Proc. of FGGS'94, ICOT, Tokyo, December 199

From Databases to Knowledge-Bases
— Kappa , Quzxore , Helios

Kazumasa Yokota
Institute for New Generation Computer Technology (ICOT)
Mita-Kokusai Bldg, 21F., 1-4-28, Mita, Minato-ku,Tokyo 108, Japan
e-mail: kyokota@icot.or.jp

Abstract

In the FGCS project and its Follow-on project, we have
designed and developed a nested relational database
management system, Kapps, a deductive object-
oriented database (DOOD} language {or a knowledge
representation language), Qurxors, and a heteroge-
neous distributed cooperative problem solving system,
Helios, for knowledge information processing applica-
tions. In this paper, from the viewpoint of database
and knowledge-base management systems, [overview
their objectives and features, and summarize their con-
tributions. Especiallv. I focus mainly on their language
aspects rather than systems. Further, by reflecting
their experiences, I discuss some directions of future
database from an application point of view.

1 Imntroduction

In the FGCS (Fifth Generation Computer Systems,
1982-1993} project[Kurozumi 92] and its Follow-on
project (1993-1905)[Uchida ef af 93], we have been en-
gaged in various knowledge information processing ap-
plications such as natural languapge processing, genetic
information processing, and legal reasoning. In such an
environment, our major research interest from database
and knowledge-base points of view has been how to
support such applications by domain-independent lan-
guages and systems as database and knowledge-base
management systems[Yokota and Yasukawa 92).

For the ohjective, we have two activities: how to
represent data and knowledge effectively and manage
them efficiently; how to provide an environment where
multiple languages and systems can work effectively
for single purpose. During two projects, we have de-
signed and developed three database and knowledge-
base management systems:

1. Nested relational database management system,
Kappa[Yokota et al 88, Kawamura ef al 92, Kawa-

mura and Kawamura 94],

2, Deductive object-oriented database (DOOD) lan-
guage/system, Qurxore [Yokota et al 83, Yokota
et ol 84, Yasukawa ef ol 92], and

3. Heterogeneous, distributed, cooperstive problem
solving syetem, Helios[Yolota and Aiba 93, Yokota
94, Aiba et al 94a).

The decision of the adoption of a nested relational data
mode]l in Keppa is based on assessment of database
technologies in the middle of 1080s for efficiently pro-
cessing a large amount of structured data. Qurxore,
which iz based on & DOOD paradigm newly proposed
in 1988, is not only an extension of deductive databases
such as CHL[Yokota 88] and PHI[Haniuda ef al 91],
but also an extension of knowledge representation lan-
guages such as CIL[Mukai 88). Helicss approach is
rather practical: most of its motivations comes from
constructing large-scaled applications, where we must
consider varicus heterogenely such as model hetero-
peneity, spatial heterogeneity, and temporal heterogens-
ity, and cooperation for resource bound environments.

From a database point of view, Kappa iz a databasze
engine which guarantees to process algebraic operations
for varieus structured data efficiently, QurroTe is an
upper layer of Keppas and make representation and
management of higher-level data and knowledge such
a8 rules possible, and Helios can be considered as an
extension of multidatabase[Yokota 94], where multiple
heterogenesus database management systems can pro-
cess a query cooperatively.

Fram & knowledge information processing point of
view, Kappa is a back-end system hidden from users,
Quryote provides a flexible knowledge representation
language with both legie and object-orientation fea-
tures and a thought-experimental environment in query
processing for partial information, and Helios makes
it possible to combine various representation languages
and constraint solvers as a single problem solver.

We have taken a bottom-up approach for their devel-
opment as from dotebases to Ernowledge-bases: that is,
from Kappe to QurroTre and from Quixrore to Helios.
According as their developments, we have extended ap-

36

plications incrementally to be larger-scaled and to sat-
isfy more requirements.

The objective of this paper is not only to give each
outline but also to discuss future generation database
and knowledge-base systems by reflecting their expe-
riences and related applications along the above ap-
proach. In sections 2,34, I describe outlines of Kappa,
Qurxore, and Helios, respectively, from their de-
signet’s point of view. In Section 8, | re-visit their
design decisions from large-scaled knowledge informa-
tion applications' point of view and discuss about fu-
ture database and knowledge-base systems.

2 Kappaand CRL .

2.1 Motivations

From a logic programming peint of view in the middle
of 1980s, the relationzl data mode]l was most appro-
priate for the underlying database engine, because a
predicate without functions just corresponds to a tuple
in the relational model. However, when we aim to pro-
cess efficiently a large amount of structured data such
as natural language dictionaries and, later, genetic in-
formation databases, we had to abandon the relational
madel te aveid computational complexity such as join
operations. In 1985, we adopted a nested relational
model as the underlying database engine, because we
had seen through its efficient implementations, and
started up the Kappa project

The advantages of nested relational models over the
relational model are that they offer more efficient rep-
resentation and processing for structured data. Sinee
the advantages were pointed out in [Makinouchi 77),
there have been many works[Verso 86, Dadam et al
86, Schk and Weikum 86, Scholl and Schk 87, Desh-
pande and Gucht 88). [t is also widely lmown that
nestad relational models are better than the relational
model for new applications such as engineering, of-
fice and geographical databases; and many commercial
DEMSz also employ the idea from a practical point
of view, There are two problems for nested relational
model:

* As there are some variants of the name, the formal
semantics should be made clear.

* As users must be conscious of nested structure, the
semantics and operations should be considered to
reduce users’ burdens,

Our nested relational database management system
is called Kappa, which has several implementations
[Yokota et al 88, Kawamura ef of 80, Kawamura et
al 92, Kawamura and Kawamura 94).

A deductive database is an extension of the rela-
tional mode]l by the proof-theoretic reconstruction of

& relational database [Gallaire ef al 84]. deductive
databases can be considered as a first step towards
knowledge bases.

By adoption of a nested relational model, we had to
abandon ordinary logic programming languages and to
design and develop a new logic programming language,
CRL[Yokota 88, Kiyama and Yokota 88, Takahashi and
Yokota 90].

In this section, I describe the cutline of Kappa and
its related CRI[Yokota 88].

2.2 Nested Relation in Kappa

Assume a set O of atomic objects, a set T of types
of atomic objects, a set A of atiribute names, a tuple
constructor [, |, and a set constructer {, }. O may
contain a special ohject w to represent explicitly 2 void
or null object, which is used for partial information of &
tuple object. An object is defined as follows:

Definition 1 Object

1. Any atomic object s an objeet.

2. If o04,--+,0, are objects with a type T, then
{o1,+- 0+ i5 an object of a type {7}, which is
called a set object.

3 If ay,-+-,a, are different attribute names,
o1,+**,0, are objects with types 7y, -+, 7y, and
any of ay,+--,0, iz not used in oy,--+,0,, then
[3, = 61,---,8n = 0a] is an object of a type
[, = 7,--- 80 = 7], which is called a tuple ob-
Ject,

o

A tuple object iz called a nested tuple, if =ome attribute
value is not an atomic value. A nested relation is a set
object (with a type {r}) consisting of nested tuples,
where the schems is defined as a type {r}. And a
nested relational datobase 18 a tuple object consisting
of pairs of a relation name and a nested relation. It is
easy to see that these definitions correspond with those
of ordinary nested relations intuitively.

In thiz formulation, we can consider some kinds of
semantics about a set constructor, especially connected
with row-nest and row-unnest operations. To make the
semantics clear, consider the following examples:

Example 1 Set Grouping

Assume there are two tuples: [a = ¢, b = {ep,¢3}] and
[@ = c1,b = {c3, 05}, There are two possible tuples after
application of a row-nest operation to the given tuples:

[a=e1,b= {2, e3,64}], or
[a =c,b={{er, e} {ea, ca}}].

