18

Proc. of FGCS 94, ICOT, Tokyo, December 1994

Knowledge Information Processing Software

Katsumi Nitta, Kazumasa Yokota, Akira Aiba and Masato Ishikaws

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan
{nitta, kyokota, aiba, ishikawal@icot.or.jp

Abstract

In the FGCS Follow-on project, the second research
department has developed knowledge processing soft-
ware for knowledge representation and applications. For
knowledge representation software, we have improved
the functions of a knowledge representation language,
Suzxere | and developed a heterogeneous distributed
cooperative system, MHelios, Helios solves real com-
plex problems by communicating with several problem
solvers. As application software, we developed new funec-
tion modules for genetic information processing and le-
gal reasoning. The genetic information processing group
suceeeded in creating a useful tool for sequence analy-
sis, and has worked on constructing a biological knowl-
edge base and on structure analysis. The legal reasoning
group developed a software tool which consists of an ar-
gumentation function and a debate funetion. Owverviews
of this research are introduced briefly.

1 Introduction

In the FGCS project, knowledge processing groups de-
veloped basic knowledge processing technologies such as
knowledge representation and high level inference, and
developed several application systems.

Among the basic knowledge processing technolagies, a
parallel constraint logic programming language, GDOC,
which solves algebraic constraint problems, and a knowl-
edge representation language, Quryore , are based on
sound theories and have been given high evaluations as
infrastructures for developing intelligent systems.

Among application programs, the frontiers have been
genetic information processing and legal reasoning.
These application groups have conducted collaborative
work with human experts, and by running these systems
on the Paralle] Inference Machines, they showed a re-
markable Increase in speed.

Based an the FGCS project research, we attempted to
consclidate basic technologies of knowledge processing,
show the effectiveness of parallel inference in application

systems, and develop frontier application systems,

However, to develop highly intelligent systems, much
research remains to be done. For knowledge represen-
tation technologies, for instance, we looked at real com-
plex problems such as genome analysis and legal reason-
ing. To solve these problems, we have to use various
databases and various programs to analyze them, and
have to arrange them using domain knowledge. In such
cases, we need anew paradigm which sobves complex and
difficult problems by communicating with several prob-
lem solvers.

In addition to basic technologies, genetic information
processing and legal reasoning have many areas for im-
provement. For example, programs of amino acid se-
guence analysis are expected to be more practical when
they can apply genetic algorithm and knowledge based
technologies. Programs of structure analysis will be
improved by developing new technologies for Hidden
Markov Modes. And a legal reasening system will be
more ugeful if it ales has a function which generates in-
terpretations of the law. In order to make these applica-
tion systems be more practical, they must be evaluated
by human experts. Therefore, to improve portability is
also an important task.

Taking into these censiderations, in the FGCS Follow-
on project, we set the following targets for the second
research department.

1. To develop a new paradigm for solving large prob-
lems.

2. To develop more intelligent functions for genetic in-
formation processing and legal reasoning,

3. To improve the portability of systems by developing
in KLIC.

In this paper, we introduce resulls of researches in the
FGCS Follow-on project. In Section 2, we introduce re-
search into knowledge representation technologies, and
in Section 3, we explain the new functions for genetic in-
formation processing and legal reasoning. In Section 4,
we show the collaborative works of these research groups.

2 Knowledge Representation

Technologies

2.1 Overview

In the FGCS project and its Follow-on project, we have
worked on various knowledge information processing ap-
plications, such as natural language processing, genetic
information processing, and legal reasoming. In such an
environment, our major interest from a knowledge rep-
resentation point of view has been how to support these
applications with by domain-independent languages and
systems [Yokota and Yasukawa 1092, Yokota and Aiba
1964].

We have two research objectives: representing and
managing data and knowledge efficiently, and providing
an environment where multiple languages and systems
can work effectively for a single purpose. For the first,
we proposed a framework of a deductive object-oriented
database (DOOD) and have designed and developed the
QuzxoTte language [Yokota ef al 1893]. As the second
target, we proposed a multi-agent based framework for
a heterogeneous, distributed, cooperative problem solv-
ing system, Helios[Yokota and Aiba 1994], which is now
under development.

From a database point of view, QurxoTe is an up-
per layer of Kappa[Kawamura et al. 1992] that makes
representation and management of higher-level data and
knowledge possible, while Helios can be thought an
extended multidatabase[Yokota 1994a), where multiple
heteropeneous database management systems can pro-
cess queries cooperatively. From a knowledge repre-
sentation point of view, Qurrore is a flexible knowl-
edge representation language with both logic and object-
orientation features, while Helios makes it possible to
combine various representation languages and constraint
solvers in & single problem solver,

Helios is an attempt to provide an environment for
combining problem solvers such as constraint sclvers,
databases, and application programs written in various
programming languages with various data representa-
tioms in one system working in a distributed environ-
ment. Each problem sclver in Helios utilizes the other
solvers’ functions, which cooperate and negotiate with
each other to solve complicated problems.

Besides those research activities, we also imple-
mented a parallel constraint logic programming language
(GDCC [Terasaki et al. 1992], and its parallel constraint
solvers on top of KLIC system. GDCC is a langnage by
which problems can be represented declaratively in terms
of a set of constraints, and was originally developed in
the FGCS project by using KL1 langnage running on
PIMs. It utilizes a parallelized Buchberger algorithm to
handle algebraic equality constraints, and a parallelized
modified Buchberger algorithm to handle boolean con-
straints. Along with the development of KLIC, aiming

19

for extending the environment for using KL1 from PIMs
to UNIX based workstation, we also reimplemented the
GDOC language processor for UNIDX machines. By us-
ing a GDCC language processor for KLIC, the GDCC
facility can be used on UNIX based workstations. This
version of GDOC on KLIC will be released as JCOT Free
Foftware until the end of March 1995,

In the following subsection, we give an overview of
Orxore and Helios.

2.2 Quixote

Quzxore is an object-oriented logic programming lan-
puage with database features and is considered a DOOD
language. The main specific characteristics of Charvore
are as follows:

1. Integration of logic and object-orientation features
by subsumption constraints,

2. Knowledge classification and inheritance by a mod-
ule concept,

3. Query processing for pertial information databases:
abduction of subsumption constraints and hype-
thetical reasening,

4. Support of datobase managemenl spstemn features
such as coneurrency control, nested transactions,
and persistence,

We have developed applications such as legal reason-
ing, penetic information processing, and natural lan-
guage processing in Qurxore, and have shown the ef-
fectiveness and efficiency of the language.

After many efforts to build knowledge representation
languages and extensions of deductive databases in the
FECS project, we started to design the Qurvors lan-
guage in 1990 and have since implemented the system.
The Quryore system has been released as JCOT Free
Software (the third version in June, 1983 and the fourth
version in December, 1994). The system can work under
UNIX, MS3-DX0S, and Macitosh environments.

2.2.1 Basic Features of Qurvors Objects

An object in Qurxore consists of an object identifier
(cid) and a set of properties. Each property can be con-
sidered a method, as usual, and the implementation of a
method is written in the body of a rule. The subsump-
tion relation among oids makes property inheritance pos-
sible.

(1) Object Identity and Subsumption Constraints

An oid iz in the form of a tuple called an object ferm.
For example,

20

apple,
apple[color = red), and

cider[alcohol = yes,
product = process|source = apple,
process = ferment]]

are ohject terms, where the first term is basic, but the
latter two are compler. ’

Given a subsumption relation (partial order) C among
basic abject terms, the relation is extended among com-
plex object terms as usnal. For example,

apple 3 apple[color = red).

Congruence relation o) = og is defined as o) E 0z A oy 3
o2, We assume that the subsumption relation among ohb-
ject terms constitutes a lattice without loss of generality
because it is easy to construct a lattice from a partially
ordered set. Meet and join operations on object terms
are denoted by | and T, respectively.

Properties are defined as a set of subsumption con-
straints of an oid and used with the oid as follows:

apple|{ apple.species C rose,
apple.aren Dy {aomori, nagans}},

where apple is an object term and the right hand side of
| is & set of properties: apple.species Crose means that
apple’s species is (subsumed by) rose and apple.area Jy
{aomori, nagane} means that there are aomori and
nagans in apple’s production areas. Here a relation be-
tween sets is defined as 2 Hoare ordering based on sub-
sumption relations:

e
5 Cg 5s =_|f Wey € 51,3es € 52, € C g2,

Although Hoare ordering is not partial, we assume it as
a partial orcder because the representative of an equiva-
lence class module Cy is easily defined as a set where no
element is subsumed by other elements in the same set.

