Proc. of FGCS "84, ICOT, Tokyo, December 1384

117

Heterogeneous Distributed Cooperative Problem Solving System

HELIOS

Akira Aiba, Kazumasa Yokota, and Hiroshi Tsuda
Institute for New Generation Computer Technology
4-28 Mita 1-chome, Minato-ku, Tokyo 108, Japan
{aiba, kyokota, tsuda}@icot.or.jp

Abstract

This paper describes & heterogeneous distributed coop-
erative problem solving system HELIOS that is being
developed at ICOT.

HELIOS is a framework for constructing a heteroge-
neous distributed cooperative problem solving system
having those three kinds of flexdbilities. Each problem
solver is encapsulated by a module called a capsule to ab-
sorb heterogeneity on types of data or knowledge that are
used to communicate with other problem solver. Encap-
sulated problem solvers, we call them agents, are placed
in a commen space called an environment. Through an
environment, agents can communicate by sending mes-
sages to each other, An environment provides global in-
formation such as a common data type system, commeon
message protocol, and global constraints, for agents in it.
Furthermore, even if agents are placed on more than one
machines, the environment takes care of communication
between them.

To verify our idea, we implemented several versions
of HELIOS on distributed environment. The HELIOS
system will be released as IOOT Free Software by the
end of March 1995,

1 Introduction

As on knowledge information processing applications be-
come more advanced and complex, problems becomes in-
creasing hard to represent and solve using just a single
problem solver such as a database, a constraint solver, or
an application program. Any system for the adwvanced,
camplex and vat problems of knowledge information pro-
cessing must take into account model heterogeneity, spa-
tial heterogeneity and temporal heterogeneity.

Problems in those areas are hard to model using a sin-
gle paradigm, and hard to represent with single knowl-
edge representation. This is model heterogeneity. Huge
systems such as databases are hard to migrate or trans-
port to other machines because of their sizes. So these
systems rmust be used on the machine on which they are

currently running. This is spatial heterogeneity. Re-
peated expansion or modification of existing languages,
or the never-ending progress for new programming lan-
guages causes perpetual rewriting of software to use new
programming language. This is temporal heterogeneity.
Thus, a system for solving those advanced, complex and
vast problems should have three kinds of flexibilities for
handling these three kinds of heterogeneity. The point is
to integrate various application programs, databases, or
constraint solvers effectively.

At ICOT, we have developed many knowledge
representation languages, constraint solvers, database
management systems (DBMS), and application pro-
grams throughout the FGCS project and its follow-
on project. These include knowledge representa-
tion language called QuraoTe [Yokota ef al. 1063, par-
allel comstraint logic programming language called
GDCC [Terasaki et al. 92], database managerment ays-
tem called Kappa [Kawamura ef al. 1892|, and applice-
tions on genetic information processing and legal reason-
ing [Nitta et al. 1994]. In order to spread these applica-
tions on knowledge information processing, it iz crueial
that we provide a framework for combining and coop-
erating various knowledge representation languages and
problem solvers.

The heterogeneous distributed cooperative problem
solving systemn HELIOS is intend as a way to achieve
flexible and adwvanced problem solving.

To achieve this, the important issue is to absorb het-
erogeneity between various knowledge representation lan-
guages and problem solvers and to add functionality for
cooperative problem solving. For this purpose, each
problem selver iz encapsulated to enable it to commu-
nicate by messages with other problem solvers by trans-
lating its internal data type of message content into a
common data type. To integrate global information for
agents that are communicating with each other, a com-
mon space s introduced with. provides a common data
type, a common message protocol, and a message deliv-
ering functions. With this common space, separate prob-
lem solvers can be combined and cooperate with each

118

other even when these problem sclvers are implemented
on different langnages, data types in a distributed envi-
ronment.

Mext, a problem salving system can be constructed in
a bottom-up manner. That is, we were able to construct
a problem solving system by combining several problem
golvers in a commeon apace. In HELIOS, the combined
problem sclving system comprising a number of prob-
lem solvers with a common space, can be treated as an
independent a problem solver again. Thus, it can be
combined with other problem solvers in a larger common
space. This means that a problem solving system in HE-
LIOS can be hierarchical.

These form the basic model for HELIOS, Based on it,
in early 1994 we first implemented an experimental ver-
sion of HELIOS on a UNIX workstation to check commu-
nications between problem solvers. We implemented the
first version of HELIOS with certain encapsulation func-
tionalities in the mid-summer of 1444 on TTNIX worksta-
tions connected by an Ethernet. We implemented the
second and the latest version of HELIOS in November
1984 on UNIX workstations connected by an Ethernet.

The structure of this paper is as follows. In section 2,
we describe the basic model for HELIOS. In section 3,
we describe a distributed implementation of the second
version of HELIOS with a small example.

2 Logical Model for HELIOS

2.1 Basic Model

To realize a heterogeneous distributed cooperative prob-
lem selving system with model heterogeneity, spatial het-
erogeneity, and temporal heterogeneity, multiple problem
solvers are combined as follows.

In general, each problem solver utilizes various data
type systems. Por establishing communication between
those problem solvers, the contents of communication
ghould be mutually understandable.