Each tuple is resulted by a set union or a set-of (set
grouping) operations respectively. m|

While an (extended) NF? model[Dadam et ol 86, Schk
and Weikum 86] employs the second semantics, Verso
model[Verso 86] employs the first. LDL [Zaniclo 88]
is also comsidered as the second case. We take the
first, and give the semantics of a nested tuple as a set
of only column-nested tuples, which is independent of
row-nest and row-unnest operation. Under the seman-
tics, we can omit { and } in the case of a singleton
sel.

There is the following difference between our model
and Verso:

Example 2
‘[['1 =k,b= {dl:dﬂ}:": = '['d31 'ii]']}

By selections ooms,(f) and opeg (R), we can get the
following relations respectively: .

R] {[’ﬂ= khb.= {d]rdz}:‘::: dﬁ]}
Ry = {la=k,b=d),c={ds,di}]}

By a union operation ByUHRs, Verso returns the ariginal
relation fy, while our mode! returns the following:

‘[[ﬂ-=k11b=d1, C={d3, d‘l}]![a=hhb=d2'c= d:!]}" or
{[ﬂ=k11b= {d],, d:]'. C=ﬂ.r3], [ﬂ-=-i:1: b=d} ,,C=dq]}

according to the nested seguence. O

Consider a relation &

Verso puarantees more efficient query processing than
Kappa, however Verso is more difficult to understand
operations’ result than Kappa.

Under the semantics, users do not need to be con-
scious of the row-nest structure when they query a

database,

Example 3 Semantics of Nested Relation
According to the above semantics, all of the following
relations have the same meaning: '

Ri: {e=enb=alle=e,b=es)[o=enb=1]},
Ry {fa={en, e} b=alla=c,b=1rl}, and
Ry {la=ci,b=a)[o=c,b={ae5}]}

{a={c, e}, b= 3] is implied by each of them. o

A nested relational model based on such semantics is
& natural extension of a relational meodel, and its char-
acteristics are more efficlent representation and more
efficient processing performance. The extended rela-
tional algebra including nest and unnest operations is
reconstructed according to the semanties.

Strictly speaking, such relations may be classified
into wnnormalized relations and nested relations from
a structural point of view, depending on whether the
relations can be reversible by row-unnest and row-nest
operations, and also classified into value-oriented rela-
tions and ezpresston-oriented relations from an opera-
tional point of view, depending on whether sets have

a7

intrinsic meaning or not. Although in this context we
do not discriminate the differences explicitly, Kappa
treats unnormalized and ezpression-orienied relations
in the above classification.

The actual model of Kappe has some additional fea-
tures for practical use: list and bag constructors, term
as an atomiec object and its retrieval by unification er
pattern matching, and use of a constraint logic pro-
gramming lanpuage CAL [Aiba ef al 88] as genera-
tion or integrity rules for algebraic constraints. The ex-
tended relational algebra corresponds to such extended
features, and furthermore supports some convenient op-
erators, besides conventional operations, for efficient

processing.

2.3 CRL as a Bridge to Knowledge-
Bases

CRL uses an attribute-valued notation instead of a
predicate potation as in Kappe Assume a set of wari-
ables besides the symbols of the nested tuples, the term
is defined as follows:

Definition 2 CRL Term

1. An atomic chject o is-a term,
2. A variable X iz a term,

3. If ty,--+,t, are terms, then {t1, -, 1} I8 & term,
which is called a sef term,

4. If Gy, AR attribute names and ty, o, iy are
terms, then [IJ!]. =y, 0 = g‘ﬂ] Is a term, which
is called a tuple term.

O

Although CRL is a typeless language, the same restric-
tions as nested tuples are also imposed on the terms
for nested relations. In the sense, CRL is less expres-
sive than other languages for complex objects such as
COL[Abiteboul and Grumbach 88).

This attribute-valued notation is an extension of a
usual predicate notation by introducing a set of some
attribute names:

p{;h”l':“-}# [M=P,$l =t11"'|$ﬂ'=tu]l

where 50,81,.--,8n are newly introduced attribute
names. The advantages are flexibility in the position
and the number of arguments, and natural representa-
tion of column and row nesting tuples by set and tuple
constructors.

The semantics of the term iz defined as a set of
porticlly tagged trees (PTTs), which is used in the se-
mantics of CIL [Mukai 88], The semantics reserves the
gemantics of nested tuples. According to the semantics,
row-nest and row-unnest operations correspond te a

38

distributive law under an algebraic structure with tuple
and set constructors:

{la=e1, b={cs, es}]} & {[e=e1,b=a], [a=e1, b=24]}.

A program clause is defined as & pair of a tuple term
t and a set {f;,---,%,} of tuple terms as follows:

LR SPRERRE P

A CRL program is a set of program clanses, And a goal
iz a set of tuple terms gy,+:+, gm, which is written as

hql!"‘!g‘m-'

Example 4 CRL Program

[par = {"mary”}, chi = {“john”, “lisa"}],

[par = {"paul”, “kate"}, chi = { “mary”}),

[ane = X,des = Y] [par = X,chi =Y,

lanc = X,des = Y] + [par = X, chi = Z],
[ane = Z,des = Y|

iz a CRL program. O

A CRL dotabgse iz a CRL program and is divided
inte an intensional and an extensional databases (an
IDB and an EDB), just like a definite clause based
deductive database. An EDB is a set of nested tuples,
whieh ean correspend to a Kappe database.

The semantics shows the following properties:

F—=I:"""sPn
=g+ P Bl D Pima Pitls " Pr
Eqe DB AT PL P

where Dy, v+, B a0d gy, -+, ge are ‘unnested’ resulis
of py and g, respectively, The relation guarantees to
reserve the declarative and procedural semantics of
Prolog. As the extended SLD resolution for the CRL
program, set unification (intersection) is applied for an
EDE term without being unnesting, and the new goal
corresponding to the set difference is generated for an
IDB. For example, consider the following goal:

= Gl:["'-5=31”']:G?:

where S is a set term. If the subgoal [--+,a = 5,-+
can be unified with an EDB term [--,a = §',--] by a
unifier §, the new goal i3 generated as follows:

L {Gh [A= I:S‘I'LSPJ! ""]!G'!}H-

if §\ &', called o residue goal, is not an empty set.

As for bottom-up evaluation, the least fixpoint se-
mantics like Prolog is also defined, and similar opti-
mization strategies can be applied.

Example 5 Query Transformation

For a query « [anc = {“paul”,“kate"} des = X]
{— [r,m.c - "pm:!“,des_ = X],[unc = “kate", des = X]],

the above CRL database (program) can be transformed
into the fellowing form:

[par = {“mary"}, chi = {"john", “lisa" }].

[par = {“poul®, “kate? }, chi = {“mary"}].

[ane=X,des =¥] — [one® = X, [par = X, chi = ¥].

[ane = X,des = Y] — [anc® = X, [par = X, chi = Z],
[ane = Z,des = Y.

[ane® = “paul”].

[anc® = “kate”].

[ane® = Z] = [anc" = X], [par = X, chi = Z].

a

This is an example of HCT/R [Miyazaki et al 8§] for a
CRL database,

A modular concept with rule inheritance is intro-
duced to classify a set of rules with alternative defi-
nitions and inconsistency [Takahashi and Yokota 90].
Further query eptimization is investigated [Kiyama and
Yokota 88].

3 OQurxore

3.1 DMotivations

During the development of CRL databases, we realized
requirements of more powerful and flexible databases
for real data-intensive applications. Ancther kind of
requirements are how to integrate CRL and CIL for
natural language processing. The keywords are partial
information, object-orienfation, and constrginis. For
the ohjective, we proposed a new paradigm, deductive
object-oriented database {DOOD) [Yokota and Nishio
89, Yokota and Nishio 901

From the viewpoint of knowledge representation, the
above paradigm corresponds not only to value-based
representation but also to identity-based representation
in the semse of [Ullman 87]. As the identity of par-
tial information is naturally treated in the contextt of
object-orientation, we intended to integrate logic and
object-orientation concepts in the context of constraint
lagic programming.