(2) Property Inheritance

For property inheritance, we assume the following rule:

if oy C ay,
then o4l C oo.f and o' Ty 000",

where oy and o5 are ohject terms, [and ' ave labels, and
! and I take a single value and a set value, respectively.
According to the rule, we get, for example,

if apple.species C rose,

then apple[color = red).species C rose,

and

if apple[color = red].area Dy { fukushima},
then apple.ares Jdy { fukushimal}.

That is, apple.species T rose is downward inherited
from apple to apple[color = red], while applefcolor =
red).area Jg {fukushima]l is upward inherited from
apple[color = red] to apple.

Mote that there are two kinds of properties: prop-
erties in an cbject term and properties in the form of
eonstraints. The former are called #nfrinsic and the lat-
ter are called extrinsic. Only extrinsic properties (sub-
sumption constraints) are inherited according to the [ex-
tended) subsumption relation among object terms.

Intrinsie properties interrupt property inheritance as
follows:

Even if apple has apple.color 2= green,
apple[color =red) does not inherit color C green
because the intrinsic property color = red with
the same label color rejects the extrinsic prop-
erty color C green. '

This corresponds to exception of property inheritance.

Multiple inheritance is defined as the merging of sub-
sumption constraints. Such constraints are reduced as
follows:

fplCaand ol b thenol Ca | b,
if aCodand bC ol, then a TbC 0.,
if ol Cg 5y and o Cg 55, then od Cg 51 U sq,

and

if 5, Cq 0.l and 33 Cg ol
then {z | y|z € 5,4 € 22} Cg o,

Note that the least upper bound of the two sets, 8, and
53, is defined as & U sy under Hoare ordering, because
syUss T {es T e ey € 351,00 € 5] In the above ex-
ample, the merging of apple.area Jg {aomoeri, nagano}
and applearen gy {fukushima}l is reduced to
apple.area Dy {aomori, nagane, fukushimal.

(3} Intentional Objects

An object can be defined intentionally in the form of a
rule:
aﬂfc’lﬂ - aljgh e 1'D:r|.|'::"n |[Gs

where, for 0 < i £ n, o; is an object term and £} is a set
of the related subsumption constraints, and © is a set
of constraints (variable constraints). An object og|Cy i3
intentionally or conditionally defined by the rule, og|Clhy
is a fhead and o|C, - -, 04|04 || € 15 & body. Intuitively,
a rule means that if the body is satisfied then the head
is satisfied. If a body iz empty, then the rule is called a
fect. Tn a sense, an object 18 defined as a set of rules with
the same object term. There is one important restriction
in Oy O may not contain subsumption relations among
object terms. The reason for this is to avoid destruction
of the lattice during query processing.

Mote that an object term plays the role of an oid, That
is, two facts,

o|{e.d E a} <« and
o|{0.l C b} «=

can be merged as follows:
al{odCalb}+=.

In cases where an object term with variables is in the
head of a rule, the ohject is defined when the variables
are instantiated during query processing. That is, sub-
sumption constraints in a head are merged after evalua-
tion of all the related rules,

When the constraints of a head are empty, Qurvors
is an instanee of CLP(X) [Jaffar and Lassez 1987

°D¢E1IGI:|"'?'?HIC:1 “ C
= g0, ,6||CiU-UCUC

From a programming language point of view, the exis-
tence of head constraints in a rule makes Qurrors an ex-
tension of CLP(X) and, in the procedural semantics, the
possibility of merging head constraints must be checked
al every OR node of the resolution tres.

2.2.2 Databases and Query Processing
(1) Modules and Datahases '
A set of rules can be defined as a module:

m i {ry,- -, ra k.

This means that a module identified by a module iden-
tifier (mid) m has rules rq,---,r,. We uge ‘module m’
instead of ‘a module identified by mid m' for simplicity.
Here, we define the submodule relafion between modules,
For example, consider two submodule relations:

1y Jg e + g, and

my Jg my.
The definitions mean that m; inherits all rules in gy
and mas, and me inherits all rules in my. We call such
inheritance rule inheritance, where exception, locality,
and overriding are also defined [Yoketa et al. 1993). The
submodule relation is an acyclic directed graph, in which
modules can be nested. Rules without a mid are inher-
ited by all modules. For example, consider the following
three definitions:

(1) mye{ry,- v}
Mg it {Pa, -, Tam}
{my,me} o {ra, - orar}

(2} myu{ru,---ral
ma i {ra, 0 0 Tam}

317" a7
(3) my ey, v}
iy i {ra, 0 Tam}

common @ {ry, -, ru}
my g COMmimon
My Jg COMTLOT

21

In any of these definitions, m; has Ty, - Fin a1, - Fa
and my has Ty, « < Tam e T

A module can be referenced from a subgoal in a rule
in other modules. The definition of a rule is extended as
follows:

my 2 oplCy = my 0O,y o |Cu || O

which means that there is a rule in module my such that
if & and O are satisfiable in module m; for all 1 <1 <
n, then ap|Cy is satisfiable in a module myg. There might
be some discussion about why a rule is not defined as
follows:

m ::mg:ﬂgj(?u#m1 : 01|5'1,"'.mn:0n|cn || C.

According to the definition, module m knows some
knowledge in another module, that iz, the rule corre-
sponds to & kind of brief However, this causes serious
semantic problems.)

The ohjectives of a module are as follows:

1. Classification of data and knowledge under certain
criteria.

2. Coexistence of inconsistent data .a.nd knowledge.
3. Modular programming style.

These features are also very useful for constructing very
large knowledge-bases {VLEE).

A QuzxoTe database or a Quzarore program is defined
as a triple (5, M, B) of a set 5 of subsumption relations
among basic objects, a set M of submodule relations
among mids, and a set & of rales. Intuitively, a database
can be also considered as a set of modules or as a set of
objects.

. (2} Query Processing

One of the major characteristics in knowledge informa-
tion is the partiality of information. That is, sufficient
information is not necessarily given, as for example in
business applications. The introduction of an object
identity is essential for representing such partial infor-
mation. Partiality should be considered not only in rep-
resentation but alsc in query processing:

1. What information is lacking in the database for this
query?

2. If some information is inserted into the database,
what answer will be given for this gquery?

Further, as derivation becomes more complicated, we
want to know why a particular answer is returned.

In logic programming, finding a lack of information or
unsatisfiable subgoals corresponds to abduction, that is,
hypothesis generation. Remember that a rule in Quz.
x07¢ can be represented as follows:

22

w|Co=o,- 0 || CLU---UC,UC,

where oids 0y, ---, 0, are considered as existence checks
of the corresponding objects, while C; U --- UG, U T
is considered to be a satisfiability check of subsump-
tion and variable constraints. In the current imple-
mentation of Qurrore, only subsumption constraints in
Y- - -UCL UL are taken as assumptions. That is, even
if body constraints are not satisfied, they are taken as a
conditional part of an answer, For example, consider a
database consisting of three objects:

o1 4= 01||{ead € a}.
o9
g 0y

For a query 7-0p, the answer is that if e3.l C a, then yes,
while, for a query T-gg, the answer is ne.

* Further, the derivation process of an answer is also
returned as an explanation with the answer. That is,
each answer is in the following form:

if assumptions then answer becanse explanation,

where both assumptions and answer are in the form of
a set. of constraints.

On the other hand, hypothetical reasoning corre-
sponds to the insertion of hypotheses into a database.
A query is in the following form:

if hypotheses then -query
(written as Y-gquery;;hipotheses).

For example, consider the database used above. For
queries ?-oq;;09|{oxd C a} and T-o3;;04, both answers
are yes without any assumptions. That is, if, for a query
7.g, the answer is if H then A°, then, for a query 7-
q; s H, the answer is simply 4. Note that, as a database
consists of a triple of definitions of subsumption rela-
tions, submodule refations, and rules, hypotheses can
also consist of such a triple. A query 7-g;; (Sg, My, By
to a database {5, M, R) is equivalent to a query T-g to a
database (S U Sg, M U Mg, RU Ry).