In HELIOS, communication between problem solvers
is performed in restricted form. Each problem solver ex-
ports problems that it cannot solve. If the answers to the
problems are chtained from some other problem solver,
they are sent back to the original problem solver. That
is, communication in HELIOS is either querying or an-
swering. This communication is done by message passing
between problem solvers. To preserve Hexibility, names
of problem solvers that can answer certain queries should
not be fixed., That iz, a problem solver that can answer
a query can be replaced by another problem solver with
the same problem solving ability with different data type
without changing the other problem solvers. Thus, a
commeon message protocol, commen data types of con-
tents of messages are required. Therefore, each problem
solver must have a module for translating between com-
mon data types, and its own local data types.

A module containg a translator called a capsule, and
each problem solver is enclased in a capsule. An encap-
sulated problem solver is called an agent, and & problem
solver is called & substance. Each agent has its own log-
cal name that is unigue in the environment.

A common space for agents is called an environment.
An enviromment takes care of message passing between
agents in it, and manages global information for those
agents. Global information contains a common data type
systern. An environment with agents in it can be consid-
ered as a problem solver again, and so it can be encap-
sulated and placed in a larger environment. This type of
agent is called a compler agent, while an agent having no
internal structure is called a simple agent (Figure 1).

An environment-agents structure can be nested in HE-
LIOS. This allows us the following:

+ Bottom up construction of agents

Possibility of expansion and openness of problem
solvers

e Classification of agents

+ Heuse of agents

2.2 Message Protocol
A message between agents contains the followings:

+ Message identifier
An identifier used for identifying a message. This
field is unique within an environment.

#» Message type
As described in the previous section, a message is
either a method invocation or an answer. The former
message is called a gquery message, and the latter
message 1s called a reply message. This field is used
to distingnish a query message from a reply message.

s Sender agent identifier)
This field contains a logical name of the agent that
sends this message.

s Designation of destination agents
The methads of designating destination agents in a
query message are described in Section 24, In a
reply message, this field contains the logical name
of the agent that is the sender of the corresponding
query message.

» Transaction identifier
If update of & content of & destination problem solver
is attendant om invocation of & message, then a
transaction identifier is reguired to control it. This
field comtaing a transaction identifier. For nested
transaction, a transaction identifier with a nested
structure is used.

» Status
This field contains information on the status of in-
voked methods for error handling.

¢ Message content
In a query message, this field contains a method in-

user (environment}
Complex Agent (agent123)
- ™\
Capsule
- Environment N
Complex Agent{agent23)
Simple Agent
{agentl} Capsule
Environment
Capsule agent2 agent3
(Problem Solver2) { Problem Solver-3)
\ v
W J

Figure 1: Basic Model for HELIOS

Receiving a Query

wvocation, and in a reply message, this field contains
the answer to the invocation.

2.3 Apgent

An agent has the following two functions: selving prob-
lems that are asked by other agents, and asking prob-
lems that cannot be solved internally to other agents.
An agent with only the former function is called a pas-
sive agent, while an agent with both functions is called
an active agent (Figure 2).

Remming an Angwer

Receiving a Query

Solving
a Problem

Passive Agent

To make an agent active, a substance should have the
following functions:

s The ability to accept a problem including sub-
problems that cannot be solved in it,

Solving
a Problem

118

Querying
a Subproblem

E

¢ The ability to transmit those sub-problems to other
agents, and to receive answers from those agents,
and

s The ability to accept and interpret answers.

Mote that to realize cooperation between agents, those
agents should be active,

The role of an agent capsule is to wrap a problem solver
to make it an agent.

In a capsule, the following are definad:

¢ the name of the agent
The name of the agent is the logical name of the
agent.

¢ import methods/export methods
Each agent provides methods to the public. In a cap-
sule, methods that the agent make public to other
agents, and methods that the agent may invoke are
declared. The former methods are called import
methods, while the later methods are called ezport

Returning an Answer

Solving
a Problem

|

Active agent

Receiving
an Answer

Figure 2: Passive Agent and Active Agent

methods. That is, messages between agents are re-
stricted to invocations of export methods and an-
gwers to those invocations. MNote that by declaring
both methods, translation is restricted to parame-
ters of methods and their answers.

self model

An environment uses various information on agents
in it for delivering messages. In each agent capsule,
funections provided by the agent iz defined in terms

120

of a self model. The use of functions in the self model
is deseribed in the section 2.4.

s concurrency control for the substance
If a substance has the comcurrency contrsl fune-
tion, then the capsule can send all messages as cap-
sule receives. Howewer, if a substance has no con-
currency contrel function, then the capsule should
lock/unlock the substance, or make copies of sub-
stances to control concurrent execution of the sub-
stance.

translation rules
As described in Section 2.1, translation between
common type system and own type system defines
translation of types.

+ negotiation strategy
Besides these definitions, a capsule should deter-
mine the strategy for negotiating with other agents.
To make agents mutually negotiable, those agents
should be active, and & negotiation protocol should
be defined. A negotiation protocol is defined in an
environment. A negotiation strategy defines what
message should be sent when the agent receives a
certain message according to the negotiation proto-
col. The relationship between a negotiation strat-
egy and a negotiation protocol are deseribed in Sec-
tion 2.4, The export methods in the agent and the
export methods of other agents are used to construct
message parameters.

s others
Except for the definitions listed in the abowve, the
following are defined in the capsule description lan-
guage cailed CAPL {CAPsule Language).
The method wsed to connect a capsule with a sub-
stance is defined in the CAPL program. There are
two relationship between a capsule and a substance:
a substance and a capsule executed in the same pro-
eess, and a substance and a capsule executed in dis-
tinet processes. This cateporization is defined in a
capsule. In the former case, the name of the file that
contains the substance to be linked with a capsule
is defined, and in the latter case, the name of the
executable file that is connected with a capsule is
defined.