From the viewpoint of data modeling, object-
orientation conmcepts are important not only for
identity-based representation but also for encapsula-
tion, inheritance, and method. For example, encap-
sulation and method are key concepts for a protoccl
of cooperative problem solving over heterogenecus dis-
tributed knowledge-bases, and inheritance is essential
for classification of knowledge. Such features are indis-
pensable for our applications.

From ancther point of view, & DOOD is not only
a problem in a database but also in other areas,
such as natural language processing, artificial intel-
ligenee, and programming languages. For example,

deductive databases are related to programming lan-
guages and artificial intelligence, and complex ob-
jects are related to feature structures in natural lan-
guage processing and record structures in program-
ming languages. In knowledge information processing
especially, meany language concepts, such as knowl
edge representation, programming, situated inferemce,
knowledge-bases, and databases are closely related. A
DOOD approach as the integration of logic and object-
orientation paradigms is not only appropriate for such
environments but is also expected to be a key concept
for such integration of more concepts.

After many adventures of several prototype lan-
guages, we named a new language QuiveTs, where we
expect many res! applications to be naturally modeled.
Servantes wrote:

<oy for @ knight-errant whe wes loveless was o
tree without leaves and fruit — a body without
soul, ([Starkie 57], p.18)

Quzxore would be read in this spirit.

3.2 Policies

In order to integrate various features into Qurxore,
we consider various criteria. Here we summarize several
points:

1. Are all properties of an object homogeneous?

This eriterion concerns the classification of properties.
For example, two phrases, *- .. apple which is red -- "
and *--. apple, which s red, ..." are different, that
is, although which #s red is common, the former is
restricted reading, that is, intrinsic, while the latter is
non-restricted reading, that is, incidental or esfrinsic,
where apple plays the role of identity.

2. How is an object identity represenied?

This criterion concerns the representation of an object
identity, i.e., object identifier (cid). Traditionally, an
oid is represented in the form of a pointer or an ad-
dress and is hidden from users in most object-oriented
languages, while a name, corresponding to an oid, is
explicitly used by users. We take a term consisting of
intrinsic properties as a name, which also can be an oid
for users, as in [Kifer and Lausen 89).

3. How is extrinsic properties represented?

This criterion eoneerns representation of extrinsic prop-
erties and the relation between oids. The representa-
tion of partial information should be flexible, Given an
cid o, a Jabel !, and a value v, an extrinsic property
is represented as a constraint between o. (I-value of o)
and v. We take the subsumption (a kind of ISA) rela-
tion as the relation, consider a constramt solver over
a set of subsumption constraints, and take the idea in
DOT [Tsukamoto et al 91] as the inheritance mecha-
mism.

39

4. Which semantics should be selecied for sets and how
are they freated?

This eriterion concerns how to treat sets, that is, or-
dering of sets, set grouping or set construction, and
representation of complex objects. We salected Hoare
ordering, because it seems to be natural in most of our
applications when considering the subsumption rela-
tion. Set constructors are introduced into subsumption
comstraints and make it possible to represent complex
objects, Sets in intrinsic properties are made to corre-
sponds to the semantics of Kappe and CRL.

5. How should globality and locelity of date and krowl-
edge be introduced?

This criterion concerns the globality and locality of
data and knowledge in a database, which also relate
to the construction of very large knowledge-bases. To
realize the coexistence of inconsistent knowledge or lo-
calization of properties or methods, we introduce a
module concept as in [Takahashi and Yolota 90, Miller
88, Monterio and Porto 89, Monterio and Porto 90].

6. What extensions are needed for query processing?
This criterion concerns extensions of query processing
for partial information. Focusing on the partiality, we
introduce (restricted) abduction (or hypothesis gener-
ation) and hypothetical reasoning (conditional query
processing). Such features provide databases with a
thought-experiment envircnment.

7. What about relationship o troditional object-
orientation concepts?

Most of object-orientation concepts such as object
identity, property inheritance, and method can be sup-
ported by sobsumption constraints. Further we can
take a class by ordering between terms, however post-
pone to introduce encapsulation, a type system, and
antonomy,

8. What ahout relationship fo deductive databases?
Although negation and disjunction have been well
studied in logic programming and deductive databases,
subsumption constraints with negeation or disjunction
have not been studied. Thus, we introduce only
negation-as-failure of terms and disequations of con-
straints. To retain upwards compatibility with dedue-
tive databases, we decided also to employ ordinary
predicate notations as terms in QuivoTe.

9. What about relationship to database management fea-
tures?

We introduce update, nested transactions, persistence,
and integrity constraints, however introduce only mini-
mal features of concurrency control.

10. Where should a new lenguage be ploced on the
wholef

We discussed whether Qurxore might be gquixotic or
not (although the name was derived differently} during

the design, becanse the language must have many fea-
tures. We consider this integration to be rather mod-
erate but not an unreasonable integration. As a result
of considerations on many applications, QuIxeTe has
many aspects: a DOOD langnage, a knowledge rep-
resentation language, a constraint logic programming
language, a database programming language, and a sit-
nated programming language.

3.3 Basic Features of Qurxore Objects

An object in QurroTe consists of an object identifier
{oid) and a set of properties. Bach property can be
considered as a method, as usual, and the implemen-
tation of a method is written in the body of a rule.
The subsumption relation among oids makes property
inheritance possible.

3.3.1 Object Identity and Subsumption Con-
straints

An oid is in the form of a tuple called an object term.
For example,

apple,
apple[color = red], and
cider|alcohol = yes,
product = process[source = apple,
process = ferment]|

are object terms, where apple is basic, but the latter
two are compler. Although an infinite struciure and set
constructors are introduced, as explained in the second
and fourth criteria in Section 3.2, we do not explain
them here for simplicity.

Given subsumption relation (partial order) C among
basic object terms, the relation is extended among
complex object terms as usual, For example,

apple 3 apple[eolor = red).

Congruence relation o) = og is defined as oy C o3 A
g = oz, We assume that a set of object terms with
the subsumption relation and special objects, T and L,
constitutes a lattice without loss of generality because
it is easy to construct a lattice from a partially ordered
set, as in [ATt-Kaci). Mest and join operations of object
terms are denoted by | and T, respectively.

Properties are defined as a set of subsumption con-
straints of an oid and used with the oid as follows:

apple|{ apple.species C rose,
apple.area Jg {aomeri, nagano}},

where apple iz an object term and the right hand
gide of | iz a zet of properties: apple species T rose
means that apple’s species 18 (subsumed by) rose and
apple.area Jy {aomori, nagano} means that there are

acmori and negenoe in apple’s production areas, Here
a relation between sets is defined as Hoare ordering
based on subsumption relation:

S5, Cg S def Wey € 51,36z € Sz, €1 C e,

Although Hoare ordering is not partial, we assume it as
a partial order because the representative of an equiva-
lence class modulo Cg iz easily defined as a set where
any element is not subsumned by other elements in the
sarne set.

3.3.2 Property Inheritance

For property inheritance, we assume the following rule
as in [Tsukamoto et al 81]:

if oy C op, and neither o; nor oo has labels, !
and '
then o).l C ol and oy ' Ty ap.0",

where oy and oy are object terms, [and I' are labels,
and [and I' take & single value and a set value, respec-
tively. According to the rule, we get, for example,

if apple.species C rose,

then apple[color = red) species T rose,

and

if applefcolor = red].area Dy { fukushima},
then apple.ares Jg { fukushimal}.

That is, apple.species C rose is downward inherited
from apple to apple[color = red), while apple[color =
red|.area Js {fukushima} is upward inherited from
applefcolor = red) to apple.

MNote that there are two kinds of properties: prop-
erties in an object term and properties in the form of
constraints. The former are called intrinsic and the lat-
ter are called estrinsic. Only extrinsic properties (sub-
sumption constraints) are inherited according to the
{extended) subsumption relation among object terms,

Intrinsic properties interrupt property inheritance as
follows:

Even if apple has apple.color = green,
applelcolor = red] does not inherit color C
green

because the intrinsic property color = red.