Hypotheses are incrementally inserted into a database,
that is, a query 7-g:; H to a database DB updates the
database to DB U H. To contrel such repetitive inser-
tions of hypotheses, nested transactions are introduced.
Users can declare begin_transaciion, abort_fransaction,
or end_transaction at any time among queries. A top-
level commit operation {an outermost transaction from
begindransaction to end_transaction) makes insertions
persistent. On the other hand, & roll-back operation
{cansed by abori_transaction} recovers the before image
of the corresponding begin fransaction. Hypothetical
reasoning is useful in the construction of a knowledge-
base or in thought ezperiment or trial-and-error type
guery processing.

(3} Other Features

Here, we list some more features of Quzrore:

1. Assertion and deletion of extensional objects and
properties during query processing are supported.
These are controlled by the same uniform nested
transaction logic uwsed in hypothetical reasoning.
Heowever, note that the subsumption relation and
submodule relation may not be updated during
guery processing, because the change in their inheri-
tance might destroy the soundness of the derivation,
although they may be inserted as hypotheses,

2. All ohjects in QuixoTe except lemporarily created
objects during query processing are persistent. Per-
sistent objects in a database are stored through a
uniferm logical interface into other database man-
agement systems or file systems via TCP/IP proto-
col. Such objects are invoked when the correspond-
ing database is opened.

3. A QuerxeTe system consists of a client as a user
interface and a server as a knowledge-base engine.
Servers and clients are connected also by TCP/IP
protocel and servers contrel multi-user access.

2.3 HELIOS

HELIOS [Aiba et al. 1994] is a framework for construct-
ing heterogeneous distributed cooperative problem solv-
ing systems from various problem solvers such as con-
straint solvers, databases, and application programs im-
plemented in various programming languages using vas-
ions data representations.

To construct advanced and complicated problem solv-
ing systems in knowledge processing, three kinds of het-
erogeneity should be considered: model heterogeneity,
spacial heterogeneity, and temporal heterogeneity, That
is, multiple model, paradigm, or representation, dis-
tributed system, and extension should be considered. For
this reason, a system for those problems should have cor-
responding three flexibilities, HELIOS s a framework
having those three fexibilities for conmstructing those
problems.

The main characteristics of HELIOS are as follows:

1. Each problem solver is encapsulated by a capsule
for providing methods and converting its local rep-
resentation to a commeon one. This encapsulated
problem solver is called an agent. A problem solver
in an agent is called a substance.

2. Apents are placed in a common space called an en-
vironment, An environment provides a global in-
formation including common representation of data
and controls communication between agents.

3. An environment with its agents can be considered
as a problem solver, and it can itself be an agent if it
is encapsulated by a capsule. This allows us to con-
struct a hierarchical agent-environment structure.

4, Communication belween agents is realized by mes-
sage passing between them. Those messages have
flexibility on designating destinations,

After comsiderable work on knowledge representation
technologies, such as designing, implementing and apply-
ing QurxoTe and GDOC, and deep consideration of huge
applications such as legal reasoning, genetic information
processing, and natural language understanding in the
FGOS project and its Follow-on project, we started to
design HELIOS in 1883, We implemented the first ex-
perimental version of HELIOS in the beginning of 1884,
and the first version that works on UNDIX workstations
by using C language in mid-summer of 1994, The second
version was implemented in November 1994 on UNIX
workstations connected by Ethernet. The second ver-
sion of HELIOS will be released as JCOT Free Software
until the end of Mazrch 1995, '

2.3.1 Agents, Environments, and Messages

A problem solver is encapsulated by a capsule which pro-
vides methods that are definitions of functionalities of
the problem solver that can be used from other agents.

All communication between agents is realized by mes-
sage passing. All messages are handled by an environ-
ment, and they are strongly typed. A type system used
to type messages is called a common fype system, and
defined in an environment, Bach agent's capsule trans-
lates messages between the common type system and the
type system used in its substance,

By encapsulating an envircnment and its agents, a new
problem solver can be eonstructed. If this i= wrapped by
& capsule, a new agent is defined. This type of agent is
called a compler agent, while an agent with no internal
structure is called a simple agent (Figure 1).

An agent has the following two functions: solving
problems that are provided by other agents, and asking
other agents to solve problems that can not be solved lo-
cally. An agent have only the former functions is called
a passive agend, and an agent have both functionalities
is called an active agent. Almost all problem sclvers
can be substances of passive agents without modifica-
tion, but extensions of problem sclvers are required to
be substances of active agents.

An environment collects information on the agents in
it, and takes care of delivery of all messages. That 15, a
message produced by an active agent or a message pro-
duced outside and passed from a capsule of the environ-
ment is sent to the environment, which then delivers it to
agents that have a possibility of solving the problem in
the message. If the environment cannot find agents that

23

have a possibility of solving the problem, then the mes-
sage is sent outside the environment through the capsule.
In this sense, & user can be considered as the cutermost
environment of HELIOS. Thus, problems that no agent
in HELIOS can answer are sent to the user.

There are many ways to designate the destination of a
message. All of those ways are handled by the environ-
ment.

2.3.2 HELIOS: Its languages a.ud Functions

The message protocal used in HELIOS includes the fol-
lowing information: ;

1. Message identifier
An identifier for a message given by the capsule of
the sender of the message. This is unique in an
environment.

2. Transaction identifier
An identifier is an identifier for controlling messages
updating contents of substances,

3. Message tyvpe
As described, a message sends either problems or

answers to other agents. The former are called query
messages, and the later are called reply messages.
The message type is used to distinguish those types
of messages.

4. SBource
Anidentifier of the agent that produces the message.

5. Destination of the message {Destination)
The destination of the message can be designated in
the following ways:

Apent identifier

In this case, the destination agent is explicitly des-
ignated. An environment maintains a directory con-
sisting of agent identifiers and their physical address.
This directory is called an agent directory.

Function and process

The functions of an agent are defined in its cap-
sule. An environment collects them and makes a
directory consisting of functions and agent identi-
fiers. This directory is maintained in the environ-
ment. This divectory is called a funciion direciory.
If a function is used to designate the destination of a
message, then the environmentl refers the directory
to obtain identifiers of agents that have the func-
tion designated in the message. The environment
then delivers the message to those agents. The pro-
cess determines the aggregate function to obtain an
answer to the sender from collected answers.

24

user {envirenment)
Complex Agent
rv T
Capzule
d " Environment A
Complex Agent
Simple Agent Capsule
Capsule Environment
Problem Solver-1 (Problem Solver-2) ((Problem Solver-3)

k)

M A

Figure 1: Basic Model for HELIOS

Function, Method, and Process

When agents with functions have methods with
identical or similar function but different names,
these methods can not be invoked by the abowve
method. To deal with this situation, an environment
uses a directory consisting of a pair of funetion and
method, and a list of pairs of an agent identifier and
method. This directory is called a method directory.

By using these functions for designating destination of
messages, many protocols for cooperating and negotiat-
ing agents can be realized, such as contract net protocol,
distributed constraint satisfaction, distributed constraint
relaxation, ete.

To deseribe information and definitions required for
constructing capsules and environments, two languages
are provided. One is & language for capsules, called
CAPL (CAPsule Language), and the other is a lan-
guage for environments, called ENVE [ENVironment
Language).

The following is an example of a CAPL program 3 and
an ENVL program 2 by using CAPL and ENVL of the
second version of HELIOS,

kenvironment n-gqueens;
kcommon_type common-type-file;
kagent_dir gueeenl, queen-2, gqueen-3,
gueen-4, gueen-5, queen-6,
gqueen-7, gueen-3;

Figure 2: ENVL program for 8-Cueens

In this ENVL program, benvironment gives an identi-
fier of the environment, kcommon_type gives a file name

for common type declaration, and Zagent dir gives the
agent directory. In this case, agents queenN (1 < N <
8) are almost identical except N. In such case, a para-
metric agent can be used. A parametric agent can be
defined by ¶metric_agent queen;, By this defi-
nition, a template for agents named queen iz defined.
When the user gives commands for expanding this tem-
plate with given parameters, 1 to 8 in this case, then the
agents from queen(1) to queen(8) are generated. By
using this facility, user iz not required to write similar
CAPL programs moare than once.

