80

Proc. of FGCS ‘84, ICOT, Tokyo, December 1994

The Evaluation of Parallel Inference Machines

Kouichi KUMON and Hiroyoshi HATAZAWA
Institute for New Generation Computer Technology
4-28, Mita 1-Chome, Minatoku, Tokyo 108, JAPAN

{kumon,f-hataza}@icot.or.jp

Abstract

In this paper, we study the performance of various im-
plementations of KL1 processing systems, including the
parallel inference machine (PIM) system and the KLIC
systemn. PIM systems are built on dedicated parallel
hardware developed in the FGCS project for efficient
KLl execution, while the KLIC aystem is KL1 ported
to run on UNIX workstations. This difference makes
the design policies of both systems quite different neces-
sitating a guantitative analysis. KL1 is a parallel logic
language running on hardware ranging from a single pro-
cessor to several hundred processors. Thus performance
measurements must cover this range.

Firstly we use a set of small benchmark programs for
single processor performance. It includes & maive re-
verse program to compare and characterize those sys-
termns. And we take a close look at the execution of in-
structions in both the PIM KL1 processing system and
the KLIC system. The PIM/p system is a convenient
platform because both the conventional KL1 system and
the sequential core of the KLIC system are available on
it, and thus we can compare both implementations on
the same base. We also compare both system using the
life program, which shows guite a different aspect to
the append execution.

Then, we evaluate the cluster performance for anto-
matic load balancing. Some PIM models have a cluster
structure, in which processors are connected by a com-
mon bus and share memery. In parallel processing in
a cluster, automatic load balancing is available to re-
duce the burden of writing lead distribution code. It
is thus meaningful to investigate load balancing mecha-
nisms and measure the speed-up in paralle]l performance.
To do this, we make execution models for a very small
program, examine the parallel performance, and esti-
mate the distribution overhead in the cluster,

Finally, we investigate the distributed performance
of the systems by using simple communication de-
pendent benchmark programs. The PIM models use
& dedicated network for communication between clus-
ters/nodes. However as the KLIC system uses PV
for message passing primitives, we found that the per-
formance of KLIC wholly depends on the PVIM perfor-
mance.

1 Introduction

ICOT has built five models of PIM, which have been used
to develop application programs in the FGCS project.
In the post-FGCS project, ICOT has been developing
the KLIC system, which makes these application pre-
grams available on commercially-available workstations
and parallel machines. These two KL1 processing sys-
tems differ in their design policies, and using the same
scale for these two systems we can study their behavior,

In this paper, we measure and evaluate the perfor-
mance of the five PIM models and the KLIC system with
benchmark programs.) _

In Section 2, we briefly overview the five PIM models
and the KLIC system, and in Section 3 we measure the
single processor performance with a number of bench-
mark programs. In Section 4, we investigate the distribu-
tion strategy of the cluster-configured PIM and the char-
acteristics of the strategy by making execution models.
Of course, only cluster-configured PIMs are measured.
In Section 5 we compare communication overhead inside
a cluster and between clusters.

2 PIMs and KLIC

As we have already mentioned, the five PIM models have
different architectures.

2.1 Configurations

First, we briefly introduce the features of each PIM
model. PIM/m and the other PIMs (PIM/e, PIM/k,
PIM/i and PIM/p) use the different base of implemen-
tation. PIM/m inherits its implementation from Multi-
P51, however, the other PIMs use the Virtual PIM[5]
(VPIM)} as a prototype KL1 processing system, but
Multi-PSI and PIM /m use their own implementation for
KL1 processing.

PIM/m[8] PIM/m iz a revised model of the Multi-
P8I machine, all processing elements are connected
only by inter-processor networks; neither Multi-
P31 nor PIM/m has shared memory. Memory
can be safely accessed without implementing exclu-
sive operations, resulting in faster system perfor-

mance. Actually, the single processor performance
of PIM/m is the fastest among the FIMs. PIM/m
can have & maximum of 256PEs, The cycle time of
the PIM,/m is 65ns.

PIM/p[6] The PIM/p system has the largest configu-
ration among the PIMs {up to 512PEs). Eight pro-
cessors constitute a cluster using Ilineis type snoop
eaches. The processor’s eyele time is 80ns. The clus-
ters are connected by a hyper-cube network with a
worm-hole routing facility. On the PIM/p hardware,
the KLIC aystem sequential core is also available,
As we run the KLIC system on the bare hardware,
very reliable measurements are available without the
interference of interrups or virfual memory manage-
ment. This makes a comparison between the con-
ventional KL1 system and the KLIC system easier.
We use the KLIC system version 1.511 and gee-
2.6.0 C-compiler customized to the PIM/p cross-
compilation environment for measurement. We call
the KLIC system on PIM/p as KLIC/p.

PIM/i[10] The processing element of PIM/i uses LIW
instruction sets, and up to two instructions are ex-
ecuted simultanecusly in every cycle, The cycle
time is 160ns. The PIM/i also has a cluster struc-
ture from eight processors with write broadeast type
snoop caches. PIM/1 lacks network connection facil-
ities, consequently an eight processor system is the
maximum configuration.