2.4 Environment

The roles of an environment are handling messages
between agents, and managing global information for
agents. Global information can be categorized as follows.
Certain global information is used to make an agent en-
able to communicate: common data type, and ontology
are included in this category. Then, certain other infor-
mation is used to control the destination of messages.
Directories in an agent server are included in this cate-
gory. Other global information is used to control agent
behavicor. Negotiation protocol for agents, and global

constraints are included in this category. This global in-
formation is described below,

Handling of messages

All messages between agents are strongly typed by a com-
mon type system in the environment. An environment
may receive a message in two ways: one is from an agent
in it, and the other is from a capsule of that environ-
ment. That is, one is from inside the environment and
the other is from the outside. In both cases, the contents
of the message is represented using the common type sys-
tem in both environments. Remark that the content of
the message from the outside iz converted by the capsule
of that environment.

Then the environment attempt to find agents that the
message should be delivered to by referring to the desti-
nation field of the message. If the environment can find
agents that the message should be delivered to, then the
environment sends the message to them. But if the envi-
ronment cannot find those agents, then the environment
sends the message to the outside through its capsule.

{zlobal information for communication

Ceommon data type is used to represent the contents of
messages understandable to all agents in an environment.
Thus, commen data type is defined in an environment.

The vocabulary used in the contents of a message is
also comverted, if necessary, using on ontology that is
defined in that environment.

Global information for message control

In a message, the destination agents should be cleared.
The simplest way of designating destination is clearly
using a logical name of an agent. However, this method
assumes the existence of the agent with that logical name
in the same environment. Thus, although this way is
effective, it gives little flexibility for combining agents in
an environment.

In HELIOS, three methods are prepared to designate
the destination of a message: a method to designate the
destination by a logical name, a method to designate the
destinations by agents' functionalities, and a method to
designats the destinations by & pair of agents’ function-
alities and o method name.

Let us recall the primary motivation for requesting to
problems from other agents. Utilizing functionality pro-
vided by other agents is an important issue, and the log-
ical names of other agents are not a issue. That is, the
designation of destination agents by their function makes
possible communication between agent without knowing
their names, places, etc.

Figure 3 shows modules in an environment.

Control messages in an environment are carried out by
a module called the agent server.

Envvirintiieil
—
pathod directory

(=) (=) (<)

Figure 3: Modules in an environment

To implement the above described control methods,
the apent server utilizes the following three directories,

s Agent Directory
& Function Directory
s Method Directory

An agent direcfory iz a table whose entry is the pair
comprising a logical name of an agent and its physical
address, This directory is used to deliver a message in
which the destination is designated by the logical name
of an agent.

A function directory is a table whose entry is & pair
comprising a function and a list of logical names of agents
that have that function. For instanee, if agents Ay, Ag,
and Ay have the same function Addition in an environ-
ment, then the function directory in the environment has
an entry consisting of the function Additien and a list of
Ay, Ag, and Az. Ontology is used to select words used to
represent functions. A function divectory is constructed
by gathering the self model of each agent.

A methed direciory i3 & table whose entry is a pair
comprising & function and methad name, and a list of &
pair comprising a logical name of an agent and a method.

The simplest and the mest naive method to designate
a destination, by a logical name, is handled by an agent
server using an agent directory. Using the directory, an
environment gets information on the physical address of
a destination agent, then the environment can send a
message to 1t,

When a destination iz designated using agent func-
tions, then more than two agents with the same fune-
tions will all be designated. For instance, agents Ay, Aa,
and Ay are selected when the function Addition is desig-
nated. In such cases, collected answers from those agents
are processes using aggregate funetions to construct an
answer, Aggregate functions includes bringing topether
all answers into one list, similar to bag_of in Prolog, and
selects all answers that satisfy global constraints etc.

121

Global information for control agents

A global constraint can be used not only to aggregate
functions, but alse to control agents. When a problem
solving system solves a problem like a board game or a
maze, the board or the masze restricts the behavior of
agents. In this sense, the board and the maze controls
the agents. Those boards or mazes are represented using
global comstraints in an environment.

A negotiation protocol between agents and negotiation
strategies for agents are required to allow negotiation be-
tween agents, As we describe in Section 2.3, the nego-
tiation strategy for each agent iz defined in the capsule.
The negotiation protocol is defined in the environment.

There are 50 many protocols for negotiations. Syntax,
number of parameters, and keywords to define the type
of message are included in the definition of a negotia-
tion protocel. Let us take the contract net protocol as
an example. A contract net protocol consists of at least
three types of messages: messages used for announce-
ment of tasks, those used for bidding, and those used
for awarding. Thus, “announcement”, “bidding”, and
“award” would be keywords to distingnish these types of
messages from each other. Those message cannot be sent
in arbitrary situations. That iz, & "bidding” message can-
not be used before “announcement”, and “award” cannot
be used before “bidding”, etc. These restrictions can be
represented in terms of a state transition. These restric-
tions are also included in the definition of a negotiation
pratocol,

On the other hand, a capsule has to select one mes-
sage even if the selected negotiation protocol gives the
restrictions described above. In many cases, several mes-
sages can be send in a certain situations according to
the negotiation protoeo] definition. Selection from these
alternatives is done by the negotiation strategy.