The Figure 3 shows the main part of a CAFL pro-
gram for a capsule of an agent for solving the N-Queen
problem.

In the CAPL program in Figure 3, an agent de-
fined by this capsule is a simple agent named gueeni.
fparameter defines a local constant, ID, that iz used
for invoking a predicate in the substance. Zenv de
clares that the environment of this agent is n-Queen.
, and that the ENVL program for the environment is
stored in the file a0.env. The &inside field desig-
nates a command to wake up the substance. In this
case, the command prolog is used to wake up the sub-
stance. The program for the substance is stored in the
file named fapp/nQueen/lib/queen-pr.pl. The lan-
guage used to implement the substance is declared in
the field of &substance_type. This capsule and the sub-
stance are connected by pipe.

The next field defines import methods for this agent.
This agent receives a method named solve n_queens
with one parameter of the type int, and returns a value
of the type list-of-positions. Both types belong to the
common type system. The right hand side of => means

. the invocation of a predicate in the substance.

ktype gimpla;
kparameter ID:imt = 1;
kagent queenl;

kenv n=-QJueen, nl.env;
kinside prolog

&sub Sfapp/nfuesn/lib/quesn-pr.pl;
isubstance_type prolog
kconnection pipe;
Zimport_method
solve_n_gusens @ #1:int => #2:[positoin]
] :
n_gueens O #ID:INT, #1:INT, #2:[POSITION];

fexport_method
get_my_domain @ #l:position -> #2:positiocns
£=
bag_of lget_others_positions @ #1:POSITION, #
3:INT,
(#2] : (POSITIONS];

kconvert
(id=#1,position=#2) :position
<=> [#1,42]:POSITION;
(id=#1 positions=#2) :positions
<-> [#1,#2]:POSITIONS;

&eseli_model .
ifunction 4queens, Bgueens, Ggueens,
Tqueens, Bgueens;

Figure 3: CAPL program for 8-Queens

The following lines defines the export methods, type
conversion rule, and self mode] are defined.

2.3.3 HELIOS as a huge system for knowledge
processing

By the research and development, we provided a compre-
hensive testbed for heterogeneous distributed coopera-
tive problem solving for dealing with three heterogeneity:
model heterogeneity, spatial heterogeneity, and tempo-
tal heterogeneity. By making capsules and environments
programmable by CAPL and ENVL, HELIOS provides
flexible and extensible common space and communica-
tions. The resulting system using HELIOS as a huge
system for knowledge processing from issued of shar-
ing knowledge and reusability of knowledge/programs,
Rensahility of programs as agents is for temporal het-
erageneity, and introducing capsule and environment are
for model and spatial heterogeneity. When very large
knowledge bases are considered, considering the above

25

three kinds of heterogeneity is crucial.

3 Application Programs

3.1 Overview

In the FGCS project, genetic information processing and
legal reasoning are the most successful flelds in develop-
ing application systems. Both fields have large public
databases and require proper knowledge bases by which
we can make large-scale problem solving systems. Forto-
nately, academics in both fields are cooperatively active
because they had succeeded in getting Grants-in-aid of
Scientific Ressarch on Priority Areas from the Ministry
of Education, Science and Culture of Japan. We con-
ducted our researches receiving their suggestion.

3.1.1 Genetic Information Processing

In the proceedings of FGCS'92, we discussed the avail-
ability of paralle] inference machines in the field of ge-
netic information processing. We reported on a parallel
sequence analysis system and a parallel protein folding
system. Both of them worked efficiently on PIM model-
m. Preliminary studies en the knowledge representation
and retrieval were also made.

The systems seemed useful for biologists. The evaln-
ation by biclogists, however, didn't go well, because the
systerms worked only on PIMs, which are experimental
parallel machines for computer scientists. We thought
that new systems should be established using TTNIX-
based computer rescurces, and that more intensive stud-
ies of biclogical knowledge are required to develop useful
computer systems for biclogists.

3.1.2 Legal Reasoning

Legal reasoning is a thinking process of lawyers to apply
legal rules to a new case.

In the FGCS project, we have developed a legal reason-
ing system, HELIC-II [Nitta et al. 1892]. This system
consists of two inference engines: a rule base reasoner
and a case base reasoner, and it solved several criminal
problems.

However, HELIC-II has following problems. (1)
Though it has a function for generating arguments, it
lacks in a function which selects the best one. (2) As it
runs only on PIMs, it is difficult for lawyers to use it.

To resalve these problems, we started the research on
the new HELIC-IT in the FGCS Follow-on project.

3.2 Genetic Information Processing

After FGCS'92, we focused on sequence analysis prob-
lems to prove the applicability of parallel computing in
genetic information processing. We intend to develap a

26

UNIX-based sequence analysis enviromment that would
be convenient for biologists.

We intensively studied the presentation of biclogical
knowledge by constructing some experimental systems,
Some of them were deductive object oriented databases
writlen in Qurrore language. The others, written in C,
learned hidden Markov models.

3.2.1 Parallel Applications

The fundamental technmigue for analyzing genetic se-
quence data by computer is to examine similarities
among sequences. This usually requires large amounts
of computation to find the similarities, since there are a
lot of sequences in the database to be examined. The
computational problem can be partly solved with par-
allel implementation [Coulson et al. 1987, Kawai et al.
1891].

After noticing that the iterative improvement method
[Gotol 1993] was suitable for parallel computing of ge-
netic sequence data, we developed some parallel iterative
aligners [Ishikawa ef al. 1992, Ishikawa et al. 1994b]. In
the following paragraphs, we discuss the most sophisti-
cated iterative aligner and an alignment workbench fea-
turing the parallel iterative aligners. '

Parallel Aligner by Genetic Algorithm

Genetic algorithms (GAs) simulate the survival of the
fittest in a population of solutions which represent points
in & search space (Figure 4). In our GA alignment sys-
tem [[shikawa et al. 1903), each solution, though usually
represented by a binary string, corresponds to a possible
multiple sequence alignment. A fitness function corre-
sponds to the alignment score. The number of solutions
in a population is the same as the number of available
PEs, because each PE manages a solution.

Hth generatan [N+1}h penecation
o Modfication, - ™ (e |
. » . . »
——8 W—F‘

o & Saloction - - Crossover|
o I e
. . . . ™

Figure 4 Mechanism of Genetic Algorithm (GA)
— GA is a stochastic search algorithms based on the
biological evelution process, whose operators consist of
modification, selection, duplication, and crossover,

The modification operator changes certain parts of a
solution. Although modification means a randem per-
turbation under the arthodox concept of a genetic algo-

rithm, it is considered an iterative cycle of improvement
in our definition.

Selection rate
90%

Efmination

s 5

Figure 5: Multi-Group GA Strategy — A high-score
solution migrates to a high-selection-rate group in order
to do a concentrated search arcund its vicinity, and so-
lutions captured in local eptima surrender their compu-
tational resources to a distributed search in the lowest-
selection-rate group.

The multi-group GA technique can dynamically
change search sirategies by migration during a GA pro-
cess [Mihlenbein and Schlierkamp 1993]. We have de-
vised & multi-group GA as shown in Figure 5 using cur
GA alignment system. We focused on the selection rate
of our GA system. By changing the selection rate, we can
create fairly different searech strategies. When the system
has the highest selection rate, the search becomes narrow
and coneentrated. Without selection, on the other hand,
the search becomnes wide and distributed. Our multi-
group GA strategy forms a hybrid search which features
the advantages of both narrow and wide searches.

Sequence Alignment Workbench

Our alignment workbench, which features the parallel it-
erative aligners, realizes alignment which is not only fast
and high-quality, but alsc constraint-based [Ishikawa et
ol. 1994a]. When a user has some biological knowledge
which indicates that some characters might be aligned
in a column, a constraint can be defined for those char-
acters. The constraint set is considered simultanecusly
in each iteration cycle of parallel alignment. Then ap-
propriate multiple alignment is generated by the aligner
and displayed in full color on the display.

The alignment workbench also contains the following
characteristic sequence analysis modules: a phylogenetic
tree drawer, a motif-database matcher, and a stem re-
gion specifier. The matcher identifies sequence motifs
in a protein sequence alignment, retrieving motif data
from the Prosite database [Bucher and Bairoch 1994].
The drawer constructs an evolutional tree, dependent on
the current editing alignment. The stem specifier indi-
cates some possible stacking regions in an RN A sequence
alignment [Ishikawa et al. 1994c).