Thiz correaponds to erception of property inheritance.
Multiple inheritance is defined as the merging of sub-
sumption constraints. Such constraints are reduced as

follows:

plCanrolCh = oglCalb

aCoelAbBC ad = aTbCoal
olCrsinolCrss = olCpaUss
51CpolnssCrol = {olylres,yesntlyol

Mote that the least upper bound of the two sets, 5, and
5g, is defined as s; U 53 under Hoare ordering, because
s1Uss Cu {e1 T 2| €1 € 51,82 € 53}, In the above ex-
ample, the merging of apple.area Jg {aomori, nagano}
and applearen Jg {fukushima}l is reduced to

apple.area Dy {aomori, nageno, fubushima},

3.3.3 Intensional Objects

An object can be defined intensionally in the form of a
rule:
op|Ch 4= 01|C, =+, 0|0 || C,

where, for 0 < ¢ < n, o; 15 an object term and O is
a seb of the related subsumption constraints, and € is
a set of constraints (variable constraints). An object
og|/Cy is intensionally or conditionally defined by the
rule. op|Cy is & head and 6;|C1,---,04|Ch || € iz a bady.
Intuitively, a rule means that if the body iz satisfied
then the head is satisfied. If & body is empty, then the
rule is called a fact. In a sense, an object is defined
as a set of rules with the same object term. There is
one important restriction in Cp: Cp may not contain
subsumption relations among object terms. The reason
is fo avold recomstruction or destruction of the lattice
during query processing.

MNote that an object term plays the role of an oid.
That is, two facts,

ol{od C a} <= and o|{e.l C b} <=,
can be merged as follows:
ol[{edCalb}<=.

In cases where an object term with variables is in the
head of a rule, an object is defined when the variables
are instantiated during query processing, because an
cbject term with variables cannot specify an object.
That is, subsumption constraints in a head are merged
after evaluation of all the related rules.

When the constraints of & head are empty, Qurrors
is an instance of CLP{X) [Jaffar and Lassez 87):

o9 = 01|Ch, -1 0a|Cn || C
= op4=0y, 0,00 ||C1U---UCUC

From a programming language point of view, the ex-
istence of head constraints in a rule makes QurxoTe
an extension of CLP(X) and, in the procedural seman-
tics, the possibility of merging head constraints must
be checked at every OR node (in the sense of ordinary
logic pregramming languages) of the resolution tree,
See the details in [Yasukawa and Yokota 90].

3.3.4 Modules and Databases
A set of rules can be defined as a module;

m:{ry, o, ma}

41

This means that a module identified by a module iden-
tifier (mid) m has rules v, ---,r.. We use ‘module m’
instead of ‘a module identified by mid m' for simplicity.
Here, we define the submodule relafion between mod-
ules. For example, consider two submodule relations:

my Jg mg + ms, and
™z Jg my.

The definitions mean that my; inherits all rules in mq
and mg, and ms inherits all rules In my. We call such
inheritance rule smherifance, where exception, loeality,
and overriding are also defined [Yasukawa et al 92
The submodule relation is an acyclic direeted graph, in
which modules can be nested.

A module can be referenced from a subgeal in a rule
in other modules. The definition of a rule is extended
as follows:

mg 2 op)Cp =y L on|Cry -y 0| Ca e

which means that there is a rule in module my such
that if o;|C; and ' are satisfiable in module m; for all
1 <4 = n, then op|Cy is satisfiable in a module my.
There might be some discussion about why a rule is
not defined as follows: '

m iy op|Co=my 01|y, 0a]Ca || €.

According to the definition, module m knows some
knowledge in another module, that is, the role corre-
sponds to a kind of brief However, it causes serjous
semantical problems.

Although the module is introduced as the fifth crite-
rion in Section 3.2, we can list three objectives:

1. Classification of data and knowledge under certain
criteria.

2. Coexistence of inconsistent data and knowledge.
3. Introduction of 2 modular programming style.

These features are also very useful for constructing
very large knowledge-bases (VLKB).

A QurvoTe dalobase or a Quixore program is de-
fined as a triple (5, M,R) of a set 5 of subsumption
relations among basic objects, a set M of submodule
relations among mids, and a set R of rules. Intuitively,
a database can be also considered as a set of modules
or as a set of abjects.

3.3.5 Query Processing

One of the major characteristics in knowledge informa-
tion is the partiality of information, that is, sufficient
information is not necessarily given. The introduction
of an object identity is essential for representing such
partial information. Partiality should be considered not
only in representation but alse in guery processing:

42

1. What information is lacking in the database for
this query?

2. I some information is inserted into the database,
what answer will be gotten for this query?

Further, as derivation becomes more complicated, we
want to know why a particular answer is returned.
As details of such query processing are presented in
[Yokota et al 94], we outline the processing here.

In logic programming, finding a lack of information
or unsatisfiable subgoals corresponds to abduction, that
is, hypothesis generation. Remember that a rule in Syt
xoTE can be represented as follows:

op|Co =01, -,0q || LU - - UG, UC,

where oids @y,- -+, 0, are considered as existence checks
of the corresponding objects, while &, U---UC, UC
is considered to be a satisfiability check of subsump-
tion and variable constraints. In the current implemen-
tation of Chrxors, only subsumption constraints in
Cyu- UG, UL are taken as assumptions, that is, even
if body constraints are not satisfied, they are faken as
a conditional part of an answer. For example, consider
a database consisting of three objects:

o1 <= oz|l{o2.d T a}.
7.
03 %= 04,

For & query 7-o;, the answer is that if o C a, then
yes, while, for a query ¥-o5, the answer is no.

Further, the derivation process of an answer is also
returned as an explanation with the answer. That is,
each answer is in the following form:

if assumptions then answer because explanation,

where both assumptions and enswer are in the form
of a set of constraints.

On the other hand, hypothetical ressoning (econdi-
tional query) corresponds to the insertion of hypotheses
into a database. A guery is in the following form:

if hypotheses then 7-guery
(written as ?-query;;hypotheses),

For example, consider the database used above. For
queries T-61;;0al{0e.l C a} and %-o0s;; 04, both answers
are yes without any assumptions. That is, if, for a
query T-g, the answer is 'if H then A", then, for a
query ?-q;; H, the answer iz simply 4. Note that, as
a database consists of a triple of definitions of sub-
sumption relations, submodule relations, and rules, hy-
potheses can also consist of such a triple. A query 7-
{5y, My, By) to a database (5, M, R} is equivalent
to a query T-g to a database (SU Sy, M UMy, RURg).

Hypotheses are incrementally inserted into a
database, that is, a query 7-g;;H to a database

DE updates the database to DB U H. To con-
trol suech repetitive insertions of hypotheses, nested
transactions are introduced. Users can declare be-
gin_tronsaction, abori_frensaction, or end_transacction at
any time among gqueries. A top-level commit opera-
tion {an outermost transaction from begin_transection
to endtransaction) makes insertions persistent. On
the other hand, a roll-back operation (caused by
abort transaction) recovers the before image of the
corresponding begin_fransaction. Hypothetical reason-
ing is useful in the construction of a knowledge-base
or in thought-ezperiment or frigl-and-error type query
PTOCESSITE.

3.3.6 Other Features

Here, we list some more features of Qurrors:

o Assertion and deletion of extensional ohjects and
properties during query processing are supported as
in [Zaniclo 88]. These are controlled by the sams
uniform nested transaction logic wsed in hypotheti-
cal reasoning. Howewer, note that the subsumption
relation and submodule relation may not be up-
dated during query processing, because the change in
their inheritance might destroy the soundness of the
derivation, although they may be statically inserted
as hypotheses.

e All objects in QuixeTe except temporarily created
objects during guery processing are persistent. Per-
sistent objects in a database are stored through a
uniferm logical interface inte other database man-
agement systems or file systems via TCP/IP proto-
col. Such objects are invoked when the corresponding
database is opened.

o A Ougxore system consists of a client as a user
interface and a server as a knowledge-base engine.
Servers and clients are connected also by TCP/IP
protocol and servers control multi-user access.

