is required.

Acknowledgments

The authors thank to all the members who are/were en-
gaged in the Qurxore project now and in the past, for
their valuable comments, encouragements, and efforts to
develop the QurxoTe system.

A Example: music.qxt

This is a sample program, a classical music database, in
big-Qurrore, 3, Jg, —, and 2y are described as »=,
»=, =», and =#%= respectively. A rule with the delimiter ;'
iz called a serialized rule and its body 1s processed from
left to right sequentially. In the current version of big-
GurroTe, the user has to serialize the goal order when

using the math meodule,

dprogram;;

115

EAEX definition of submodule relations
&zubmodula; ;
copposer »- barogquetclassictroman;;

baroque>-picture;; classick»-picture; ;reman*-picture;;

mugic »>= szound;;

Hunk definition of subsumption relaticne
ksubsumption;;

concert >= {pianc_cencert, vielin_cencert}::
instrument »= {stringed,wind,percussion};;
stringed »= {violin, viola,cello};; -
erchestral >= {violin, viola, oboe};;

major »= {c_major ,d_majork;;

person >= {john, bob, kenk;;

WhEY facts and rules.
frule;;
¥ music database
music: (k466 [conposersmozart, type=pianc_concert,
ne=20, year=1785,key=d_minoxr];;
music: :k467/ [composer=mozart, type=plana_concert,
no=21, years17B5, kay=c_major];;
mosic::opi08[conposer=beathoven]/
[type=symphony, no=9, name="coral"];;
%% composer database
baroque: tbach/ [born=1686, dead=1T50,
first_name="Johan" ,middle_name="Sebastian",
last_name="Bach"];;
classic: :mozart/ [born=1766, dead=1791,
first_name="Wolfgang",
middle_names"Amadeus", last_name="Mozart"];;
e pu‘fo.mamca database .
perform: :k466 [pianist=gulda, r.:mdnctur—abhado
orcheatra=wpo, years1975]/
[cd=cd[no=1] ,track=1];;
perform: :k385 [conductor=valter,orchestra=csao,
year=1 859] / [cd=cd [no=2] , track=E];;
UREEN Tules
%% "A major key pisce sonnds cheerful.”
listening: :chearful [piece=X]
<= music: X/ [key->major];;
listening: :gloca[piece=X]
<= music:k/[key-rminorl};;
¥ "I recommend cheerful pieces to gloomy pecple.”
listening:: recommendation[for=A, piece=i]
<= Af[feeling->gloom],
cheerful [piece=X]
Il {A =< person};;
Pianc concerts are played by pianc and orchestra. I
music::X/[instrumentss =#= {pianc,orchestrall}]
<= X/[type=piano_concert];;
¥ year <> age (serialized rule)
music::X/[age_of_composer=4] <=
%/ [year=Y, composer=C]; Cffhnrn-E] F
math:subtract(¥,B,A);;
YHEMY sound and pieture Tescurce files
sound: : k551 [soundtype=an,

116

soundfile="/hone/qxt/somd/ jupiter.an”];;
pleture: :bach/[picttype=jpeg,
pictﬂla-"thm.-"qztfpicturefhach _jpﬂs"] 4

References

[1] 8. Abiteboul and P. Kanellakis, “Object Identity 2s a
Query Language Primitive,” Proe. ACM SIGMOD Inter-
national Conference on Management of Data, Portland,
June, 1989.

[2] P. Aczel, Non-Well Founded Set Theory, CSLI Lecture
notes Mo, 14, 1988,

8] A, Aiba, K. Yokota and H. Tsuda, “Heterogeneous
Distributed Cooperative Problem Solving System He-
lios™ Proe. nternotional Conference on Fifth Generation
Computer Systems, IOOT, 1994,

[4] M. Cercone and G. McCalla (eds.), The Knowledge
Frontier — Essays in the Representation of Knowledge,
Springer-Verlag, 1987T.

[5] E. Charpiak and D. MeDermott, ftroduction to Arfifi-
cial Inielligence, Addison-¥Wesley, 1985,

[6] C. Delobel, M. Kifer, and Y. Masunaga (eds.), Deductive
and Object-Oriented Dalobeses, (Proe. the Second Inter-
national Conference on Deductive and Object-COriented
Databases {DOOD'21 J), LNCS 568, Springer, 1991.