PIM/k[10] In the PIM/k system, four PEs of PIM/k
constitute a mini-cluster. Each PE has a first-level
cache and shares a common bus, and four mini-
clusters are connected by a secondary level bus with
secondary caches. A global memaory is attached to
the secondary bus., Thus, all PEs of the PIM/k sys-
tem can access any data directly by a global address.

PIM /e[T] The PIM /e cluster consists of eight process-
ing elements, cluster controller and shared memory.
The cycle time of the machine iz 60ns. Totally 32
clusters are connected with a cross-bar network to
reduce network latency.

KLIC{3][1] KLIC is not a hardware but a software im-
plementation for the UNIX environment., A KL1
program is compiled into C source code, then a
C-compiler compiles it to a load medule. In the
sequential performance measurement, we use both
the Sparc Station 10! and the PIM/p hardware®
as execution environments., [n the distributed svs-
tem measurement, we additionally use a SpareCen-
ter 2000%. Currently KL1 features are not fully im-

IThe clock speed is 36MHz and the main memeory size is 540

2The clock spred is 12.5MHz and the main memory size is 2560
bytes.
*The clock speed is 40MHz, and the memory size is 10 hyte.

81

plemented on KLIC, and so some of the benchmark
programs do not run on KLIC.

All PIMs except PIM/m use the Virtual PIM [VPIM)[5]
written in PSL (PIM Specification descriptive Language)
as their abstract processing system. This P3SL represen-
tation is translated to each PIM architecture by the PSL
compiler, and thus all VPIM based PIM use the same
processing mechanisms,

2.2 PIM and KLIC Design Scheme

There is a major difference in the design scheme between
the PIM processing systems and the KLIC system. Each
PIM system uses dedicated processors designed for effi-
cient execution of KL1 as follows:

o All data have both a value part and a tag part. Eight
hits are used for the tag part, and thus, up to 256
different dats types can be represented. One of the
tag bits is used to represent the MBRB status, 46
of the rest 128 types are used in the system. In
the PIM processor, testing a tag value and jump on
the result can be executed in one instruction using
dedicated hardware.

e [n the MRB management, propagation of the MAEB
status according te pointer dereferencing is needed.
With a dedicated instruction, this MRB operation
requires no additional everhead.

e KL langnage has no type declaration, and so dy-
namic data type checking is frequently needed and
execution may differ depending on the types. Al-
though there are many combinations of data type,
actual execution is limited to a small portion of
the combinations. Therefore, to reduce the static
code size, it is helpful to provide a low-overhead
subroutine-call mechanism. TUsually, subroutines
provide commeon operations of the KL1 processing
system. The PIM/m system uses a microcode ar-
chitecture and the PIM/p system uses a macro
instruetion mechanism for this purpose.

» The cluster-configured PIMs have an explicit lock-
ing/unlocking memory operation, unlike other con-
ventional exclusive instructions such as compare-
and-swap or test-and-set. This makes various ex-
clusive operations feasible.

On the other hand, the main feature of the KLIC sys-
tem is the pursuit of both portability and performance
using a high-performance general-purpose processor and
an optimizging C-compiler. Therefore, a tag data may use
only the two bits which are not used for word address-
ing in byte-addressable machines. To check and jump on
the tag data, an instruction sequence is needed, such as
a logical-and followed by a comparison and a conditional
jump instruction.

2.3 Garbage Collector

In the design of the garbage collector (GC), there is
also a distinet difference between both systems. In all
PIMs, the Multiple Reference Bit (MRB)[2] is employed
to reduce memory consumption during reduction, and
only when un-cellected garbage fillup the heap, a copy-
ing type GO is invoked. Thus, if the MRE scheme can
collect most of the garbage, the used heap area does not
expand, hence, no copying-GC is invoked.

On the other hand, the KLIC system does not col-
lect any garbage on the fly, because the tag bits have
no reom to contain an MREB bit, and without special
hardware support to manipulate the MRE operations,
the performance would be severely degraded. Conse-
quently, all garbage must be collected by a stop and
copy type GC. Unlike in PIM systems, the UNIX maulti-
processing and virtual memory system prevent the KLIC
system from using the physical memory directly. Hence,
the KLIC system incrementally expands its heap when
garbage cannot be sufficiently reclaimed. Thus, the fi-
nal heap size and the number of GCs vary unexpectedly
depending on execution conditions, such as input data.
Therefore, performance of the KLIC system depends on
the initial heap size. In the following measurements, we
used the default initial heap size (= 24K words) for both
the Sparc Station and the PIM,/p KLIC system. In ad-
dition, we also measured the performance at 10M word
heap settings in the PIM,/p KLIC system. This value is
almost equivalent to the available heap size in the con-
ventional PIM/p KL1 processing system.

3 Single Processor Performance

In this section, we compare the single processor perfor-
mance of various systems, using a set of benchmark pro-
grams.

3.1 Benchmark Programs

The following benchmark programs have been used to
improve the performance of the PIM/p system, and so,
the exeeution mechanisms of the programs are already
well understond. A beief sutline is given here:

Naive reverse Reverses a given list by repeatedly call-
ing append, thus the performance of this program
reflects the performance of append itself. The num-
ber of total reductions in this program is linear with
the square of the size of input list while the number
of active cells is proportional to the size.