Since there may be more than one negotiation prote-
cols in an environment, more than one negotiation proto-
cols can be defined in an environment and distinguished
by a negotiation protocol identifier. To participate in a
negotiation, agents should declare the negotiation proto-
col to be used by the negotiation protocol identifier,

If agents participating in a negotiation declare differ-
ent negotiation protocol identifiers, the negotiation fails.
This is the user’s responsibility. Sinee an environment
has negotiation protocols, it can check whether messages
between agents use the selected protocol or not. Thus,
messages that do not fit the protocol can be filtered out
by the environment. Selecting an appropriate negoti-
ation protocol and using the corresponding negotiation
strategy in all the participating agents are also the user’s
responsibility.

The environment description language called ENVEL
{ENVironment Language) is used to define the environ-
ment.

122

3 Distributed Implementation
of HELIOS

3.1 HELIOS System

Implementation of HELIOS started in 1993. At the be-
ginning of 1994, we first implemented an experimental
version of HELIOS to check communications between
agents on & UNIX workstation using Prelog. We then
implemented the first version of HELIOS with certain
functionalities of capsules and environments in the mid-
summier of 1994 an UNLX workstations connected by an
Ethernet. In November 1984, we implemented the sec-
ond version of HELIOS with the CAPL and ENVL com-
piler with restrictions on functions on UNIX workstations
connected by an Ethernet. The main focus of the second
version is implementation of the environment, agents and
their hierarchical structures, to avoid environment com-
munication bottlenecks.

In the following sections, we describe our implemen-
tation for the second version based on agent processes,
messages passing between agent processes, and examples
of the CAPL and ENVL programs.

In CAPL and ENVL in the second versicn, some fune-
tionalities listed in the logical model are restricted as
follows. In CAPL in the second version, the following
restrictions are placed on functions. First of all, the self
model of an agent is restricted. In the logical model,
the self model is used for constructing directories for the
agent server. This is not implemented in CAPL in the
second version. Directories for the agent server are de-
fined manually in the ENVL in the second version. For
concurrency control for the substance, CAPL in the sec-
ond version provides only a lock mechanism. The nego-
tiation strategy can be described in CAFL in the second
version experimentally. That is, the negotiation proto-
col is defined in CAPL with the definition of negotiation
strategy in terms of a set of rules.

On the other hand, the following restrictions on func-
tions are placed in the ENVL of the second version.
As we described above, the function directory and the
method directory in each agent server are created man-
ually in ENVL in the second version. The negotiation
protocol is not described in ENVL in the second version.

3.2 Agent Processes

Implementing a naive logical model for HELIOS de-
scribed in the previous section is problematic in terms
of execution efficiency. That is,

o difficulty of concentrating processes to environ-
ments, '

s mapping from the hierarchical structure of environ-
ment and agents to processes, and

* mapping to a distributed computation environment

The first tssue is solved by copying the environment,
The second issue is solved by implementing mapping,
thereby decreasing the number of processes. The third
issue is solved by implementing distributed management
for agents and process information. From our experience
with constructing the very first experimental HELIOS
system, we concentrated on the second issue,

The central concept of the distributed implementation
of HELIOS is that each simple agent is implemented by
a distinct process with all environments that involve the
simple agent (Figure 4).

This figure corresponds to Figure 1. In general there
are three kinds of processes.

3.3 Message Passing between Agent
Processes

When an agent transmits a query message, it passes a
message to an environment that is in the same process,
An environment also passes a message to an outside en-
vironment in the same process. When an environment
transmits a message to an agent that is in the environ-
ment, then the environment passes it to a process that
includes the destination agent. When the agent that re-
ceives the message is a complex agent, then there are
rore than two processes representing the complex agent,
Thus, for a complex agent, a representative process is
selected, and the environment passes a message to a rep-
resentative process.

In Figure 4, suppose that Agent Process-2 is the rep-
resentative process for a complex agent 23. When agent
1 transmits a query message to agent 3, then Capsule-1
passes the message to Environment 128 in Agent Process-
1. Then, Agent Process-1 transmits it to Capsule 25 in
Agent Process 2. Then Environment 28 in Agent Process
2 transmits it to Copsule 3 in Agent Process-3. Then
finally, Problem Solver-3 in the problem solver process
can get the message by means of communication between
Capsule-3 and the process,

We implemented an experimental system for HELIOS
on a distributed network of UNIX workstations.

As shown in Figure 4, HELIOS consists of a Dee-
mon process, and a Lser Interface Process apart from the
agent processes. Each process is implemented as a UNIX
process, and communication between processes occurs as
inter-process communication using sockets.