The iterative aligners and the alignment workbench
{Figare 6) are open to the public via the Internet for

biclogists' use.

Parsilal
| Paralel iteeative: B5nees

internat

Algnment Warkbanch 8
g =« Constain-based cparalion

* Aefinement toals

Figure 6: Alignment Environment — The parallel
aligners, working on a PIM or a UNIX-hased parallel
computer such as CMS5, provide the alignment work-
bench with aligned sequence data via the Internet.

3.2.2 Knowledge Representation

Biological knowledge representation [KR) requires very
farge dalabases, meta-databases and database flexibility.
Biologists discover new facts constantly, adding them to
the existing databases, and often building new databases.
In order to get the latest data as quickly as possible,
meta-databases, federated databases or integrated inter-
faces for heterogeneous databases are required [Letoveky
and Berlyn 1994] [Perriere et el 1994]. Encapsulation
and polymorphism in the object-oriented model suggest
a reasonable solution. .

Biologists often request additional attributes or
schema reconstruction, for they discover novel critena
or viewpoints. This is why a schema evolution facility
or database flexibility 1s required. Several genome map-
ping databases employ logie programming environments
such a8 Prolog [Yoshida ef al. 1002] or interval logic
[Cui 1994]. There are also biochemical databases in Lisp
[Karp and Paley 1994] and Prolop [Kazic 1994]. The
deductive object oriented database (DOOD) model sat-
isfies both flexibility and federation of databases [Tanaka
1892 [Tanaka 1993a] [Hirosawa et ol 1993) [Goto ef al.
1994]. _

The biclogical KR should also treat varieties or errors.
Prosite, one of the main biclogical database, nses enu-
merative representation like regular expressions, and will
soon employ another enumerative representation called
profile [Bucher and Bairoch 1994]. Many recent re-
searchers, however, are interested in stochastic represen-
tation such as hidden Markov models (HMM) or stochas-
tic grammars [Asai ef al. 10993] [Haussler et ol 1093]
[Sakakibara et al. 1994] [Mamitsuka and Abe 1994].

27

Deductive Object Oriented Database Model
Hierarchical structures and exceptions are very common
features of knowledge. Object-oriented models usually
support both features by foreign object reference mech-
anisms such as inheritance. We have tried to build a
motif database in an object-criented model [Hirosawa et
al. 1893).

Motifs are characteriztic patterns of a sequence set.
For instance, cytochrome ¢ has a motif “CxxCH" in a2
specific position, where “CxxCH" represents a sequence
of Cysteine—(any 2 amino acids)=Cysteine=Histidine.
The knowledge of motifs accelerates multiple alignment,
while multiple alignment clarifies the motifs,

Biochemical knowledge requires hierarchical network
representation. Experiments clarify global reactions first
and preceed to individual reactions. The DOOD model
supports such network shape modification, but lacks a
global viewpoint, because it handles networks as an ag-
gregation of nodes and arcs. It is indispensable to sup-
plement visualization tocls of total network shapes. We
have developed an experimental KB of biochemical cas-
cades in a DOOD model (Qurxore) with a visualization
tool (Figure T) [Hirosawa et al. 1995).

Lrzirminn ey
T e ¥R
\2 S | ([G Bpwsien wea | Argaar mh'*'*'""!'
Ihass)
Gos Epmszion Cassads
e {)
. — A . . i LA L it -

Figure 7: Knowledge Base of Biochemical Cas-
cades — configuration of the lmowledgze base [above);
signal and gene expression cascades {below); The knowl-
edge base supports users’ queries and provides visual and
executable answers.

Hidden Markov Model
Multiple sequence alignment is used to clarify the con-
served part and variation of 2 specific protein group.
Profile iz a mean to represent them enumeratively. The
hidden Markov model {HMM), however, which is used in
speech recognition, represents them stochastically [Asai
et al. 1992] [Krogh et al. 1994], [terative sequence align-
ers [[shikawa ef al. 1992] and HMM Viterbi learning are
very closely related to each other [Tanaka et al. 1993b].
Protein {secondary) structures were insufficiently la-
beled such as alpha-helix or beta-strand. MSSD, a sta-
tistical representation, classifies the local structure of

28

peptides [Onizuka et ol 1993]. MSSD enables model-
ing of protein structures in HMMs, Since protein strue-
ture HMMs and protein sequence HMMs are compara-
ble, the relationship between protein structures and their
sequences will be clarified.

An HMM reguires a proper network configuration.
There are several researches for configuration learning
algorithms [Fujiwara et ol 19984]). We made experiments
on two automatic econfipuration methods: a successive
state splitting (588) algorithm for protein sequences and
structures (Figure 8), and a genetic algorithm (GA) for
the poly(A)-signal of DINA sequences,

Sy
=0
[[ThA G H] (TR0 [T
1 1 3
o={il=s || o=@
[T inh EbSese
AART LTY »
AERRES L] BRLEC
ARCTTL -~ BT
E 3
i
[S, W
Ay - oo
a B [
a~ - =
A L] oor
¥

Figure 8; Successive State Splitting — state splitting
(above); initial steps of the 855 (below); The Hidden
Markov Network grows larger by splitting the state of
the most varied

Poly{A)signal was studied in [Yada et al. 1994a] and
had a result in an enumerative manner as Figure 9. It
appears Lo be represented well in stochastic manner, We
developed an automatic configuration mechanism using

genetic algorithms (GA) [Yada et al. 1994b.

3.3 Legal Reasoning

In the FGOS Follow-on project, we reexamined & model
of legal reasoning which can simulate the thinking pro-
cess of attorneys. While our old model has only a func-
tion for generating arguments, a new model is enhanced
by adding two functions : selecting argumentation by
value judgment, and debating. Based on a new medel,
we developed a new version of HELIC-IT,

3.3.1

Lawyers solves many kinds of legal problems, such as leg-
islating, consulting, finding facts, arguing in the court,

A Model of Legal Reasoning

=80 =70 =§g =ap -40
positive GICAA TOCTC GTACT COTCT QOCTIR TRETE TROCA CTCTA KRCIGA CTRie
ACOCC ATRCT CACTR OCAAC ATTOT CODSR RAGST TCTGT TROTH GOTET
COTTT GOTEE TGSAS TTCIC CGAALD ATTAT CCOTTC GGACS GTGAD TGCAR
TARGD CAMAA ACTGD RAGGA TAGDA GRAOC GTARG AAGAC CEACT AMAGT

=30 =23 =10 n 1}

positive TOLET TACCA CTAAC CRITG GOCGH GOGOC ARATARR CIGT CIGIC ICTIGE
TCTA TCACA RICAM
KGAL GRTAT BAGCT
BhCC AGCHS COMTG

neguive GROGR GOGAG CGCGA ROGGT TTGAT ARCTA

o] 3a &0
paaitive CACET GOGET TITCT GATTC GSTIC GGE
ATEME KGRGH GOLGTC TIGHT ARRGA CAT
TeEas TTTTA CCCAA CCOCR TIGLT ATIC
EAGE CROAC ARRGG AGARG OOCKG TITH

Figure 9: Poly{A)signal around AATAAA — a ten-
dency around the ssquence AATAAA is shown at each
column (base).

and judging. Among them, we focus on arguing abeut
application of rules to facts, and on decision-making by
the judge.

When a legal problem oceurs, the plaintiff (prosecu-
tor) focuses on some important events in the problem,
and generates a legal consequence {goal) which he wants
to achieve. Then, the plaintiff constructs an argument
which supports the goal. Then the defendant tries to
make a counter-argument, and the debating process oe-
cure. .

These actions can be divided into three parts: making
arguments, selecting arguments and debating. We call
the functions of maldng and selecting arguments the ar-
gumentation function. In the old HELIC-IT system, we
realized only the function for making arguments.