[T] J. Jaffer and J.-L Lasses, “Constraint Logic Program-
ming”, Proc. Jth IEEE. Symp. on Logic Pregromming,
1687,

[8] M. Kifer and G. Lausen, “F-Logic — A Higher Order
Language for Reasoning about Objects, Inheritance, and
Schema”, Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, pp.134-146, Portland, June, 18988,

[9] W. Kim, J.-M. Nicolas, and 5. Mishio (eds.), Deductive
and Objeci-Oriented Databases, (Proc. Ist Int. Conf. on
Deductive and Object-Oriented Databoses, (DOODESN,
Morth-Holland, 1990,

[10] Y. Morita, H. Haniuda, and K. Yokota, “Object Identity
in QurroTre,” Proe. SIGDBS and SIGAT of IPSJ, Qet.,
1980,

[11] E. Mukai, "CLP{AFA): Coinductive Semantics of Horn

Clauses with Compact Constraint”, The Znd Conf. on

. Situation Theory end s Applications, Kinloch Rannoch
Seotland, Sep., 1990,

[12] K. Mukai and H. Yasukawa. "Complex Indeterminates
in Prolog and its Application to Discourse Models™, New
Generation Computing, 3(4):441-468, 1985,

[13] Y. Miibe, C. Takahashi, and K. Yokote, “Design and Im-
plementation of micro-QuzxoTe and Its Extension Fune-
tion", Proe. Joint Workshop of SIGDES of IPSJ and
SIGDE of IEICE, July 13%-146, 18984 (in Japanese).

[14] T. Nishicka, R. Ofima, H. Tsuda, and K. Yokota, “The
Frocedural Semantics of & Deductive Object-Oriented
Database Language Qurxors”, Proe. Joint Workshap
of SIGDBS of IPST and SIGDE of IEICE, July 21-23,
1993 (in Japanese).

[15] C. Takahashi and . Yokota, “Constructing a Legal
Database on QuTAoOTE", Proc. the Sixth Australasian
Database - Conference {ADC‘EE}, Adelaide, Australia,
Jan. 30,31, 1895.

[16] H. Ta.na.ka.,_“lntegmted System for Protein Information
Processing”, Proe. Int, Clonf. on Fifih Genevation Com-
puter Systems, ICOT, Tokyo, June 1.5, 1992,

[L7} 5. Tojoand H. Yasukawa, “Situated Inference of Tempo-
ral Information,” Proec. Infernational Conference on Fifth
Generalion Compuler Systems, ICOT, Tokyvo, June 1-5,
1992, :

[18] 8. Tojo, H. Tsuda, H. Yasukawa, K. Yokota, and Y.
Morita, "Quzrore as & Tool for Natural Language Pro-
cessing," Proc. the Fifth International Conference on
Tools with Arfificial Inielligence, Boston, Now. 8-11,
1993.

[19] N. Yamamote, “TRIAL: A Legal Heasoning System
(Extended Abstract)®, Joint French-Jopanese Workshop
on Logic Programming, Henne, France, July, 1991,

[20] H. Yasukawa, H. Tsuda and K. Yokota, “Object,
Properties and Modules in Quraors" Proe. Interna-
tional Conference on Fifth Generation Computer Sys-
tems, ICOT, Tokyo, June 1-5, 1992, .

[21] H. Yesukawa and K. Yokota, “Labeled Graphs as Se-
mantics of Objects®, Proc. SIGDES and SIGAT of IPSJ,
Oct., 1090,

[22] K. Yokota and H. Yasukawa, “Towards an Integrated
Knowledge Base Management System”, Proc. Inf. Conf.
on Fifth Generation Computer Systems, ICOT, Takyo,
June 1-5, 1992,

[23] K. Yoketa, Y. Morita, H. Tsuda, H. Yasukawa, and
8. Tojo, “Cuery Processing for Partial Information
Databases in Quryore®, IOTAISY, 1994,

{24] K. Yokota, H. Tsuda, and Y. Morita, “Specific Fea-
tures of a Deductive Object-Oriented Database Language
QurxoTs,” Proc. ACM SIGMOD Workshop en Combin-
ing Declarative and Object- Oriented Databases, Washing-
ton DO, USA, May 29, 1993,

|25] K. Yokota, “From Databases to Knowledge-Bases —
Kappa, QurzxoTe, Helios”, Proc. Int. Symp. on FGOS
(FGCS584), Dec, 1904,