Life A variation of a life-game program. This program
consists of a 38 by 38 torus network. Fach node
connects to its adjacent four nodes and obtains their
states on every cycle. Then the node calculates its
next state and sends it to the four neighbors. This

tight communication between adjacent nodes pre-
vents each node from continuing to run more than
two reductions. The source program size is about
200 lines.

Puzl5d A solver for 2 well known 15-puzzle. The IDAF
algorithm is used to find the minimum tuin sequence
to the initial pattern. The souree program size is
about 1,000 lines.

Pento A solver for a well known pieces packing puzzle.
The souree program size is about 1,000 lines. This
program does not run on the KLIC system, because
of the semantic difference of vector and functor in
KLIC.

Bpl00x100 A sclver for finding the best path of a two
dimensional mesh network. The distance betwesn
two adjacent nodes are randomly generated, The
source program size is about 1,500 lines. This pro-
gram does not run on the KLIC system, because
KLIC does not support strings with 16-bit elements.

Waltz The program is a revised version for KL1 by E.
Tick. The source program size is about 200 lines,

Ngueen N-queen solver. It generates all the solutions
of N-queen programs. To investigate different search
trees, it reproduces the current environment by us-
ing append, diagonal check is done by arithmetic
caleulation. The source program size is about 35

. lines.

Zebra A constraint solver written by E. Tick. The

source program size is about 200 lines.

Puzzle A solver for a 3-Dimensional pieces packing pus-
ale, written by E.Tick. The source program size is
about 160 lines.

3.2 Measurement resulis

Firstly we show the append performance of each system.
Historically, append execution speed has been frequently
used to demonstrate the system performance. We will
look at its detailed execution in Section3.3.

Table 1 shows the append Reductions Per Second, or
RPS, in seven configurations. To observe the influence of
cache miss-hit, we use 1,500 element and 5,000 element
liats.

The heap size setting of the KLIC system directly af-
fects the performance, thus it is difficult to state the
KLIC performance. Too small a heap size decreases the
performanee due to GO overheads, too large a heap size
also decreases performance due to cache miss hit penalty.
Furthermore, UNIX related overheads, such as for virtual
memory management or task switching, malke the result
obscure. By using the KLIC system on PIM /p, we can be
free from these factors. Therefore, the KLIC/p system

Table 1: Append RPS on various systems

clock || nrevl300 | mrevi000 | Hatio
System (ns) || (RPSx10%) | (RPSx10%)
PIM/m i GO0 411 .69
PIM/p &0 305 281 92
PIM/c 6 55 56| 102
PIM/i 240 G5 63 1.00
PIM/k 100 TG 76 1.00
KLICTH 28 1,151 1,173 | L0l
KLIC/p 80 225 238 | 1.06
KLIC/p!® 20 405 386 | 0.95

(1) On 8810, time is measured by CP1T time.
(2] The initial heap size is 10 mega word.

50%1

mm nrevis00

Life Pento ?uaanﬁ -
Puzi5 bpi0x10 puzzle waltz

Figure 1: Dynamic Behavior of the Benchmark Pmérams

is better for observing the influence of heap settings on
performance. We use a defanlt heap size setting for the
KLIC/p system, and also we use the size setting equal
te the heap size of PIM /p system.

The distinct performance difference between short and
long list reverse exists on the PIM/m system. The cache
gize of PIM /m is 4K words, it cannot hold 5,000 element
lists, resulting in performance degradation.

Using append as a standard measure, we can mea-
sure the systern performance to some extent. In KL1
processing, the execution patterns found in append can
be viewed as stream creation and stream consumption.
Consequently append employs some features of the KL1
language. But the other benchmark programs, which
have more complicated structures and are closer to ac-
tual application programs, show different aspects of the
KL1 processing systems.

To show the difference between append and the other
programs, we classified the execution into three types,
Erecute, Proceed and Suspension. The raties of these
types are shown in Figure 1. All processing systems we
measured in this experiment use last goal eptimization,
and thus Erecute is the lightest operation,; and Proceed is
the next. Both Execute and Proceed actions are executed
at the end of reduction, the portion over the 100% repre-

BT,
mesnd 117 waltz alaw 117 nuzl 506 fi sl 1= 10

Figure 2: Normalized Reduction Time

sents the suspension rate relative to the reduction counts.
If a predicate body has more than one goal, like append,
all reductions are executed by Erecute. In KL1, suspen-
gion and resumption realize concurrency, which is one of
the main features of KL1. The append RPS measure-
ment does not reflect this feature at all, becavse append
execution does not cause any suspensions/resumptions.

In most of programs, one reduction requires a much
longer time than append. Figure 2 shows the average
reduction time of various programs normalized to the
figures for append.

Table 3 shows the performance comparison of PIM/p
and KLIC/p with 2 10M word heap for various programs.
We can zee that KLIC has almosat the same performance
to the native KL1 processing system, except for the life
program. We discuss the life program in Section 3.4.

3.3 Append Code Analysis

In this section, we study the key technique of the KLIC
system to obtain its performance without any hardware
support for the tag operations. To make the discussion
more concrete, we use append execution trace on both
PIM/p and KLIC/p.