+ Daemon Process

There is a daemon process on each machine in
the distributed environment for HELIOS. The dae-
mon process manages the creation and deletion of
agent processes, and provides location information
on the agent processes. In the distributed environ-
ment, communication between dasmon processes is
required,

- USEr

User Interface Process l

Hellos Dacmon || | Betios Daemon_ |
Communication Communication "Z,-] Communication_|
Agent Ag Agent
Process-1 2 &3
| Communication || || Communication || || Communication |
| capsue123 || || capsule12s || || capsuie1zz |

123

Environment 123 I

| Environment 123 [4-H Environment 123 |

| capsule1 || || cCapsuens | Capsule23 |
[Problem Sotver-1 || || Environment 23 [3—H Environment23 || Problem Solver Process
1 comez || |[_copmuies || N Communicntion]
|Problem Sotver-2 || || Communication |1 ||Problem Solver-3 |

Figure 4: Implementation Model for HELIOS

* User Interface Process
An interface process is prepared for each user to

— establish communication between the user and
the daemon process { Daemon Session),

— establish communication hetween the nser and
the agent process {Agent Session).

In a daemon session, a list of agents, and precise in-
formation on designated agents are presented, and
connection to an agent takes place. In an agent ses-
sion, messages are sent to the selected agent, precise
infarmation on the agent is presented, and the con-
nection to the agent is cut.

Apart from those processes, when a problem solver is
a single process separated from the process which imple-
ments its capsule, it is called a Problem Solver Process
(see Problem Solver-3 in Figure 4).

To map a logical model to this implementation model,
the following should be considered.

A single agent in the logical model is sometimes di-
vided into more than one processes in the imple-
mentation. Thus, one process should be selected
to send messages. This can be done by scheduling
which takes account of loads of processes, or dispatch
which takes account of message contents. Currently,

the representative process is used when the agent is
started up for ease of implementaticn.

In the logical model, a route of a message is uniguely
determined except for nondeterministic message pro-
cessing. In the implementation, however, the route
to a problem selver passes through the representa-
tive process, but the route from the problem solver
tends to remain on the same process. Thus, inter-
process communication decreases because of this
route asymmetry.

Figure § shows what files should be prepared to use
HELIOS, and how agent processes are constructed from
those files.

In Figure 5, #.¢cpl is a file for a CAPL program, #.cty
iz a file for commen type declaration, and #.evl is a file
for an ENVL program. CAPL programs are compiled by
the CAPL compiler into C programs. Then those pro-
grams are compiled by the C compiler into object pro-
grams. ENVL programs, with reference to files contain-
ing common type definitions, are compiled by the ENVL
compiler into C programs. Then these programs are also
compiled by the C compiler into ebject programs. On
the other hand, & file with an extension hia, called an hia
file which specifies hierarchies of agent processes, is au-
tomatically generated from ENVL programs and CAPL
programs. This file contains the physical address of all

124

Substance \-mmr.s command filr.- 1f the substance is & different process
- if the substance is I]1= SAME PrOCESS

capsule

environmeni

ENVL compiler

Figure &: File Configuration of HELIOS

agents, and the command name for invoking processes
for those agents generated from those object files.

3.4 CAPL and ENVL

In this section, CAFL programs, a single example of an
ENVL program of HELIOS version twe are presented to
explain the funections.

Simple Scheduling Problem

The problem is to have M meetings in a group consisting
of N members. Each meeting has planned participants,
and gives a point to each of them. On the other hand,
each member has their own priority for participating in
each of the meetings. As far as possible, each member's
preference should be respected.

That is, each meeting should include as many of those
planned participants to acquire points as much as possi-
ble, while each member alms at participating in the most
preferable meeting to acquire points as much as possible.

The aim of the system is to maximize the sum of all
points acquired by all meetings and all members,

Agents

To solve the problem, we use two kinds of agents: meeting
agents and member agents.

~ Each meeting is defined as an agent, and we name it a
meeting agent. In each meeting agent, a point is given to
a member if it is planned that they attend that meeting.
Thus, each mesting agent has at most IV different points

gince there are IV participants. If the meeting agent suc-
ceeds in collecting a participant, then the mesting agent
acquires the peints of that member. The aim of =ach
meeting agent is to collect members 50 as to maximize
acquired points.

Each member in the group is defined as an agent, and
we call it a member agent. A member agent cannot par-
ticipate in more than one meeting if they age held si-
multanecusly. Each member agenl also has their own
priority for participating in each of the meetings, but if a
meeting designates the member, then the member should
participate in the meeting.

Problem Solving in HELIOS

The following is an outline of the solution to the problem.
First of all, each meeting agent collects participants by
offering the meeting to all of the planned participants.
The collected participants are called initial participants.
If a member agent receives more than one invitation to
meetings, then the agent selects the one that has the
highest priority. After collecting initial participants, each
meeting agent calculates the paint acquired.

To maximize the sum of points acquired by meeting
agents, each meeting agent gets one of participants of
other meetings each other. First of all, let us suppose
that all meeting agents are given global ordering. The
first meeting agent makes plans to increase its own ac-
quired points. Then, those plans with estimated increase
of points are sent to other meeting agents having desired
participants one by one. When a meeting agent receives
a plan, then it calculate decrease of points and add it te

the increase given with a plan. If the sum is positive,
then the plan is accepted, otherwise, the plan is rejected.
Neaxt, the second meeting agent can make and send plans,
then third, etc. When no participants cannot move for
inereasing the sum of points, then the whole system gets
the maximum points.