R,
R Tt S [

arienfglis o e
| ntaking Arguments Bt

Deduction of rules Al E T
Interpratation of rules

Selecting Arguments
Value judgement

R

T e e,

:,‘: A K\c:-\(i r -1-:':_:)d'r ;
a.rgumunls
gosls viewpoint,
\\ pﬁ“ﬁ?/ArQumn;:tm

Debate Strategy

Figure 10: Basic components of legal reasoning

Our new legal reasoning model consists of seven com-
ponents: facts, knowledge base, procedure for making
arguments, procedure for selecting arguments, procedure
for debating, and agents. We will explain each of them.

Figure 11 shows the relations of the components.

Making Arguments

Dedustive reasoning [=——
Generalization !

Defeasible mammng

.? S <..

gna\\\rgumnnls pm}//ﬂlﬁgﬂ"&ﬂ;ms

Agent standards
goal, viewpaint of value

Debate Strategy

Figure 11: Legal Reasoning Model of the new HELIC-I

3.3.2 Argumentation Function

To realize the argumentation function, we have to deal
with a variety of knowledge, such as legal rules, prece-
dents, standards of value and personal viewpoints. To
represent this knowledge; we developed a new language.

Here, we will show how legal knowledge is described,
and how it iz used for reasoning.

(1) Description of Legal Knowledge

Concepts :
Any concept appearing in the knowledge base must be
defined in the concept dictionary. A comcept is defined
as a type definition and a subsumption relation. For ex-
ample,“hitting other pecple is an act of viclence” and
“father is a male” are represented as follows.

kit < do_wvislence

Sather[sex : male]

Facts :
A new case is represented as a set of facts.
actl = hit{agent = fom,
ohject = bill) | #act.
act? = with_criminal_intent{a_object = #act).
actd :: injured(aobject = bill, cause = Hact).

Statutory rules, Legal theories and Precedents:
As most legal rules take the form of “if - then - unless -
rule”, they are easily represented as rules. The following
is an example.

penaldB :: punishable(a_cbject = @act)
— ari{agent = X person,
object = ¥/ person) | @act,
not self_defense{a_object = Bect).
When a rule is applied to facts, condition parts of some

29

rules may be replaced by more abstract predicates. This
operation corresponds to a widening interpretation.

Standard of value and viewpoint

When lawyers select one from conflicting interpretations
of legal rules, they evaluate each interpretation based on
their viewpoints. We describe the personal viewpoint as
priority relation between standards of value.

Standards of value are represented by pricrity name
and priority between factors of value,

lex_posterior = {case of B0s > case_of 80s}.

focus_on_economy = {economy > polution].

lex_superior := {case_of supreme

= case_of_local Court}.
Ffocus_on_PublicDiscipline 1=
{morals > freedom_of press}.

The relation between rules and factors of wvalie is
represented as follows, The first example means that
rules,r, 74,77 have a factor “economy”.

economy = {ry, 74,77} .
polution = {rz,7s}
caseof supreme = {ry,ra,r1}.

A viewpoint is priority relation of standards of value.
Different people have different newpumta
vl =
{ focus.on_economy -
> fﬂms.ﬂnfﬂbﬁmﬂ:ﬂﬂp!mc,
 focus_on_consistency_of interpretation
> focus.on_flexibility_of law }.

{2) Defeasible Reasoning

Defeat Relation

Let Arg be an argument which supports a goal G, and
let Args be an argument which supports a goal O If O
and B conflict, then Args is a connter-argument to Arg
(Figure 12},

Let v and ry be top default rules included in Arg
and Args, and let v have priority over ra. Then, if ry
is the only default rule included in Args, or if Argy is
not defeated by another counter counter argument, then
Argy 1s defeated by Args.

An argument can be classified into three categories -
a defeated arpument, a fustified argument and a merely
plausible argument [Sartor 1993].
A defeated argument iz an argument which is defeated by
gome counter argument. A justified argument is an ar-
gument which defeats any counter arguments. A merely
plausible argument is an argument which is neither a de-
feated one nor a justified one. Justified arguments and

e
/K conflct
A B o
. 7\
argument countar argument

Figure 12: Defeat relation

merely plausible ones are called plausible ones.

Query Mode
After we give this knowledge to the new HELIC-II, we

focus on an event in a new case, and Input a query as
follows.
? — punish{a.object = #fhit,
goal = crime_af in flicting_injury).
Then, the plausible arguments which support a goal
“erimeof_in flicting injury” are obtained.

3.3.3 Debating Function

When both parties debate in the court, there are two
kinds of issues - issues of finding facts and jssues of select-
ing interpretation by value judgment. The new HELIC-
IT deals with both of them. We model the debating func-
tion as follows.

1. Initially, two parties have different facts, different
rules and different viewpaints. They don't know the
riles and viewpoints which the opposite side may
have,

2. As both parties have different viewpeints, they have
different priority relation of rules, Therefore, if the
plaintiff insists ry > ro, and the defendant insists
Ty > 71, we cannot decide the defeat relation be-
twesn the two arguments. In this case, the system
changes the issue point.

3. Both partics pose their claims. There are several
possible claims, as follows: (1} To make a new ar-
gumentation for a given goal. (2) To find issues in
arguments posed by the opponent. (3} To select one
issue and make a counter-argument for it. (4) To
decide if an argument can be defeated by a counter-
argument or not. (5) To modify one's own viewpoint
to defeat a counter argument. (8) To change issues.

4. During the debate process, the current viewpoint
of each party may be enhanced by attaching new

priority relations of standards of value. For example,
let v; = {m > pz} be a current viewpoint, and
let p; > ps be a priority by which an argument of
this side defeats a counter argument of opponent
side. Then, vy is modified and becomes v := {p, >
Py > pa}

Figure 13 is an example of a window of debating. As
debating is conducted by two parties, two windows ap-
pear in the screen.

Figare 13: Debating Interface

3.3.4 Subtasks

In addition to the development of the new HELIC-II, the
legal reasoning group has conducted following researches
as subtasks.

1. Representation of legal rules of the penal code:
We mainly focused on processes of argnmentation
and debate in the new HELIC.II, and we took Al
approach to model them. However, it doesn’t mean
that analysis of logical aspect of legal reasoning is
not important. We also had arsmall project which
focuses on a logical model of legal reasoning. We
compared and calegorized legal rules of penal code
systematically, and described them as rules. This

research includes the design of a new knowledge rep-
resentation language for legal knowledge [Shibasaki
and Nitta 1094].

2. Classification of predicates which represent events:
We showed how legal knowledge is represented in the
new HELICWII However, it is troublesome to input
a new case because we must describe facts of a new
case in detail [Tojo and Mitta 1984]. We focused
that events cause various pattern of change of status,
and categorized events into several groups. By using
this information, even if the user omit to input some
facts, the system may make up with omitted facts.
This research will be used to develop a user interface
of the new HELIC-ITin the future, -

4 Towards Large Scale Knowl-
edge Applications

In the previous two sections, we showed the results of re-
search groups in the second research department. Both
sets of research were conducted collaboratively. In this
section, we will how each subject is viewed from another
group considering perspective for integrating each result.

Knowledge Representation Technologies
From viewpoint of knowledge representation, genetic in-
formation processing and legal reasoning have a com-
mon feature that not only a knowledge base but scien-
tific databases play important role to solve a complex
problem. For example, genetic information processing
uses databases of DNA sequences, RNA sequences, pro-
tein sequences, protein structures, and so on. And legal
reasoning uses a database of judicial precedents. As data
iypes of these databases are complex, these domains are
good application fields of a DOOD language Ouzvore .
Furthermore, genetic information processing uses various
databases each of which iz developed in different labora-
tories. Therefore, from viewpoint of Helios, genetic in-
formation processing is regarded as an example of mulfi
databases.
Genetic Information Processing
As we introduced in chapter 3.2.2, we represented bio-
logical knowledge using Qurxore . Knowledge of molec-
ular biclogy consists of sequences, local structure, global
structure, chemical reaction, physical rules, and so on,
To analyze biclogical data, biclogists have to refer to
several databases and combine the results of sequence
analysis and structure analysis programs. QuIroTeis a
useful tool to unify this, because it is a DOOD language
which can deal with various types of data easily.

Our seguence alignment workbench also made progress
by referring to motif data which represented by
QUIXCOTE .

In the future, programs of genetic information process-

3

ing will be unified into a single large system using Helios.