Figure 3 and 4 show the pseudo C-code based on
append execution trace on PIM/p and KLIC/p, respec-
tively. In these figures, each line corresponds to a ma-
chine instruction. In the KLIC/p code, a total of 21 in-
structions are executed in the main cycle of the append.
The number is same as that for a Sparc Station or a
DEC Alpha, while the PIM/p KL1 system executes 28
instructions. To investigate the reasen, we classify those
instructions by function.

Table 2 shows the results. From these figures, we
found:

& Over 20% of the total instructions are MRB related
instructions.

® The locking/unlocking instructions, which are

append(x, ¥, =)
{

top:

if {is_ref(x)) { typechlk
t = x; x = deref(x); deref
if (is_undef(x)) goto susp; typachk
if (tis_mrb_en(x)) { MEBE(ge)
#t = flist; flist = ¢;} HRE (ge)
it (is_ref(x)) goto ...; } typechk
if (tis_list(x)} gote ...; typechk
d = edrix); raad{cdr)
if (is_mrb_oni{x}) mew_lietix); MHE (ge)
if (empty(flist)) make_ flist(); allec
oew. W = fliat; flist = *new_w; allec
edr(x) = new_w: writelcdr)
snew_w = UNBOUND; MRE (penalty)
{ /* mcall wify_bound{z, x) =/ (meall-penalty)
it (is_ref(z)) { typechk
workl = z; z = deref{z); dereaf
if (lis_undef(z)) goto ...;} typechi
work? = leck_read({workl); axclusive
if {is_mrb_om(work2)) {...}; HEH
if {!is_undef{work2})} gote ...; exclusive
£ = x; redundant
unleck(*worki} = x;} write{unify}
x = d; HAB(penalty}
£ = new_u; move
reds = shoen
reda - shoen
23 shoen
if (reds > 0 k& f=slit_chk{)) gote tep; slitchkiloop
}
Figure 3: Pseudo C-code of append on PIM/p
append(x, ¥, =)
i
top:
tag = tagof(x); typechk
if (is_list_tag(tag)) typechi
gote list: typechk
delay_slot{redundant)
list:new word = allocp; alloc
*allocp = allocp; write{cdr)
work = car(x); read{car}
#(allocptl) = work; writa(car)
new_cons = mkcoms{allocp) allec
tag = tagof(z) typachi
allocp += 2; alloc
it (lis_ref(tag)) gote ..; typechk
work = =z; deref
if (z == weork) typechk
gEoto L; typechk
Li#z = pew_cons; write{unify)
x = edrix); read{ecdr)
2 = ned_word; move
work = heaplimit: slitchk
if {allocp < work) alitchk
goto top; slitchk

}

Figure 4: Pseudo C-code of append on KLIC/p

Table 2: Classification of Executed Instructions

Category PIM/p KLIC/p
Type-check T
MRE
Write
SHOEN
Exclusive
Deref
Allocation
BRead
Slit-check
Maove
Other
Total

[0

B3 bif b e D B BD OO B O O

VIV LA A AV VVAYA
e E] E T YR

=]
(=51

needed {o support VPIM parallel execution in a clus-
ter, form a rather small portion.

The SHOEN management oceupies & small but non-

negligible portion.

» PIM/p checks the data tags 6 times with & instruc-

tions. However, KLIC/p checks only 3 times with 7
instructions.

The MRB GC[2] can prevent greedy memeory con-
sumption, however, it must pay the following penalties:

Dereference and Type-checking The PIM/p system

needs only one instruction to check a tag, while the
KLIC/p system requires two or more instructions.
However, the total number of tag checking instruc-
tions is nearly the same as on the PIM/p system.
That is because the variable cells must be kept out-
side the structure to enable the structure to be col-
lected on the fly. In execution of append on the
PIM/p, most of the cons structures have an un-
defined variable in the cdr part. Hence, one more
dereference and another type checking are needed.

Extra Move Instruction In the append code, a cons

structure is reclaimed prior to the use of its contents
by the MEB GC. This requires the additional move
instructions to backup the contents into a register.

Free List Management The collected cells are man-

aged in a free list, and cells are always allocated from
the list. Therefore an empty list checking instruc-
tion iz demanded before every memeory allocation.

GC Cost The cost of MRB GC is almost linear with

heap consumption, and roughly linear with the num-
ber of reductions. However, the copying GC cost is
linear with the number of active cells. The MRE GC
performs better when the heap is almost full with
active cells, Obwviously, our benchmark programs do
not meet this criteria, and so the MRB GC is not
suitable.

From above observation, we conclude that the mem-
ory management scheme of KLIC is well suited for our
benchmark programs.

3.4 Life Program Execution Analysis

The life program shows an interesting contrast with the
append program. On the KLIC system, most programs
rin almost the same as, sometimes faster than, on the
PIM system. The life program is an exeeption. The
benchmark result shows that the KLIC/p system runs
four times slower than the PIM system, and if the defanli
heap size is used, the performance is down to 1/7 of
the PIM performance, Even if we use KLIC on a Spare
Station, the performance is still inferior to the PIM/p
KL system. This performance deterioration is explained
as follows:

Strong dependency among goals results in the very
frequent suspensions. In the KLIC system, the goal
records and suspension structure are allocated to
the heap, and only a garbage collector can reclaim
it, while the PIM systems reclaim goal records when
it iz dequened from the goal queue.