4 Helios

4.1 DMotivations

Az mentioned in Section 1, it is very difficult to cope
with real large-scaled applications in a single language
and a single paradigm. For example, although the cur-
rent Chzyeré has many powerful features, it iz very
inefficient to represent various kinds of data and knowl-
edge such as sequence data, algebraic constraints, and
statistical data in it.

For example, consider a very simple one “a person
who is over twenty years old can drink domestic alco-

holic drink”, which is written in GQuzrore as follows:

person[name = X|/[canDrink = ¥] <=
) ¥/|product in = demestic],
Y C aleohol, _
person[name = X|.age = 20

where “Y C alcofol® iz & subsumption constraint,
while “person[nome = X].age > 20" iz an algebraic
constraint, which can be processed, for example, in
GDCC[Aiba and Hasegawa 92). The problem is how
Qurxore sends the alpebraic constraint to GDOC and
gets its answer from GDCC. o

As another example, consider a gename database,
Some knowledge such as protein functions are written
in the form of rules in Qurrore and large volume of
structures data, which can be stored in the form of
nested relations in Kappa, are also represented in Cr.
xoTe. However large-sized sequence specified as a value
must be processed by information retrieval functions
such as string search, which are supported by native
functions of neither Kappa and Quzxore. The problem
is how to process a gquery in Qurrore, Kappa, and
information retrieval functions cooperatively.

Az shown in the above examples, we can find many
applications which require multiple helerogeneous prob-

lem solvers b

» Modeling Heterogeneity
The complexity of a given problem requires a combi-
nation of multiple heterogeneous problem solvers,

» Spatial Heteropeneity:
Spatially distributed problem solvers are required to
process a given problem.

Temporal I-fetemgeueit}r:
For a new problem, a new problem solver is not nec-
essarily developed: that is, multiple existing problem
solvers must be reused for a new problem.

There have been some approaches: an arithmetic caleu-
lator in Prolog and & constraint logic programming lan-
guage with a single constraint solver. Such a restricted
approach seems to be neither fexible nor promising for
maost applications,

Further, considering the spread of distributed envi-
ronments, there might be similar resources, each of
which does not have complete information. In such
an environment, we can frequently get better results
by accessing and merging multiple information re-
sources or multiple problem solvers. In other words,
cooperation among distributed resources are frequently
required. Considering such applications and environ-
ments, heterogeneous, distributed, cooperative problem
solvers will become more important and can play a role
of & very large knowledge-base,

'Here, we use a problem soluer as & general term for a
database system, a knowledge-base system, a constraint solver,
an expert system, an application program, and so on,

4.2 Helios Model

A basic concept in Helios is an ogent, defined as fol-
levws:

agent := ({capsule, problem-solver}
| ([capsule, environment,
{agent], | agent-r,]-]

A simple agent iz defined as a pair of a capsule and a
problem salver: intuitively, a problem solver is wrapped
with & capsule as in Figure 1. A complez agent is de-
fined as a triple of a capsule, an environment, and a
get of agents (agent,,- - -,agent,), where an’ environment
iz a field where agent), --agent, cen exist and com-
municate with each other. Intuitively, as a pair of an
environment and a set of agents can be considered also
as a problem solver, a new agent can be defined by
wrapping them by a capsule. That is, an agent can
be also hierarchically organized. Figure 1 shows such
structures. :
A capsule and an environment is defined as follows:

capsule = (agent-name,methods,self-model,
negotiation-strategy)
environment := (agent-names,common-type-system,

negotiation-protocol ontology)

An agent name in a capsule is an identifier of the cor-
responding agent and agent names in an environment
specifies what agents exist in the environment. Methods
in a capsule define import and expori method protocols
of the corresponding agent. An agent with enly im-
port methods is called passive and an apent with bath
methods is called active: that is, only an agent which
send new messages through export methods can nego-
tiate with other agents. A common fype system in an
environment enforces all agents under the environment
to type all messages strongly. A self model in a capsule
defines what the agent con do. An environment ex-
tracts necessary information from self models in agents
to dispatch messages among agents. Under a negolia-
tion protecel in an environment, each agent defines a
negodiation strategy to communicate with other agents.
An ontology defines the transformation of the contents
of messages among agents, while a capsule convert the
syntax and type of messages between the common type
system and the intrinsic type system of the correspond-
ing problem solver. These information is defined in
CAPL (CAPsule Language) and ENVL {ENVironment
Language).

Although various information is defined in each en-
vironment and each agent, a message among agents is
in the form of a global communication protocol con-
sisting of the message identifier, the identifier of a
sender agent, the identifier of a receiver agent, a trans-
action identifier, and a message. A message identifier is

44

user (environment)

|

complex agent -
I,’_ capsule _-\1
,r/- environment complex agent _‘\\‘
simple agent i
capsule environment
C problem solver) (_—) (e)
\)

\.

Figure 1: Basic Model of Helios

common in a query message and answer messages. A
transaction identifier is used to identify a negotiation
process as a transaction, which can be nested, .

4.3 Features of Helios

In this subsection, | explain several specific features of
Helios, some of which have not been developed yet.

4,31 Message Dispatching

Any active agent can send a message to its environ-
ment. How is the message dispatched by the environ-
ment?

First, during the initialization of agent processes in
the environment, the environment constructs a map of
& logical agent name and a physical process address
{or IP address). Secondly, the environment gathers
method information and function information in self
models from each agent and constructs two kinds of
mape: & method and an agent name; a function name
and an agent name. Such meps work for dispatching
messages among agents,

As a method or a function does not necessarily corre-
sponds to an agent uniquely, a message is possibly sent
to multiple agents. This mechanism is useful for the
followings:

¢ It is unnecessary to specify an agent name in prob-
lem solvers explicitly.

» It is possible to send simultaneously a message to
possible agents.

An environment decides to send a message sequentially
or in parallel to candidates listed by the maps, and
processes anewers sequentially or by grouping as a set,
In the case of set grouping, aggregation functions can
be specified in an environment. Such a mode can be
selected in a guery message.

4.3.2 Negotiation Protocol

How can agents communicate with each other? We
consider three kinds of modes: simple communication,
negotiation-based communication, and schedulable com-
munication.

When communication ameng agents reguires neither
negotiation nor query plans, it is called simple.

For negotiation among agents; negotiation protocol
and negotiation strategy in Helivs can be defined in
ENVL and CAPL, respectively, differently from con-
ventional systems [Aiba et al 94b]. The protocol is
based on the transaction-based protocol, which comes
from the similarity between transaction and negotiation
processes: negotiations ean be nested and comtrolled
by begin-, end-, and abort-transactions. Various nego-
tiation protocols such as contract net and multi-stage
negotiation can be written by the transaction-based
protocol. Negotiation strategies can be written in a
logic programming language with the above protocol,

Another kind of communication is applied when a
message can be partitioned into sub-messages and their
execution plan can be generated. A messages is an-
alyzed and its corresponding processing plan is con-
structed as a dependency graph. A query in conven-
tional distributed databases is such an example. Syn-
chronization information between sub-messages is at-
tached to each sub-message and controlled by the cap-
sule of each agent.

An answer message can be processed by global con-
straints, a constraint solver, or aggregation functions.
lobal constraints are used for restricting special val-
wes embedded in messages. For example, you can see
the number of columns and rows in m-gqueen as um-
changed one, and a blackboard as changeable one. A
constraint solver iz used for evaluation of results. An
environment sends them to the related agent if neces-
sary. Depending on their evaluation, the environment
decides whether alternative message processing is nec-
£33aTY Or not.

When all agent cannot solve a query, the environ-
ment send the query to the outer environment, which
may be a user, through its capsule.