Legal Reasoning

Many legal reasoning systems which have been devel-
oped outside ICOT are focused on the process of mak-
ing arguments. Curvors is a powerful tool to real-
ize this process, because its functions of module and
subsumption constraint fit representing legal knowledge.
The Qurxore group described legal rules of an interna-
tional treaty (CISG) in Quzxors with the help of the
legal reasoning group and showed they are represented
naturally [Takahashi and Yokota 1994] [Takahashi and
Yokota 1995].

Though Qurrore is a powerful tool for the process
of making arpuments, we designed a new language to
develop the new HELIC-IT because the research target
of this group was not only a module for making argu-
ments, but modules for value judgment and debate strat-
egy. Though the new language is less powerful for the
process of maldng arguments, it covers both the pro-
cesses of making arguments and value judgment, and has
an interface to communicate with the debating module.
To design the new language, this group looked to the

QurxoTe group for guidance.

5 Summary

We showed research results of the second research de-
partment in the FGCS Follow-on project.

As Imowledge representation technologies, we showed
the features of a knowledge representation language,
Grxore , and a new paradigm of problem solving, He-
lios. Because Helios regards various problem solvers as
agents and can treat them uniformly, we can essily make
a total system by combining them. The research of He-
lios is closely related to distributed artificial intelligence,
which is one of the moat promising topics.

The genetic information processing group made
progress in developing practical sequence analysis tech-
nologies. As they are convenient tool which runs on
the Unix envirenment, the number of users is increas-
ing. This group has also conducted ambitious research -
constructing a biclogical knowledge base and analyzing
the higher structures of proteins. As it will take more
time to be a practical tool, our approach is one of the
moet promising cne.

The legal reasoning group developed a software tool
which has functions for both argumentation and debate.
A5 this is the first attempt ever to combine these func-
tions, the Al and Law worlds have given comsiderable
attention to the new HELIC-IL

References

[Aiba ef al. 1994] A. Aiba, K. Yokota, and H. Tsuda.

az

Heterogeneous Distributed Cooperative Probmem
Solving System HELIOS. In Proc. Int. Symposium
on KGOS 94, 1004,

[Ait-Kaci et ol. 1986] H. Aft-Kaci and R. Nasr. LOGIN:
A Logic Programming Language with Built-In Inher-
itance. In Jowrnal of Logic Progromming, 1986, pp.
185-215:

[Asai et al. 1992) K. Asai, 5. Hayamizu, K. Onizula,
and K. Handa. Continuous Speech Hecognition Tech-
nigques for Protein Structure Prediction Systems. In
Proc. Genome Informatics Workshop ITI, 1992, pp.
G7-100.

[Asai ef al. 1893] K. Asai, 5. Hayamizu, and K. Handa.
Secondary Structure Prediction by Hidden Markov
Model, In Comput. Applic. Biosci., Vol. 9, 1993, pp.
141-146,

[Branting 1991] K. Branting. Integrating Rules and
Precedents for Classification and Explanation: Au-
tomatic Legal Analysis, Ph D). thesis, Univ. Texas,
1661,

[Bucher and Bairoch 1894] P. Bucher, and A. Bairach.
A Generalized Profile Syntax for Biomolecular Se-
quence Motifs and Its Function in Automatic Se-
quence [nterprelation. In Proe. 2nd ISMB, 1994, pp.
53-61.

{Coulson et ol. 1887] A.F.W. Coulson, I.F. Collins, and
A, Lyall. Protein and nucleic acid sequence database
searching: a suifable case for parallel processing. In
Comput. J., Vol. 30. 1987, pp. 420-424,

[Cui 1994] Z Cui. Using Interval Logic for Order Assem-
bly. In Proe. 2nd ISME, 1894, pp. 103-111.

[EDR] User's manuals of conceptual dictionary, EDR,
1994.

[Fujiwara et ol 1994] Y. Fujiwara, M. Asogawa, and A.
Konagaya. Stochastic Motif Extraction Using Hidden
Markov Model. In Proc. 2nd ISMB, 1994, pp. 121-
129,

[Gordan 1993] T. Gorden. The Pleading Game - An Ar-
tificial Intell:gem:e Model of Procedural Justice, Ph
D. thesis, GMD, 1983

[Goto et al. 1994] S. Goto, N. Sakamoto, and T. Tak-
agi. A Deductive Object-Oriented Language for In-
tegrated Genome Databases. In Proe. 27th HICSS,
1994, pp. 108-112,

[Gotch 1893] 0. Gotch. Optimal Alignment between
Groups of Sequences and its Application to Muolti-
ple Sequence Alignment. In Comput. Applic. Biosel,
Vol. 9, 1983, pp. 361-370,

[Haussler et al. 1993] D. Haussler, A, Krogh, 1.5, Mian,
and K. Sjélander. Protein Modeling using Hidden
Markov Models: Analysis of Globins. In Proc. 26th
HICSS, 1993, pp. T92-802.

[Hiresawa et al. 1993] M. Hirosawa, R. Tanaka, and M.
Ishikawa. Application of Deductive Object-Oriented
Knowledge Base to Genetic Information Processing,
In Proc. Int. Symp. on Next Generation Database

Systems and Their Applications, 1993, pp. 116-122.

[Hircsawa et al. 1995] M. Hircsawa, R. Tanaka, H.
Tanaka, M. Akahochi, and M. Ishikawa. Toward
Simulation-like Representation of the Cell. In Proc.
Health Sciences, Physiclogical and Pharmacological
Simulation Studies, SC8, 1995,

[lshikawa et ol 1992] M. Ishikawa, M. Hoshida, M. Hi-
rosawa, |, Toya, K. Onizuka, and K. Nitta, Protein
Sequence Analysis by Parallel Inference Machine. In
Proc. FGCS5'92, 1952, pp. 204-209, .

[Ishileawa. et al. 1993] M. Ishikawa, T. Toya, Y. Totoki,
and A. Konagaya. Parallel [terative Aligner with Ge-
netic Algorithm., In Proc. Al and Genome Workshop
in 13th IJCAIL 1993, pp. 13-22,

[lshikawa et al. 1994a) M. Ishikawa, VY. Totoki, R.
Tanaka, and M. Hirosawa. Multiple Sequence Align-
ment Editor Featured by Constraint-based Parallel
Iterative Aligner. In Proc. 3rd Int'l. Conf. Bioinfor-
matics and Genome Hesearch, 1994,

[lshikawa et al 1994b] M. Ishikawa, Y. Toteld, T. Toya,
M. Hoshida, and M. Hircsawa. Protein Sequence
Analysis by the Parallel Iterative Improvement
Method, In Trans. Inf. Frocess. Soc. Jap., 1994,

[Ishikawa ef al. 1994c] M. Ishikawa, T. Tova, Y. Totoki,
and R. Tanaka. Multiple RN A-Sequence Alignment
Considering Stem Hegions, In Proe. Genome Infor-
matics Workshop V, 1994,

[Jaffar and Lassez 1987] J. Jaffer, and J.-L. Lassez. Con-
straint Logic Programming. In Proc 4th [EEE,
Symp. on Logic Frogramming, 1987,

[Karp and Paley 1994] P. Karp, and S.M. Paley. Repre-
sentation of Metabalic Knowledge: Pathwa.:,r In Proc.
2nd ISMB, 1904, pp. 203-211.

[Kawai ef al. 1991] M. Kawai, A, Kishino, and K, Naito,
Rapid Analysis Methodology for Gene SBequences Us-
ing a Parallel Processor. In FUJITSU Scientific and
Technical Journal, Vol. 27, 1991. pp. 270-27T.

[Kawamura ef al. 1992] M. Kawamura, H. Sate, K. Na-
ganuma, and K. Yekota. Parallel Database Manage-
ment System: Kappa-P. In Proc. FGCS5'92, 1932,

[Kagic 1994] T. Kazic. Biochemical Database Klotho.
(http:/ /ibc.wustlhedu/klothe,.).

[Krogh et ol 1994] A. Krogh, M. Brown, 1.8. Mian, K.
Sjolander, and [Haussler. Hidden Markov Mod-
els in Computational Biclegy, Application to Protein
Modeling. In J. Mal. Biof, Vol. 235, 1993, pp. 1501-
1531.

[Letovsky and Berlyn 1994] S.I. Letovsky, and M.B.
Berlyn. Issues in the Development of Complex Sei-
entific Databases. In Proc, 27th HICSS, Vol. 5, 1994,
Pp. G-14.