Usually, these structures are several times larger
than a cons cell used for a stream. Frequent sus-
pension accelerates heap consumption, and causes
continnal invocations of the garbage collector which
severely reduces the performance. By locking into
the performance of KLIC/p with default and 10
mega word heap size, we conclude that a small heap
size may cut down performance to about half,

& KLIC expands freguently-executed code inline to
obtain its performance while the less frequently exe-
cuted code is stuffed into library routines. To make
code small and simple, the body of the KLIC code
has only one exception handler.

Therefore, when an exception occurs such as a
garbage collection request or & goal suspension, the
library routine must analyze the reason for the ex-
ception, and then the corresponding processing be-
ging. Usually, this makes the code smaller and exe-
cution faster, but these techniques make suspension
much slower.

4 Cluster Performance

In this section, we argue the parallsl execution perfor-
mance of the cluster-configured PIM. Benchmarking of
parailel processing on shared memory configuration or
distributed memory configuration is very difficult. One
reason is that the execution mechanism of the parallel
environment differs for each system. Therefore, simple
measurement of execution time may mislead the arpgu-
ments.

85

Table 3: Relative Machine Performance

System nrey 3000 life | mm | pascal sermni
PIM 44458 11458 | 13517 | 8546 10892
PIM/p 1 1 1 1 i
PIM/m 1.46 143 | 1.72 1.73 1.32
PIM /e 0.20 0.07 | 0.0% .07 0.07
PIM/E 0.27 0,33 | 038 0.8 0.34
PIM/i 0.25 0.30 | 0.26 0.28 0.16
ELIC 4.17 0.60 | 433 | 554 1.03
KLIC/p 185 12 | 0.78 .52 .45
ELIC/p!® 1.37 .28 | 1.05 0.83 .74
[System nqueenill) | qlay(ll) | waliz | zcbra | pazl5(s)
PIM/p #5786 | #engd | eesv | svEe | 1s1o0s
FIM/p 1 1 1 1 1
PIM 1.74 147 | 2.4 1.61 1.48
PIM/c 0.07| 032 0056 0.05 0.05
PIM/k 0.36 0.3 | 0.36 0.29 0.45
PIM i 0.27 0.2 | 031 0.12 0.13
KLIC 3.5 234 | 395 2,25 2.78
KLIC/p 0.72 053 | 0.70 | 0.53 0.53
KLIG /pt#! 1.24 1.18 | 087 | 120 0.78
talicized number shows absolute execution time

on PIN/p in milli-second.

{1} On 8510, time 1s measured by CPU time.
(2) The initial heap size is 10 mega words,

To avoid the pitfall, first we try to build an execu-
tion model for a program, and then measure the parallel
speedup of automatic load distribution on the PIM sys-
tem. ’

4.1 Benchmark Program for Parallel
Execution in Cluster

Good benchmark programs should cover a wide variety of
application program parallelism. Parallelism is classified
into three types:

OR parallelism: Processes consist of a process tree,
and each process can be executed independently
from the other processes. A program with this par-
allelism can easily obtain pood parallel spesdup even
on loosely coupled parallel processors. The N-queen
problem is a classic example.

Stream parallelism: Data generator processes and
consumer processes are connected by streams, this
parallelism is called as pipeline-parallelism also.
The consumer is waiting until data is sent by & gen-
erator. It is generally difficult to obtain good per-
formance on this type of parallel execution. Some
resource control may be needed to prevent a gen-
erator runaway or a consumer data starvation. A
typical example iz a sieve prime number genera-
taor.

Parallel message passing parallelism: This type re-
sembles stream parallelism, but dependency be-
tween generators and consumers may be bi-
directional, resulting in efficient parallel execution
mere difficult. The life program is a simple exam-
ple.

goll):= N0, Ni:=H-1 | go(N1), gelNi).
go(l) = N=:= | true.

Figure 5: Simple Or-Parallel Program TP1

Unfortunately, making & general model available for all
these types is a difficult task. Currently we have made
a model for a simple and very small program. In the
following discussion, we use the very small OR-parallel
program TP1 shown in Figure 5. In the TP1 program,
each goal spawns two child goals until the depth reaches
. This node hierarchy constitutes a binary tres in which
a total of 2¥+1 goals exist. In each branch, a goal can ex-
ecute independently without any communication to goals
in other branches.

First we make execution models of the program for
PIM/k, PIM/c and PIM/p. Then, we show the TP1
benchmark results, and finally we estimate the distri-
bution overhead of the PIM systems from the results.,

4.2 Load Distribution Models

To discuss the parallel performance precisely, it is im-
portant to make an execution model of the program for
a specific execution environment.

The processing system of cluster-structured PIMs de-
rives from the same code, the VPIM code. However, per-
formance tuning on each PIM systern makes the system
slightly different. Because of this modification to the ex-
ecution mechanism, models must be built independently.