The configuration of agents and environments for salv-
ing this problem is represented in Figure &.

agent: meeting

r‘ ™

capsulel

environment: env_of_scheduling

=) =
| =) =

Figure 6: Agents and environments for solving scheduling
problem

Figare 7 is a fregment of an ENVL program for the
environment env_of scheduling,

kenvironment env_of scheduling;
dcommon_type scheduling.ety;
kagent dir meetingl, meeting2, ...
memberd, memberB, ..

o]

Figure 71 ENWVL program for an environment
env_of scheduling

In Figure 7, numbers attached to lines are line identi-
fiers.

Line 1 is the definition of the name of this environ-
ment. In this problem, the name of the environment is
env_of_scheduling. In line 2, the commen type is de-
fined. In this case, a file named scheduling is defined.
Files defining common types have the extension ety. The
content of the file scheduling. ety is given in Figure 8.

In the definition, string, and int are primitive types
for common types given a priori.

The third and the fourth line in Figure 7 define agents
that are used in this environment. The agent directory
is constructed from this definition.

125

meeting ::= string;
member ::i= string;
date ::= < month=int,
date=int,
gtart=time,
finigh=time >;
time ::= < hour=int,

minote=int >;

Figure 8 Common type definition in scheduling.cty

On the other hand, an example of the CAPL descrip-
tion to describe the problem includes the following, Fig-
ure 9 is a fragment of the CAPL program for a capsule
of the environment env_of scheduling shown as capsulel
in Figure 6.

ktype complex;
kagent meeting;
kinside env.of_scheduling meeting.evl;
&import method
scheduling #1:[meeting] -»
[<meeting=#2:meeting,
date=#3:date,
menber=§4: [member] »]
=> all, bag of | schedule #1:[meeting] ->
10 <2 :meeting,
11 #3:date,
12 #4: [member] >;

L=i= g = L

Figure 9: CAPL program for capsulel

Line 1 defines the type of the content of this agent. In
this case, the keyword complex declares that this agent
is a complex agent. In line 2, the name of this agent
meeting is defined. Line 3 is the definition of the content
of this agent. Since this agent is a complex agent, the
content is an environment named env_of _scheduleing
as described in the above ENVL fragment. The ENVL
program for env_of.scheduling is stored in a file named
meeting.evl. evl is the extension given to the ENVL
program. Lines 4 through 12 are used to define import
method for this complex agent. In the above definition, a
single import method named scheduling is defined. Let
us describe the method definition more precisely.,

scheduling is the name of this import method with an
input parameter and an output parameter. An input pa-
rameter identified as #1 is of the type “list of meeting”.
Remark that the user is the ontermost environment, the
user should have its own common type. This is given by
the user model. For instance, list is a data type defined
using a list constructor in the common data type for the
user, meeting is also a commeon data type for the user.

126

An output parameter is a list of tuples consisting of three
elements identified by #2, #3, and #4. A tuple is also a
data type defined using a tuple constructor in the com-
mon data type for the user, and date and member are
aleo common data types for the user.

Thizs import method definition iz translated into
a method invocation in the inside environment
env_of_scheduling. In this case, method scheduling
iz translated into method invocation of the schedule
of certain agents in the environment., all means that
messages including this method invocation should be de-
livered to all the agents in the environment, and the
next bag_of means that answers from all of those agents
should be eollected by the aggregate function bag of.
The input parameter for the methsed schedule is also a
list of meetings, and the output parameter is a tuple of
meetings, dates, and a list of members. To make the de-
scription simple, the commen data type for the user and
that in the environment env_of_scheduling are identi-
cal.

Besides the CAPL program for capsnlel, CAPL pro-
grams for mesting agents and member agents are also
required.

The following figure (Figure 10) is a fragment of a
CAPL program for & meeting agent meetingl.

ktype simple;

kagsnt mestingl;

gparameter threshold:int = 80,
kinside prelog -1 meeting.pl;
&substance type prolog;
Econnect pipe;

&lock always on;

Eimport methed

GO =] O O° i 0 O =

L=

Eexport method

Figure 10: CAPL program for mestingl

In the definition in Figure 10, line 1 defines that
this agent is a simple agent. The definition with key-
words kagent is the same as that for capsulel. Informa-
tion stored for local usage is defined with the keyword
Eparameter. [n this case, the threshold of the meet-
ingl, 80 is defined. The keyword kinside defines that
the substance of the agent is & prolog program, that the
program is stored in the file named meeting.pl, and
that the substance is invoked by a command proleg -1
meeting.pl. &substance_type prolog is used to deter-
mine the substance type definition. Line 6 determines the
method used to connect the capsule and the substance.
In this case, & pipe is wsed. In line 7, the declaration
&lock always on states that all messages received by
the agent should be serialized before passing them to the

substance, and turms on the transaction control. That
is, il & side-effect occurs in the substance and the sub-
stance cannot manage the transaction because the im-
plementation language for the substance is prolog, then
the capsule should manage the transaction control. As
in the CAPL program for capsulel, import methods and
export methods are defined.