4.3.3 Proxy Agent

To process negotiation more efficiently, prozy agents
can be generated by a sender agent. A proxy agent is a
copy of the original and has restricted authority which
can negotiate with others. As a proxy agent is sent
with a message, it works in a meighbor process to the
other agent: that is, if some messages are required for
the negotiation, communication cost can be reduced by
the proxy mechanism.

4.3.4 Concurrency Control

Whether an agent with side effect can process mul-
tiple messages or not depends on the ability of the
concurrency control of the internal problem solver. For
example, if the problem solver is an database man-
agement system, its capsule sends multiple messages
because the problem solver controls concurrency as one
of basic functions. If the problem solver does mot have
coneurrency control, its capsule serialize a transaction
(a logical sequence of messages) or the environment
replicates the agent process.

4.3.5 Human Interaction

A user can play three roles in Helios: an end user, an
outermost environment, and a problem solver.

For communication between a user and an agent, a
user can give his user model, which corresponds to a
common type system and data structures defined in an
outermost capsule. Given a user model to an agent, its
capsule transforms all messages between the user and
the agent.

A user i1z defined as the outermost environment
where there is only one (simple or complex) agent.
If an internal agent cannot solve a problem, the prob-
lemn is thrown out in the suter environment. So, a uzer
receives unsofvable problems finally. If the user returns
the answer to the agent, the agent continues to process
the suspended message.

Furthermore, & user may be defined also as an agent,
that iz, a wser can process a message sent by its capsule
and return its result to teh capsule. This feature helps
not only prototyping a system, but also constructing a
groupware environment, if muoltiple users are defined as
agents.

Such models make prototyping multi-agent program-
ming in sur model easter.

Relations among users and agents are shown in Fig-
ure 2.

Figure 2: User as an Environment and an Agent

5 What Have Been Achieved?

Here,] summarize what we have achieved by Kappa,
Chzrore, and Helios: that is, what their contributions
are.

Kappa

The major cbjective of Kappea is to store and manage
a large amount of structured data and the system had
been expected to play a role of an underlying database
layer. From this viewpecint, I can list the following
contributions:

& We implement a nested relational model efficiently:
especially we implement its parallel system|[Yokota
et ol 88, Yokota and Yasukawa 82, Kawamura ef al
92, Kawamura and Kawamura 94],

o We show 1ts efficiency and effectiveness as an
underlying database layer in data-intensive ap-
plications such as genome databases and nat-
ural language dictionaries[Yokota and Yasukawa
92, Tanaka 93).

Censidering future works from an application peint of
view, we must strengthen the aspects of an epen archi-
tecture, to cope with various applications. For example,
user’s application programs had to be embedded into
Koppa to support information retrieval features effi-
ciently in genome databases as in [Kawamura ef ol 92].

CTxoTE

The major motivation of QuzroTe is to represent and
process flexibly various data and knowledge in knowl-
edge information applications. From a database peoint
of view, it is a DOOD language and, from natural lan-
guage point of view, it is an extension of CIL. The
main eontributions are as follows:

46

o We design and implement a deductive object-
oriented database language based on subsump-
tion constraints, by which logic and ohject-
orientation concepts are integrated[Yokota and Ya-
sulcawa 92, Yokota ef al 893, Yokota ef of 84, Ya-
sukawa et al 92).

e We show its efficiency and effectiveness for
many knowledge information applications such as
natural language processing[Tojo and Yasukawa
92, Tojo et al 93], genetic information process-
ing[Tanaka 91, Hirosawa et ol 93], and legal rea-
soning[Yokota and Shibasaki 93, Nishicka et al
94, Takahashi and Yoketa 05, Tejo et al 95, Tojo
et al 93).

From experiences on several applications, we must con-
sider many extensions: embedding practical functions
guch as maith module explained in [Tsuda and Yokota
84], introducing modality and temporal aspects into
the logic, preparing a programming environment, and
making a design methodology. '

Helios

Ag seen in future works in Kappe and CQurxore, mul-
tiple problem solvers are indispensable for real applica-
tions, whose combination should be flexible. Further,
considering large-scaled applications, we must foens on
resenree bound environments. Under suech backgrounds,
we started up a Helios project as an indispensable sys-
tem for many applications. The main contributions are
as follows:

s We design and implement a comprehensive test-
bed for heterogeneous distributed cooperative
problem solving, where distributed problem solver
and multi-agent based systems can be mod-
eled[Yokota and Aiba 93, Yokota 94, Alba et al
94al.

s We propose a transaction-based protocol for var-
ious kinds of negotiations such as contract net,
distributed constraint satisfaction, and multi-stage
negotiation[Aiba ef ol 94b).

We must investigate its applicability to many applica-
tions.

6 Databases and Applications

During investigating various data and knowledge in
our applications, we have found common characteris-
tice there as in scientific databases as follows:

& Massiveness of Data: There are two kinds of mas-
siveness: large quantity as in astronomical data and
weather data; huge value as in genome sequence data
and image data.

s Complexity of Data Structure: Besides complex ob-
jects based on simple data types, there are various
kinds of data such as semantic structure in nato-
ral language, chemical reactions, coordinates, image,
voice, and so on.

+ Ambiguity in dafa: As many data are gathered by
experiments and observations, there are many erro-
necus data, which mmst frequently co-exist even if
they are inconsistent.

s [neompleteness of Deia: As it is very difficult to de-
fine all properties of an ohject concerned, necessary
properties might be only in the form of constraints,
lacking, or redundant.

o Variety of Kinds of Daote: There are many kinds of
databases even in an application, as in bisclogical
databases. As they are mutually related and have
common data, their integration is indispensable.

e Jmportance of Private Data: There are many unpub-
lic private data such as experiment results and hy-
potheses, which must be combined with public ones.

To manage such data, many new features are indis-
pensable as next generation database and knowledge-
base systems. The followings are representative:

¢ Processing Ambiguity: For ambiguous data, there are
many special features. For example, in biological se-
quence data, such as homology search for sequence
data is required.

& Features Depending on Applications: For efficient pro-
cessing, there are many user-definable features de-
pending on applications, such as special unification
and special constraint solver.

& Thoughi- Ezperiment Environment: [t is necessary
to correct and revise incomplete information in
databases. For the purpose, databases had better
provide a thought-experiment envirenment such as
abduction and conditional queries, as in Quzxore.

o Processing Time Sequence: As data cbtained by ex-
periments and cbservations have frequently a prop-
erty of time sequence, databases should suppart its
relatyed operations.

& Knowledge Discovery in Databases: It is very impor-
tant to abstract or discover new knowledge such as
rules from primary data, because primary data is
too huge in large-scaled applications. So knowledge
discovery in databases is indispensahble.

 [ser Interface: As many applications have graphical
data such as solid structure and image data, it is
indispensable to strengthen graphical user interface.

Through our experiences in databases and
knowledge-bases for knowledge information applica-
tions, I expect a heterogeneous cooperative knowledge-

base system as in Figure 3. In the fizure, there are

query facility
{ R N
guery facility-1 query facility-2

{problem sclver-1) (problem solver-2)

I I |

constraints (management by the same oid)

Figure 3: Integrated Management of Heterogeneous In-
formation

two kinds of heterogeneity: abstracted levels and dif-
feremces of data thmselves. According as such hetero-
geneity, many problem solvers are required. As they
are not separate data, such problem solvers should co-
operate to process a query. Such an architecture will
be commeon not only for scientific applications but also
multimedia databases, legal applications, and natural
language databases. Further, not to mention, we must
constder distributed computing environments.

7 Concluding Remarks

Databases have managed conventionally rather clear
aspects of the real world and contributed to the pro-
ductivity of many applications as in business and engi-
neering. However, according as extensions of databases
and development of various technologies, we have con-
fronted more difficult applications such as knowledge
information applications and scientific databases, We
cannot focus only on clear aspects from object domains
as fn the above applications, because it is difficult to
discriminate clear data from ‘dirty’ ones and we are
used to find a diamond in ashes. Further, complex
computing environments ask us to combine and utilize
various (bound) resources or problem solvers located in
distributed environments.