The load balancing method of the VPIM based pro-
cessor is as follows:

Original VPIM Load Distribution In the PIM/c
and the PIM/k implementation, each processor has
one goal queue which is accessed only by the proces-
sor. Therefore, no exclusive operation is needed to
manipulate it. The load distribution works as fol-
lows: When a processor becomes idle, it signals to
the busy processors to send a goal. Then, a busy
processor sends the goal next to the currently exe-
cuting goal, Thus, when no idle processors exist in
the cluster, no special operation for goal distribu-
tiem is needed, resulting in a low overhead in single
processor execution.

Modified VPIM Load Distribution In the PIM/p
implementation, each processor has two queues; a
local queue and a global quene. Enquening and de-
gueving goals are assigned only to the local queue,
which can contain up to two goals. Surplus goals
are swapped out to the global queue, which requires
expensive lock/unlock operation to protect from un-
expected operations by the other processars. The
local queue is prepared to reduce the overhead in
accessing the global goal quene. When a procesaor

becomes idle, it searches other global queves, and if
it finds a non-empty queue, it takes a goal for itself.

Now we can consider how the above difference affects
the parallel performance of TP1. We look at the two
processor case to make the problem simple, although it
iz feasible to extend this argument to more than two
processors.

In the following discussion, we assume the following
hypothesis:

1. All goal reductions take the same time (= T).

2. The busy processor gives to the idle processor the
next goal to execute in the goal queus which is man-
aged as a LIFOY. The goal sent requires § reduction
to reduce, Stochastic analysis shows that 7 is equal
to the depth of the initial tree N.

3. The initial goal requires 2%+ reductions to reduce.
In goal transferring, average (= N reductions task
is moved from the busy processor to the idle proces-
sor, and both sender/receiver processors must exe-
cute transferring overhead o.°

4. During execution, both processors must always ex-
ecute reductions or send/receive tasks. Thus, the
sum of the reduction-time and the distribution-time
is the same on both processors.

At first we analyze the PIM/c and the PIM/k imple-

mentation.

Execution Model for PIM/c and PIM/k The load
distribution overhead must be paid by both sending and
TECEIVINE Processors.

Initially, the busy processor has a total of 2¥*! tasks.
When a goal is transferred, NV - T tasks are moved from
the busy processor to the idle processor, and overhead o
is added to the both processors. If task transfer occurs
a total of d times, the task to be executed on both pro-
cessor becomes:

Busy processor executes: 2VPMT4 d.o—-d.N.T

d-o+d-N-T

From assumption (4), these execution times must be the
same, then we can solve for the number of distributions
d and aleo obtain the theoretical speedup ratio as:

2
T+0/(N-T)
ifo> N-T,ie. the goal transferring overhead is larger

than the average task contained in the transferred goal,
the speedup becomes less than 1.

“We should call it a goal stack instead of a goal gueue, but
historically we call it a goal quene.

8In the PTM /p system., the goal sending overhead is negligible
for the sender.

Idle processor executes:

speedup =

Table 4: Load Distribution Costs in Cluster

Distribution Costs{ps) | Equivalent Reductions
PIM/p 17~22 Frad
FIM,/c 230~2T5 14~16
PIM/k 94~116 9~11

Execution Model for PIM/p In the PIM/p system,
the goal distribution overhead for busy precessors is very
small. Thus, we can assume that the goal sending over-
head is added to the idle processor. Using a similar calcu-
lation, we obtain the theoretical speedup ratio for PIM/p

as!
1

1+4+of(N-T)

The spesdup is always greater than 1 regardless of the
transfersing overhead,

From the above two equations, we can say that if the
distribution overhead becomes relatively large, the origi-
nal VPIM method has inferior parallel performance to &
single processor performance, while the modified VPIM
method does not.

On the other hand, if the overhead is small enough, the
original method will perform better because no prepara-
tion for parallel execution, such as global queuing with
exclusive operations, is needed.

speedup = 1+

4.3 Cluster Performance

Measurement

We measure the execution time of TPL with & = 20 on
the three types of PIM. The result is shown in Figure 6.
The speedup is normalized to the speed of one processor.

T
ji

e

NN | [
‘I\‘\.' \

1 2 3 4 5 &6 7 &
Bium. of FE

Figure 6: Parallel Speedup Ratio

Table 4 shows the estimated overhead time o in the
above theoretical arguments calenlated from the bench-
mark results. Fguivalent reduction means the goal trans-
fer overhead measured in units of reduction time. The
PIM /p executes less expensive goal distributions for both
absolute timing and relative timing. The reason is:

* The VPIM method uses interruptions to start task
distribution, then the interrupted busy processor

87

must save the current status into a goal record and
then enqueue it. Usually, the interrupt handling
takes several times longer than a reduction of TP1,
resulting in large transfer overhead.

» The idle processor does not kmow which processor
currently has surplus goals. Therefore, it interrupts
all processors. However, to avoid a concentration of
goals, only cne processor is allowed to send a goal
to the idle processor. Thus, unnecessary interrupt
handling on other processor becomss a large distri-
bution overhead.