4 Concluding Remarks

In this paper, we describe the heterogeneous distributed
cooperative problem solving system HELIOS developed
at JCOOT during the Follow-on Project. To werify oor
ides on HELIOS, we have implermnented several versions of
HELIOS since 1993, and the final version will be released
as [COT Free Software by the end of March 1995,

We are now trying to use HELIOS for natural language
processing applications. In [Tsuda 1984b], HELIOS is
applied to natural language processing using negotiat-
ing agents. Natural language understanding includes two
kinds of hetercgeneity: a variety of constraint demains,
and a variety of natural language processes. Constraing-
based grammars such as HPSG and JPSG are examples
of the former, where understanding corresponds to con-
straints solving In heterogeneous demains of constraints
such as unification [Tsuda 1994a), temporal logie, sub-
sumption relations and so on. HELIOS implements a
negotiation-based distributed model to natural language
phenomena such as garden-path sentence recognition,
syntactic/semantic interaction [Marcus 1980], ill-formed
sentences, and disarnbiguation, all examples of the latter.

Our research and development provided a comprehen-
sive testbed for heterogeneous distributed cooperative
problem solving for dealing with three types of hetero-
geneity: model heterogeneity, spatial heterogeneity, and
temporal heterogeneity. By making capsules and envi-
ronments programmable by CAPL and ENVL, HELIOS
provides a flexible and extensible common space and
communications. The resulting system uses HELIOS as a
vast system for knowledge information processing, tack-
ling the issues of sharing knowledge and reusability of
knowledge /programs. Existing programs can be used by
making it an agent, and this is required for temporal
heterogeneity. Introducing capsule and environment is
required for model and spatial heterogeneity. Coopera
tion is required for rescurce bound environment. When
vast systems for knowledge information processing are
considered, considering the above three kinds of hetero-
geneity and resource bound environment is crucial.

HELIOS has many aspects: it can, for example, be
seen as a multi database, and a multi agent system.

To construct a system including autonomous heterc-
geneous databases under a distributed environment, the
relations belween databases are often classified as fol-
lows [Mancla ef al. 1992, Papazoglou et al. 1992]:

s Interconnectivity
= Interoperability
» Cooperation

Although there are many systems for multidatabases,
they all meet all of these three classes. For ao-
tonomous databases, the third class is especially im-
portant in large scale distributed environments. Many
attempts have been carried out to adopt suitable
technologies in distributed artificial intelligence, es-
pecially multi agent technologies [Manola el ol 1992,
Papazoglou et ol 1982, Kambayashi et al. 1881,
Shek et al 1993].

Adthough HELIOS ass described in this paper is not
restricted to a system for constructing multidatabases, it
is along these lines [Yokota 1994).

To encepsulate heterogeneous data and programs in
a distributed envirenment, a distribuied cbject man-
agement system has been propesed [Manola ef al. 1992],
and it is expected to be a system for the next genera-
tion of distributed databases. In comparison, HELIOS
expands agents in the following ways:

o HELIOS can dissolve heterogeneity in the contents
of messages,

hierarchical agent structure can be constructed in &
bottom-up manner, and

+ HELIOS can utilize cooperation /negotiation strate-
gies such as constraint satisfaction problem

As a multi-agent system, HELIOS has the ability to
make agents from problemn solvers, databases, constraint
solvers, and application programs by wrapping them by
capsules and placing them in a common space, an envi-
ronment. These agents have the ability to negotiate each
other under a defined negotiation protocol in an envi-
ronment with negotiation strategies defined in the cap-
sules. For instance, many negotiation in a multi-agent
system such as controct net protocol can easily be imple-
mented on HELIOS. To utilize agents having constraint
solvers in their substances, distributed constraint satis-
faction and constraint relazation in distributed constraint
satisfaction [Yokeo 1993] can also be implemented.

HELIOS contributes various methods of constraint
solving. One way is distributed constraint satisfaction
and distributed constraint relaxation as we have de
scribed above. Ancther possibility is to make a con-
straint solver an agent. For instance, if we make
a constraint solver for CAL [Alba ef ol 1888], and
GDCC [Terasaki et al. 92] then we can obtain an agent
that can solve algebraic equations including non-linear
equations. By combining these constraint solving agents
with different domains and introducing a utility function
for satisfying constraints, then constraint solving and re-
laxation of constraints can be handled on multiple do-
mains in HELIOS.

127

There is one other computation models for distributed
problem solving: the distributed computation model of
concurrent objects. We concluded that HELIOS has
a different viewpoint to this distributed computation
medel. That is, HELIOS concentrates upen entities of
computation or systems, while the distributed computa-
tiom model concentrates upon eomputation or processes,
This is why dynamism becomes an important issue in the
distributed computation model. We aim to do a more
precise comparison, and establish a computation model
for HELIOS.

To increase the efficiency of the system, communica-
tion between agents should be decreased. Introducing
proxy agents is one interesting idea that we concern. To
verify the usefulness of HELIOS with respect to its vari-
ous aspects, we need to implement large-scale application
gystemns. Since current implementation does not meet the
full specification of the logical model that we described
in this paper, we need to look at some functions such as
ontologies that have not yet been implemented,

Acknowledgments

We wish to acknowledge all members of HELIOS project
for many discussions about the languages, the sys-
tems, and for many proposals of their applications, We
would alse like to acknowledge members of Heteroge-
neous Knowledgebase Task Group for their useful sug-
gestions and fruitful discussions. Abowve all, we partic-
ularly thank Shunichi Uchida, the director of the ICOT
research center for his successive encouragements.