Our works on Kappa, Quzxots, and Helios® have
provided a perzpective as in the above, for next genera-
tion database and knowledge-base systems,

Acknowledgments

The author is grateful to all members who have and
had worked in Kaeppe, Qurrore, and Helios projects,

241 these software can he obtained by anonymouns fip:
ftp.icot.or.ip

47

and have discussed their research issues. He would
also like to acknowledge Kazmuhire Fuchi and Shunichi
Uchida, without whose encouragements the above three
projects would not have been succeeded in.

References

[Abiteboul and Grumbach 88] Serge Abiteboul and
Stephane Grumbach, “COL: A Logic-Based Lan-
guage for Complex Objects”, Proc. Int. Conf.
on Eztending Datebase Technology, in LNCS, 303,
Springer, 1988,

[Aiba and Hasegawa 92] Akira Aiba and Ryuzo
Hasegawa, “Constraint Logic Programming System:
CAL, GDOC, and their Constraint Selvers™, Proc.
Int. Conf. on Fifth Generation Computer Systems,
00T, Tokyo, June 1-5, 1992,

[Aiba et al 88] Akira Aiba, Ko Sakai, Yosuke Sate,
David Hawley and Ryuzo Hasegawa, “Constraint
Logic Programming Language CAL", Proc. Inter-
national Conference on Fifth Generation Computer
Systems (FGCS'88), ICOT, Tokyo, 1988,

[Aiba et af O4a] Akira Aiba, Kazumasa Yokota, and
Hiroshi Teuda, “Heterogeneous Distributed Coop-
erative Problem Sclving System Helios", Proe. Int.
Symp. on FGCS (FGCS'84), Dec. 13,14, 1994,

[Aiba et al 94b] Akira Aiba, Kazumasa Yokota, and
Hiroshi Tsuda, “Heterogeneous Distributed Cooper-
ative Problem Solving System Helios and Its Coop-
eration Mechanisms", Proc. FGOS'9Y Workshop on
Heterogeneous Cooperative Knowledge-Bases, Dec.
15,16, 1994,

[Ait-Kaci] Hassan Ait-Kaci, “An Algebraic Seman-
tics Approach to the Effective Resolution of Type
Equations”, Thesretical Computer Science, no.d3,
1086.

[Dadam et al 86] Peter Dadam, K. Kuespert, F. Ander-
sen, H. Balnken, K. Erbe, J. Guenauer, V. Lum,
Peter Pistor, amd G. Walch, "A DEMS Prototype
to Support Extended NF? Relations: An Integrated
View on Flat Tables and Hierarchies", Proc. ACM
SIGMOD International Conference on the Manage-
ment of Data (SIGMOD'36), 1986.

[Deshpande and Gucht 88] Anand Deshpande and Dirk
Van Gueht, “An Implementation for Nested Rela-
tional Databases”™, Proc. [4th International Confer-
ence on Very Large Data Boses {VLDE'88), 1988

[Gallaire et al 84] Hervé Gallaire, Jack Minker and
Lean-Marie Nicolas, “Logic and Databases: A
Deductive Approach”, ACM Computing Surveys,
vol.16, no.2, 1984

[Haninda et el 91] Hiromi Haniuda, Yukihiro Abiry,
and Nubuyoshi Miyazaki, “PHI: A Deductive
Database System"”, Proc. JEEE Pacific Rim Conf
on Communication, Computers, and Signal Process-
ing, May, 1001,

[Hirosawa ef al 93] Maloto Hirosawa, Reiko Tanaka,
and Masato Ishikewa, “Application of Deductive
Ohbject-Oriented Knowledge-Base to Genetic Infor-
mation Processing”, Proc. Int. Symp. on Next Gen-
eration Database Systems and Their Applications,
Fukuoka, Sep., 1093,

[Jaffar and Lassez 87] Jaxon Jaffar and Jean-Louis
Lassez, “Constraint Logic Programming”, Proc. the
14th ACM Symposium on Principle of Programming
Languages (POPL'8T), 1987,

[Kawamura ef ol 89] Moto Kawamura, Kazumasa
Yokota, and Atsusi Kanaegami, “An Overview of
& Knowledge-Base Mamagement System Happa®,
Journal of Japen Sociely of Artificial Intelligence,
vol.4, no.3, 1989, (in Japanese)

[Kawamura et al 52) Moto Kawamura, Hireyuki Sato,
Kazutomo Naganuma, and Kazumasa Yokota,
“Parallel Database Management System: Kappa-I,
Proe. International Conference on Fifth Generation
Clomputer Systems (FGFC5'92), ICOT, Tokyo, June
1-5, 1992,

[Kawamura and Kawamura 34] Moto Kawamura and
Toru Kawamura, “Parallel Database Management
Systemn: Kappea", Proe. International Conference
on Fifth Generation Computer Systems fFGG’S’E?‘;}
ICOT, Tokyo, Dec. 13,14, 1994,

[Kifer and Lausen 80] Michael Kifer and Georg Lausen,
“F-Logie — A Higher Order Language for Reason-
ing about Objects, Inheritance, and Schema”, Proc.
ACM SIGMOD Int. Conf on Management of Data,
pp.134-146, Portland, June, 1989,

[Kiyama and Yolkota 88] Minoru HKiyama and Kazu-
masa Yokota, “"Query Evaluation in Nested Dedue-
tive Databases", Proc. SIGDBES of IP5J, Mar.15,
1928, (in Japanese)

[Kurogumi 92] Takashi Kurozumi, "Overview of the
Ten Years of the FGQC8 Project”, Proc. Inierno-
tional Conference on Fifth Generation Computer
Systems (FFO592), ICOT, Tokyo, June 1-5, 1992,

[Makinouchi 77] Akifumi Makinouchi, “A Consid-
eration on Normal Form of Not-Necessarily-
MNormalized Relation in the Relational Data
Maodel", Proc. Srd International Conference on Very
Large Data Bases (VLDE'77), 1977,

[Miller 86] Dale Miller, “A Theory of Modules for
Logic Programming”, Proc. Iniernational Sympe-
sium on Logic Programming (SLP'86), 1986.

[Mivazaki et ol 89] Nobuyoshi Miyazaki, Kazumasa
Yokota, Hiromi Haniuda, and Hidenori Itoh, “Horn
Clanse Transformation by Restrictor in Deduc-
tive Databases”, Journal of Information Processing,
vol.12, ne.3, 1989,

[Mukai 88] Kuniaki Mukai, “Partially Specified Term
in Logic Programming for Linguistic Analysis”,
Proc. Int. Conf. on Fifth Generation Computer Sys-
tems, ICOT, Tokyo, Nov.28-Dec. 2, 1988,

[Mishioka et al 93] Toshihire Nishicka, Rye Ojima, Hi-
roshi Tsuda, and Kasumasa Yolkota, “Procedu-
ral Semanties of a DOOD Programming Language
ChirvoTe®, Proe. Joint Workshep of SIGDES of
IPSJ and SIGDE of IEICE (EDWIN), July 21-23,
1993. (in Japanese)

[Mishioka et al 84] Toshihiro Nishioka, Kazumasa
Yokota, Chie Takahashi, and Satoshi Tojo, "Con-
structing a Legal Knowledge-base with Partial In-
formation”, Proc. ECAI'S4 Workshep on Artifieial
Normative Reasoning, Amsterdam, Aug. 8, 1994,

[Monterio and Porto 89) Luis Monteric and Antdnio
Porto, “Contextual Logic Programming', The
International . Conference on Logic Programming
(ICLP’89), 1989.

[Monterio and Porto 80) Luis Monterie and Antdénio
Porto, *A Transformational View of Inheritance
in Programming”, The Internafional Conference on
Logic Programming (ICLP’94), 1990.