If automatic distribution does not select appropriate
goals to distribute, like the current PIM system, mak-
ing the distribution overhead less expensive is the first
thing, even though that may decrease single processor
performance.

5 Distributed System Perfor-
mance

The KL1 execution in a distributed parallel processor envi-
ronment differs from the execution in a eluster, because goal
destination in & program must be explicitly specified with
throw goal pragma.

The major factors of the distributed system performance

are;
The time needed to throw goal
& The time to send freceive data

= The overhead for managing meta-program facilities such
a5 & program termination detection

In 2 cluster, sending/receiving data is realized by passing
the address pointer to the data between processors, On the
other hand, in a distributed memory environment, the data
to be sent is registered in an export table prior to transmis-
gion, and then the index of the table is sent. The receiver
reads the number, and register it in an import fable along
with the sender processor ID. This translation enables in-
dependent garbage collection in clusters[4]. Usually, goal
throwing iz less frequent than data transfer, so operations on
import/export tables become main overhead of inter-cluster
communication.

In this section, we measure and compare the communica-
tion speed inside a cluster and between clusters.

5.1 Benchmark Programs

The time for the date transmission depends on the data
structure io be transferred, as large date or complicated data
needs more time.

In the processing of communication between clusters, a
nested data strocture is transferred lazily. When a receiver
side tries to read imported data, & read-request is sent to the
processor which exparts the data, and then only one level of
the data structure will be sent. Therefore, to measure the

183 T T
. | +
160 — --I---- o t_,._ [e .
148 fret 1 *‘"'HT ;
B TR |
R e I
E EusFIMmZ0iT-0f | -=— |
E L mPﬂl"ﬂlgfﬂ'_'li l
E n,...;,./,... £ .
I et B D, i
| - e
a0 F— F_ et aE
= 1 E | 4 L] L ¥ L1] k1]
Dagth

Figure T: Inner Cluster Round-Trip Time vs. Data

Depth

VA RN

Figure 8: Inter Cluster Reund-Trip Time vs. Data Depth

communication time, we have to measure the communication
time dependence on the data structure. In this experiment,

we measure the dependence on the data width and the data

depth, For example, to measure the communication time
for width five and depth five, we use {1, 2,° 3, 4, Next}
and {{{{{Wext}}1}} , respectively. Here, Next is a variable
to represent the next data fo be sent. We measured the
communication time for the data of width one to ten, and
depth one to ten levels.

In the benchmark programs, we place two processes on
specific processors, one is a sender and the other is a receiver.
The sender process sends the data we have mentioned above
and waits an acknowledgment from the receiver. The receiver
process reads the data sent and sends an acknowled gment to
the sender. The acknowledgment is always a cne word vectar.

5.2 Measurement Results on PIM

The partial results of the experiments are shown in Figure 7
which represents round-trip time of the specific depth in &
cluster. Figure 8 shows that of the inter-cluster, The mes-
surement results show that the execution time of the bench-
mark programs is almost linear with depth or length of the
transferred data.

Thus, we ean fit regreassion lines to the results. In a cluster
of PIM /p, the round-trip time of 2 width one (znd depth one)
data takes 20.5psec, it increases by (hOps or 1.0ps with the
increase of the data width or depth, respectively. In inter-
cluster communication, the round-trip time of a width one

(and depth one) date takes about 182usec, it increases by
8ps or 120ps with the increase of the data width or depth,
respectively.

From thess experiments, we can conclude the followings:

Inner/Inter-Cluster Communication The data trans-
ferring time depends on the data structure. In the case
of small data transfer, the inter-cluster communication
takes about 10 times longer than the communication
within a cluster. If the depth of the transferred data is
ten, inter-cluster communication takes about 100 times
longsr than within a cluster.

Influence of Data Structure All PIM systems except
PIM/k take longer time to trensfer deep structured data
than to transfer a wide structured data, because all
PIM models use the cne-level data transfer scheme. In
the PIM/k system, all processors are connected with
commen bus, the data fransfer between mini-clusters is
same as that in a mini-cluster. However, as all inter
mini-cluster communication uwse the second-level com-
mon bus, it may become a bottleneck, which must be
examined by other measurements:

5.3 Measurement Results on KLIC

Currently, an experimental version of KLIC parallel imple-
mentation en distributed memory machines is available[9)].
We measure the same benchmark program on the KLIC-
1.511 system for PYM, running on a SparcCenter. The ex-
periment shows curious results. The round-trip time of depth
N data requires (20.1V + 9.8) milli-seconds. When we run
the same program on Sparc Station 10 using four processes®,
The round-trip time of depth WV data needs (20.0N + 1.7)
milli-seconds. Both experiments show nearly the same co-
efficients. To see bare PVM performance, we measured the
performance using a C program, and we found that the delay
of transmission is cavsed by PVM itself. The processing per-
formance of KLIC system on Spnrccmtm is two to five times
faster than that of PIM,/m or PIM/p, however the commu-
nication performance of KLIC is almost one hundredth of
the PIMs. PVM is not indented for use by response-time
dependent program such as the distributed KLIC system.
Therefore, the KLIC system needs other choices for the com-
munication path without losz of portability.