References

[Aiba et of. 1988] A, Aiba, K. Sakal, Y. Sato, I, J. Haw-
ley, and R. Hasegawa. Constraint Logic Programm-
ing Language CAL. In Proceedings of the Inier-
national Conference on Fifth Generation Computer
Systems 1988, November 1988,

[Cutkosky et al. 1993] M. R. Cutkesky, R. 5. Engelmeore,
E. E. Fikes, M. R. Genesereth, T. B. Gruber, W, 5.
Mark, J. M. Tenenbaum, and J. C. Weber, “"PACT:
An experiment in integrating concurrent enginest-
ing systems,” IEEE Computer, pp. 28-38, January
1943,

[Kambayashi et al. 1991] Y. Kambayashi, .
Rusinkiewicz, and A. Sheth (eds.}, Proc. of First
International Workshop on Interoperability in Mul-
tidatabase Systems, IEEE Computer Society, Kyoto,
1991,

[Kawamura ef of 1882] M. Kawamura, H. Sato, K. Na-
ganuma, and K. Yokota, “Parallel Database Man-
agement System: Kappa-F,” In Proc. of the Inter-

128

national Conference on FGCOS 1992, Tokyo, June
1-5, 1982,

{Manola et al. 1992] F. Manola, 3. Heiler, D. Geor-
gakopoulos, M. Hornick, and M. Brodie, “Dis-
tributed Object Management,” Int. J. of Intelligent
and Cooperative Information Systems, val. 1, No. 1,
pp. 542, 1992,

[Marcus 1980] M. P. Mareus, “A Theory of Syntactic
Recognition for Natural Language,” MIT Press,
ISBN 0-262-13149-8, Cambridge, Mass. 1980.

[Nitta et al 1994] K. Nitta, K. Yokota, A. Aiba, and
M. Ishikawa, “Knowledge Processing Software,” In
Froe. International Symposturn on Fifth Generation
Computer Systems 1884, Tokyo, Decemnber 1984,

[Mitta et ol 1994] K. Nitta, M. Shibasali, T. Sakata,
T. Yamaji, W. Xianchang, H. Ohsaki, 5. Tajo, L
Kokube, and T. Suzaki, “A Legal Reasoning Sys-
tem: new HELIC-II," In Proe. International Sympo-
sium on Fifth Generation Computer Systems 1994,
Tokys, Decemnber 1994,

[Mishida 1994] T. Nishida, “The Knowledge Community
{in Japanese),” In Proc. of the 8th Annual Confer-
ence of JSAL pp.TT-80, 1994,

[Papazoglou ef al. 1992] M. P. Papazoglou, 5. . Lauf-
mann, and T. K. Sellis, “An Organizational Frame-
work for Cooperating Intelligent Systems,” [Int. J
of Intelligent and Cooperalive [nformation Systems,
val. 1, No. 1, pp. 169-202, 1992.

[Papazoglou 1993] M. P. Papazoglou, "On the Duality of
Distributed Database and Distributed Al Systems,”
Proc. CIKM, Washington DC, 15823,

[Rosenschein et al] J. S. Rosenschein, and G. Zlotkin.
“Rules of Encounter,” MIT Press, ISBN 0-262-
18150-2, 1004,

iShek ef al. 1993) H-J. Shek, A. P. Sheth, and B. D.
Czejdo (eds.), Proc. of Second Fnternational Work-
shop on Interoperability in Multidatabase Systems,
IEEE Computer Society, Vienna, 1983,

[Takeda 1994] H. Takeda, K. lino, and T. Nishida,
“Knowledge-sharing mechanism in the Knowledge
Community KCy," In Proc. of the Sth Annual Con-
ference of JSAL pp.279-282, 1994,

{Terasaki et al. 52 5. Terasaki, D. Hawley, H. Sawada,
K. Sateh, 8. Menju, T. Kawagishi, N. Iwayama,
A, Aiba. Parallel Constraint Logie Programming
Language GDCOC and its Parallel Constraint Selvers.
In Procesdings of the International Conference on
Fifth Generation Computer Systems 1092, papes
330-346, June 1992,

[Tsuda 1994a] H. Tsuda. “cu-Prolog for Constraint-
Based Natural Language Processing,” JEICE Trans-
acltion on Information and Systems, Vol. ETT-D,
No.2, pp. 171-180, February 1994.

[Tsuda 1884b] H. Tsuda, and A. Aiba. "Heterogeneous
Natural Language Understanding in HELIOS™
FGCS'S4 Workshop on Helerogensous Enowledge-
bases, December 1994, Tokyo.

[Yokoo 1993] M. Yokoo, “Constraint Relaxation in Dis-
tributed Constraint Satisfaction Problem,” Proc. of
ICTAIL pp. 56-67, 1853,

[Yekota ef al 1983) K. Yokota, H. Tsuda, and Y.
Morita, “Specific Features of a Deductive Object-
Oriented Database Language Quraxors,” Workshop
on Combining Declarative and Object-Criented
Databases, (ACM SIGMOD'83 Workshop), Wash-
ington DC, May 28, 1993.

[Yokota et al 1893] K. Yokota, and M. Shibasali, "Can
database predict judgments? (In Japanese),” ED-
WIN, Infarmation Processing Society of Japan, July
-21 - 23, 1993,

[Yokota 1994] K. Yokota, “From . Database
to Knowledge-Bases: Kappa, Quixote, Helios,” In
Proc. International Symposium on Fifth Generation
Computer Systems 1994, Tokye, Decernber 1004,