[Loui 1992] R. Loui. Computing Specificity, Research
Beport, WUCS-92-468, Washington Univ., 1992,

[Mamitsuka and Abe 1994] H. Mamitsuka, and N. Abe.
Predicting Location and Structure of Beta-Sheet He-
gions Using Stichastic Tree Grammars, In Proe. 2nd

ISME, 1994, pp. 276-284.

[Miihlenbein and Schlierkamp 1993] H.

Miihlenbein, and D. Schlierkamp-Voosen. Predictive
Models for the Breeder Genetic Algorithm: Continu-
ous Parameter Optimization. In Evolutionary Com-
putation, Vol. 1, 1993, pp. 25-49.

[Nishioka et al. 1894] T. Nishioka, K. Yokota, C. Taka-
hashi, and 5. Tojo. Constructing a Legal Know-
ledge-base with Partial Information. In Proe. ECAT
'‘i4d WORKSHOP on Artificial Normative Reasoning,
Amsterdam, Aug. 8, 1994,

[Nitta et al. 1992] K. Nitta ef ol HELIC-II: A Legal
Heasoning System on Parallel Inference Machine, In
Froc, Int. Conf. FGCS'92, 1992, pp. 1115-1124,

[Nitta ef al. 1993a] K. Nitta et al HELIC-II: A Legal
Reasoning System on Parallel Inference Machine. In
New Generation Computing, Vel. 11, 1993. pp. 423-
448,

[Witta ef al. 1983b] K. Nitta ef ol A Computational
Model for Trial Reasoning. In Proc. Int. Conf on
Artificial Intelligence and Law, 1993, pp. 20-20.

[Onizuka et al 1993] K. Onizuka, K. Asai, M. Ishikawa,
and 5.T.C. Wong. A Multi-Level Description Scheme
of Protein Conformation. In Proc, 1st [SMB, 1993,
pp. 301-310,

[Perriére et al 1994] G. Perriére, F. Chevenst, F.
Dorkeld, T. Vermat, and C. Gautier. Building In-
tegrated Systems for Data Representation and Anal-
yeis in Molecular Biology. In Proc. 27th HICSS, Vol.
5, 1994, pp. 89-08,

[Prakken 1993] H. Prakken. Logical Tools for Modeling
Legal Argument, Ph D. thesis, Vrije Universiteit,
1993,

[Rissland ef ol. 1987] E.L. Rissland et al. A Case-Based
System for Trade Secrets Law. In Proc. Int. Conf. on
Artificial Intelligence and Law, 1987, pp. 60-66.

[Rakaki]:ara et al. 1994] Y. Sakakibara, M. Brown, H.
Underwoed, 5. Mian, and D. Haussler. Stochastic
Context-Free Grammars for Modeling RNA. In Proc.
26th HICSS, 1994, pp. 284-293.

[Sartor 1993]) G. Sartor. A Simple Computational Model
for Nonmonotonic and Adversarial Legal Reasoning.
In Proc. Int. Conf. on Al and Law, 1993, pp. 192-201.

[Shibasaki and MNitta 1994] M. Shibasaki, and K. Nitta.
Defeasible Reasoning in Japanese Criminal Jurispru-
dence. In Proc. FGOS workshop on Application of
Logie Programming to Legal Reasoning, 1994,

[Takahashi and Yokota 1994] C. Takahashi and K.
Yokota. A Legal Reasoning System on a Deductive
Object-Oriented Database. In FProc. §th ni. Hong
Fong Computer Society Database Workshop on New
Generation Database Systems, Hong Kong, 1994,

[Takahashi and Yokota 1995] C. Takahashi
and K. Yokota. Constructing a Legal Database on
Ourxore. In Proc. the Sixth Australasian Database
Conference {ADC'05), Adelaide, Australia, 1985,

[Tamaki and Sato 1986) H. Tamaki and T. Sato. OLD
Resolution with Tabulation. In Proc. ni. Cenf. on
Logic Programming, 1986,

[Tanaka 1881] H. Tanaka. Protein Function Database as
a Deductive and Object-Oriented Database. In Proe.
Database and Expert Systerns Applications, 1991
pp. 481-486.

[Tanaka 1982] H. Tanaka. Integrated System for Protein
Information Processing. In Proc, FGOS'92, 1992, pp.
321-329.

[Tanaka 1993a] H. Tanaka. A Private Knowledge Base
for Molecular Biological Research. In Proe. 26th
HICSS, 1993, pp. 844-852,

[Tanaka et al. 1993b] Ii. Tanaka, M. [shikawa, K. Asai,
and A. Konagaya. Hidden Markov Models and Iter-
ative Aligners: Study of their Equivalence and Pos-
sibilities. In Proc. Ist ISMB, 1993. pp. 305-401.

[Tanaka et ol 1993c¢] H. Tanska, K. Onizuka, and K.
Asai. Classification of Proteins via Successive State
Splitting of Hidden Markov Network. In Froc. Al and
Genome Workshop in 13th IJCAIL 1993,

[Terasaki et al. 1992] 5. Terasaki, D. Haw-
ley, H. Sawada, K. Satoh, 5. Menju, T. Kawagishi,
M. Iwayama, and A. Aiba. Parallel Constraint Logic
Programming Langnage GDCC and its Parallel Con-
straint Sclvers. In Proc. Conf FGCS'92, 1992, pp.
330-344.

[Tojo and Nitta 1994] S. Tojo and K.Nitta, Automated
Generation of Temporal RElations in a Legal Case, In
Proc. Workshop on Legal Application of Logic Pro-
gramming, 1994, pp. 33-47.

[Yada ef al, 19943] T. Yada, M. Ishikawa, Y. Tofoki,
and K. Okubo, Statistical Analysis of Human DNA
Sequences in the Vicinity of Poly(A) Signal. In Proc.
rd Int. Conf. on Bicinformatics and Genome Re-
search, 1994,

[Yada et al. 1994b] T. Yada, M. Ishikawa, H. Tanaka,
and K. Asai. DNA Sequence Analysis using Hid-
den Markov Model and Genetic Algorithm. In Proc.
Genome Informatics Workshop V, 1994,

[Yamamoto 1991] N. Yamamote. TRIAL: a Legal Rea-
soning System {Extended Abstract). In Joint French-
Japanese Workshop on Logic Programming, Renne,
France, 1991.

[Woketa 1994a] K. Yoekota. Multi-agent Based Exten-
tions of Multidatabases. In Joint Workshop of
SIGDBS of IPSJ and SIGDE of IEICE, 19984, (in
Japanese)

[Yokota 1944b] K. Yokota. Legal Reasoning on a Deduc-
tive Object-Oriented Database and its Extension. In
Workshop on Knowledge Representation for Legal
Beasoning, Boston, USA, 1994; ICOT-TRH, 1994.

[Yokota and Aiba 1994] K. Yokota, and A. Ajba. A
Mew Framework of Very Large Knowledge Bases. In
Knowledge Building and Knowledge Sharing, eds K.
Fuchi and T. Yokai, Ohmsha and [0S Press, 1094

34

[Yokota et ol 1993] K. Yokota, H. Tsuda, and Y.
Morita. Specific Features of a Deductive Ohject-
Oriented Database Language Qurxors. In Proc.
ACM SIGMOD Workshop on Combining Declarative
and Object-Oriented Databases, Washington DC,
USA, 1993

[Yokota et al. 1994] K. Yokota, T. Nishioka, H. Tsuda,
and S. Tojo. Query Processing for Partial Informa-
tion Databases in Quzxyore. In 6th IEEE Int. Conf,
on Tools with Artificial Intelligence, New Orleans,
1904, .

[Yokota and Yasukawa 1992] K. Yokota, and H. Ya-
sukawa. Towards an Integrated Knowledge-Base
Management System -~ Overview of R&D on
Databazes and Knowledge-Bases in the FGCS
Project. In Proe. FGOS'02, 1002,

{Yoshida et al. 1992] K. Yoshida, C. Smith, T. Kazie, G.
Michaels, R. Taylor, D. Zawada, R. Hagstrom, and R.
Overbeck. Toward a Human Genome Encyclopaedia.
In Proc. FGCS'92, 1992. pp. 307-320.