We conclude that, in the communication dependent KL1
program, the PIM has superior performance to the current
distributed KLIC system. Ewen if we use other communica-
tion libraries, we may noi attain the same communication
performance eampared to the PIM networks. Therefore, the
KLIC system needs a granularity control method to make
the cammunication course grain and less dependent on the
network response time.

$The distributed KLIC system nesds N + 2 processes, while
N is & number of reduction processes, In this case two processes
are used for reduction, one process for an IO and another for a
termination detection,

6 Conclusion

In this report, we measured the performance of all PIM sys-
tems and the KLIC system, and analyze the purfmma.nl::u
quantitatively approach. In Section 3, single processor per-
formance of the KLIC system is nearly equal fo, sometimes
superior to, that of dedicated machines when well behaved
Programs arne execited.

The fact shows that the complicated operations of MRB
suppress the PIM performance in these cases. However, when
the active data fillap most of heap, the MREB scheme will have
the advantage to a stop-and-collect GOC.

And alse, the goal reclamation scheme of PIM shews its
advantage in programs with frequent suspensions. Therefore,
the KLIC system may still have some room to improve the
performance of such programs.

In Section 4, we meéasured the antématic load-balancing
mechanism of the cluster-configured PIMs. We made execu-
tion model and analyzed the benchmarking results using it.
From the execution model, we proved the modified VFIM
load distribution methed is superior to the original VPIM
method. The analysis also shows that there should be some
goal distribution strategies to achieve efficient load distribu-
tier.

We measured the distriboted system performance in Sec-
tion 5. From the measurement, the PIM systern has supe-
rior performance to the current experimental KLIC system
for communication dependent programs, The current dis-
tributed KLIC system performs communication several hun-
dred times slower than the PIM systems, We think the KLIC
system will be improved to some extent, however, it is dif-
ficult o fill up the gap between processing speed and the
communication speed. Therefore, the KLIC system needs
a granularity control method to make the communication
course grain and less dependent on the network response
time.

Through the messurement, we confirm that a bare hard-
ware and a good scftware, environment, such as PIM/p, help
us eveluate the architecture and the software implementz-
tiom.

Acknowledgment

The research on evaluation of the PIM systems was car-
ried out by the PIM/p group in the Firat Research Depart-
ment at [COT. The svaluation of PIM other than FIM/p
was carried out by Katsumi Takahashi of Mitsubishi Elec-
taric Corp., Toshiaki Tarui of Hitachi Ltd., Hircshi Sakai of
Tashiba Corp., Kenji Kats and all people who have engaged
in the development and the messurement of the PIM sys-
fems,

The authors express specizl thanks to the Free Software
Foundation for developing and distributing the GNU C-
compiler, which enables the comparison between KLIC and
the KL1 system on the PIM/p hardware.

Finally, the authors wounld like to express their gratitude
to the PIME-TG members, who gave us helpful and fruitful
commenta.

29

References

1] Takashi Chikaysma, Teturo Fujise, and Daigo Sekita.
A Portable and Efficient Implementation of KILI1.
In Manuel Hermenegilde and Jean Penjam, editors,
Proceedings of Internafional Symposivm on Program-
ming Language Implementation and Legic Program-
ming, number 8§84 in Lecture Notes inComputer Science.
Springer-Verlag, 1994,

[2] Takashi Chikayama and Yasunori Kimurs. Multiple Fef-
erenice Management in Flat GHC. In Pree. of Fourth
International Conference on Logie Programming, pages
2¥6-203. JCOT, 1988.

[3] Tetsuro Fujise, Takashi Chikayama, Kasuaki Rokusawa,
and Akihiko Nakaee. A Portable Implementation of
KL In FGOS84. ICOT, 15984,

[4] M. Iehiyoshi, K. Rokusawa, K. Nakajima, and Y. Ina-
mura. A new external reference management and dis-
tributed unification for kil. New Generation Computing,
7(2-3):159-177, 1990.

[6] ICOT 1st Labeoratery. Tutorial on VPIM Imple-
mentaion(In Japanese). Technical Memorandom 1044,
1ICOT, 1991.

[6] K. Kumon et al. Architecture and Implementation of
FIM/p. In Prec. of Mmiernational Conference on Fifth
Generation Compuier Systems, pages 414—424, JCOT,
June 1992,

m T. Nakagawa et al. Hardware implementation of dy-
namic load balancing in the parallel inference machine
pim/c. In Proc. of International Conference on Fifth
Feneration Compuier Sysiems, pages T23-730. ICOT,
June 1992,

[8] H. Nakashima et al. Architecture and Implementation of
PIM/m. In Proc. af Internationel Conference on Fifth
Generation Compufer Sysiems, pages 425-435. ICOT,
June 1992,

[5] K. Rokusawa, A. Nakase, T. Chikayama, T. Fujise, et al.
Distributed Memory Implementation of KLIC. In Work-
shop on Parallel Logic Programming and s Program-
ming Environments, number CIS-TR-04-04, pages 151-
162. University of Oregom, 1994,

[10] Kazuo Taki. Parallel Inference Machine PIM. In Proe. of
International Conference on Fifth Generation Compuler
Systems, pages 530-72. 1COT, June 1992,