[Schk and Weikum 86] HansJérg Schek and G.
Weikum, “DASDBS: Concepts and Architecture of
a Database System for Advanced Applications”
Tech. Univ. of Darmstadt, TR, DVSI-1986-T1, 1936

[Scholl and Schk 87] Marc H. Scholl and Hans-Jérg
Schek, (eds.), Theory ond Applications of Nested
Relations and Complez Objects - An Internationel
Weorkshop, Workshop Material, 1987

[Starkie 57] Walter Starkie (tr. and ed.), “Don Quixote
of La Mancha by Miguel de Cervantes Saavedra”, A
Mentor Book, Macmillan, 1957,

[Takahashi and Yokota 90] Chie Takahashi and Kazu-
masa Yokota, *A Deductive Database with Hierar-
chical Structure”, Proc. Joint Workshop of SIGDBS
of IPSJ and SIGDE of IEICE, July, 1990. (in
Japanese)

[Takahashi and Yokota 95) Chie Takahashi and Kazu-
masa Yokota, “Constructing a Legal Database on
Chitxore®, Proc, the Sixth Australasian Database
Cenference (ADC'95), Adelaide, Australia, Jan.
30,31, 1995,

[Tanaka B1] Hidetoshi Tanaka, “Protein Function
Database as a Deductive and Object-Oriented
Database®, Proe. International Conference Database
and Erpert Applications {DEXA'81), Berlin, Aug,,
19491,

[Tanaka 92] Hidetoshi Tanaka, “Integrated System for
Protein Information Processing”, Proc. Inferna-
tional Conference on Fifth Generation Computer
Systems (FGCS'92), I1COT, Tokyo, June 1-3, 1892,

[Tojo and Yasukawa 92 Satoshi Tojo and Hideki Ya-
sukawsa, “Situated Inference of Temporal Infor-
matien”, Proc, International Conference on Fifth
Generation Computer Systems (FGCS'9E), 1C0T,
Tokyo, June 1-5, 19932,

[Tojo ef al 93] Sotoshi Tojo, Hiroshi Tsuda, Hideki Ya-
sukawsa, Hazumasa Yokota, and Yukihiro Morita,
"zxere a8 8 Tool for Natural Language Process-
ing", Proe. §th Imternotional Conference on Tools
with Artificial Intelligence (TAI'S%), Boston, USA,
MNowv, 811, 1993.

[Tojo et al 95] Sateshi Toje, Stephen T.C. Weng, Kat-
sumi Nitta, and Kazumasa Yokota, “Formalization
of Legal Reasoning Based on Situation Theory™,
Transactions of Information Processing Society of
Japan, 1695, (in Japaness)

[Tsuda and Yokota 94] Hireshi Tsuda and Kazumasa
Yokota, “A Knowledge Representation Language
Qurrore”, Proc. Int. Symp. on FGCS {FGCS'94),
Dec. 13,14, 1084,

[Tsukamoto et af 91] Masahiko Tsukamoto, Shoijiro
Nishio, and Mitsuhiko Fujio, “DOT: A Term Repre-
sentation Using DOT Algebra for Knowledge Rep-
resentation™, Proc. #nd International Conference on
Deductive Object-Oriented Databases {DO0D'91),
Munich, 1991,

[Uehida et ol 93] Shunichi Uchida, Ryuso Hasegawa,
Kazumasa Yokota, Takashi Chikayama, Katsumi
Nitta, and Aldra Aiba, “Outline of the FGCS
Follow-on Project", New Generation Computing,
vol.11, pp. 217-222, 1963,

[Ullman 87] J.D. Ullman, “Database Theory — Past
and Future," FProc. the Sirth ACM Symposium on
Principles of Database Sysiems, 1987,

49

[Verso 86] Jules Verso, "VERSO: A Data Base Ma-
chine Based on Non INF Relations®, INRIA-TR,
523, 1986

[Yasukawa and Yokota 90] Hideki Yasukawa and Kazu-
masa Yokota, “Labeled Graphs as Semantics of
Objects”, Proc. Joint Workshop of SIGDBS and
SIGAT of IPSJ, Nov., 1990,

[Yasukawa ef ol 92] Hideki Yasukawa , Hiroshi Tsuda,
and Kasumasa Yokota, “Objects, Properties, and
Modules iIn Quzxore”, Proc. Iniernational Con-
ference on Fiffh Generation Computer Systerns
{FGC5'92), ICOT, Tokye, June 1-5, 1992,

[Yokota 88] Kazumasa Yokota, “Deductive Approach
for Nested Relations”, Programming of Future Gen-
eration Computers 1, eds. by K. Fuchi and L. Kott,
North-Holland, 1088,

[Yokota et al 88] Kasumasa Yokota, Moto Kawamura,
and Atsusi Kansegami, “Overview of the Knowl-
edge Base Management System (KAFPPA)", Proc
International Conference on Fifth Generation Com-
puter Systems (FGOS'88), ICOT, Tokyo, 1988,

[Yokota and Nishio 8] Kasumasa Yokota and She-
jiro Nishio, "“Towards Integration of Deductive
Databases and Object-Oriented Databases: A Lim-
ited Survey”, Advanced Database System Sympo-
sium, Dec. T-8, 1989,

[Yokota and Nishio 30] Kazumasa Yeketa and She-
jiro Nishio, “Deductive and Object-Oriented
Databases", Johe Shori, vol3l, no.2, 1980. (in
Japanese)

[Yokota and Yasnkawa 93]
Kazumasa Yokota and Hideki Yasukawa, “Towards
an Integrated Knowledge-Base Management System
— Overview of R&D on Databases and Knowledge-
Bases in the FGUS Project”, Proc. Infernational
Conference on Fifth Generation Computer Systems
(FGCS'92), ICOT, Tokyo, June 1-5, 1992.

[Yokota 92) Kasumasa Yokota, “Knowledge Informa-
tion Processing in Qurxore", Proc. SIGDE of TE-
ICE, May 22, 1992,

[Yokota ef ol 93] Kazsumasa Yokota, Hiroshi Tsuda,
and Yukihiro Merita, "Specific Features of a De-
ductive Object-Oriented Database Language Qur
xoTe", Proe. ACM SIGMOD 83 Workshop on Com-
bining Declarative and Objecl-Oriented Databases
(WCDOOD), Washington DC, USA, May 29, 1993.

[Yokota and Shibasald 93] Kazumasa Yokota and
Makoto Shibasaki, “Can Databases Predict Legal
Judgments? Proc. Joint Workshop of SIGDBS of

a0

IPSJ and SIGDE of IEICE (EDWIN), July 21-23,
1993, (in Japanese)

[Yokota and Aiba 93] Kazumasa Yokota and Akira
Aiba, “A New Framework of Very Large Knowledge
Bases", Knowledge Building and Knowledge Shar-
ing, eds K. Fuchi and T. Yokoi, Ohmsha and I0S
Press, 1994,

[Vokota et ol 94] Kazumasa Yoketa, Toshihiro Nish-
toka, Hiroshi Tsuda, and Satoshi Tojo, “CQuery Pro-
cessing for Partial Information Databases in Quz
xoTe”, Proc. 6th IEEE Infernational Conference on
Tools with Artificial Intelligence (TAI'94), New Or-
leans, Nov. §-9, 1994,

[Yokota 94] Kazumasa Yokota, “Features of Multi-
Agent Based Multidatabases", Proe. Joint Work-
shop of SIGDBS of IPSJ and SIGDE of IEICE,
July 20-22, 1954, (in Japanese)

[Yokota and Miyazaki 4]
Kazumasa Yokota and Nobuyeshi Miyazaki, New
Database Theory — From Relations to Deduetive
Obgeet- Oriented Databses, Kyoritsu-Shuppan, 1904,
{in Japanese)

[Zaniclo B8] Carle Zaniolo, "Design and Implementa-
tion of a Logic Based Languages for Data Intensive
Applications”, FProc. International Conference and
Symposium on Logic Programming (LP'88), 1888,

