80

Proc. of FGCS "84, ICOT, Tokyo, December 1994

Distributed Pool and its Implementation

Masaki SATO Masahiko YAMAUCHI Takashi CHIKAYAMA
masaki@icot.or.jp yamauchi@icot.or.jp chikayama@icot.or.jp
Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

Abstract

PIMOS, an operating system for the parallel inference
machine PIM, provides a utility, called pool , that man-
ages tables of arbitrary KL1 data. This pool stores any
KL]1 data and enables it to be extracted and/or refer-
enced when needed according to & search key. This pool
is used with many application programs, reducing the
cost of program development.

However, its performance is not satisfactory for highly
parallel applications, because stored data is located in
the memory of the node where the pool was initially
created. When its data is accessed from another node,
the ensuing data transfer inereases network traffic, and
simultanesus access causes centralization of the comput-
ing load. To overcome this problem, we have developed a
distributed pool. The pool is distributed to many nodes
and, if & process accesses data existing in another node,
the pool caches data in its node. It provides the same
functionality as the original peol by maintaining cache
coherence, This paper deseribes the mechanism of this
distributed poal,

1 Introduction

PIMOS [Chikayama 1988]), the operating system of
the parallel inference machine PIM [Goto 1988], pro-
vides a comfortable software environment for program-
ming in concurrent logic programming language KL1
[Ueda 1890].

PIMOS provides a utility named pool Pool provides
basic in-memory database features, where arbitrary KL1
data are temporarily stored when a program is run, with
the necessary data being extracted and referenced ac-
cording to a search key. The pool feature has been ex-
tensively used by most experimental paralle]l application
software systems running on PIM. It has been quite ef-
fective in reducing the programming effort required of
application programmers.

However, for applications that process a large amounts
of data, managing all the data as a unit, pool has per-
formed poorly, Irrespective of the processing node ac-
cessing data, they are located in the memory of the

node where the pool was initially created. They are
then copied between nodes, thus increasing the amount
of network traffic. As the PIM has a distributed memaory
architecture, such centralization of data results in longer
latency for data access and a concentration of communi-
cation load on specific processing nodes.

There are two other problems. The first is in the na-
ture of the distributed implementation [Rokusawa 1994]
of KLIC [Chikayama 1994], for many computers con-
nected through a network, In the current implementa-
tion, since interprocessor communication is handled by
the operating system, communication cost are very high,
making the situation more seriouns.

The secomnd iz that when a program using a large
amount of data and centralized data management is exe-
cuted, the problem size is restricted by the memory limi-
tations of one node. This problem was encountered when
running MGTP [Hasegawa 1992] where each node con-
tains the same data. .

Given this situation, we have developed & new imple-
mentation of the feature where data are distributed to
many processing nodes.

Two methods of data distribution may be used,

1. Management of Distributed Data Using Hashing

In this method, data is assigned a key such that the
data iz distributed according to the hash value of
its search key, While the load concentration can be
relieved, the communication frequency and quantity
can not be decreased.

2. Management of Distributed Data Using Caches

In this method, data is managed by keeping a copy
of the data made wherever that data is to be used.
The load concentration can be relieved and the com-
munication frequency and guantity can also be min-
imized. However, delicate management of consis-
tenecy between the copies is required.

We used the latter method with software caching for
an efficient distributed pool. The contents of 2 pool are
cached on each node to reduce the cost of access on each
node. This distributes memory consumption to many
processing nodes, making the maximum capacity of the

pool much larger. Section 2 gives an overview of the
distributed pool. Section 3 describes the implementation
in detail. Section 4 presents an evaluation of our eache
protocal.

2 Overview of Distributed Pool

2.1 Cache Protocol

Chur caching mechanism is similar to that of the coherent
cache memory systems of shared-memory multiprocessor
systems [Archibald 1886]. However, some subtle differ-
ences axist betwsen the systems. The main features of
our cache protocol are as follows.

1. Asynchronous Communication

A shared-memory multiprocessor system uses a sin-
gle serialization point as its shared bus, allowing
memory transactions to be kept in order!. On the
other hand, in general, communication between KL1
processes is asynchronous. The implementation of
& shared bus as a process can keep messages in
order, but it performs poorly from the viewpoint
of throughput and prevents natural comcurrency.
Therefore, we define temporary states between send-
ing a message and receiving a reply. We have to de-
sign a state transition scheme containing temporary
states. In this point, our system is similar to the
DASH [Lenoski 1980] directory-based cache coher-

ence protocol.

2. Nonexistent Back Storage

“In & distributed pool, & cache is not used for small
and fast local buffers that mediate fast processors
from slow main memory as does hardware cache
memory. It is used for caching data, which may
be created in the memeory of another node, on its
own node according to demand for quicker data ac-
cess, not through the slow network, on the second
access. Therefore, the storage structure does not
have back storage like main memory; instead a dis-
tributed cache on each node constitutes whole stor-
age like in cache only memory architectures{COMA)
[Hagersten 1991]. In the event of a cache miss, it is
necessary for another cache to supply data instead
of back storage. If some caches have the same data,
the data in only one of these is set as an cwner and
a cache that has owned data responds to a require-
ment for data from another cache. When a nser tries
to store an amount of data exceeding user-defined
cache capacity, data has to be removed from the
cache to reclaim memory space. Data, except for

1The weak consistency model used on split bus implementations
is not acceptable for ease of programming in our case,

o1

owned data, has to be selected for replacement be-
cause at least one of the data with the same key
mrust be left in some cache.

3. User Message Interfaces

Besides messages enabling easy handling or stor-
ing data, we have a variety of ways to access data
stored in the pool. For example, some messages re-
place data only when data with the same key exdists.
Others place new data regardless of whether or not
data with the same key exdsts. This complicates our
cache coherent mechanism further.

4. Cache Line

In hardware cache memory systems, selection of the
cache line size iz one of the central design issues.
Cache memories are accessed using data addresses
as keys and data with adjacent addresses are likely
to be accessed in a short period of time. Thus, we
can create a prefetching effect by making the cache
line size greater than one. On the other hand, data
in pools are accessed by keys arbitrarily chosen by
the user: integer, atom, string or structured data.
In gemeral, we cannot expect any access localities
associated with similarities of keys. Thus, we made
the cache line size to be one; that is, we abandoned
the idea of grouping data with similar keys.
5. Write-Invalidate Type Cache Consistency’

There are two ways to keep the cache consistency:
write-invalidate and write-update. Our coherent
protocol introduces the write-invalidate type to de-

crease the amount of data sharing as in most coher-
ent cache memory systems.

2.2 Components of Distributed Pool

Figure 1 shows two principal kinds of processes that con-
stitute a distributed pool.

Figure 1: Process Constitution

92

® Cache Processes

Cache processes kesp data in a hash table and man-
age their four permanent states and seven tempo-
rary states, The permanent states are classified ac-
cording to exclusivity and the responsibility for data
supply. The temporary states take care of crossed
IES5AEES,

Dirvectory Processes

Directory processes keep no data but manage cached
data locations with lists of caching nodes. Such a list
iz called a coehe list . The head element of a cache
list shows the owner. The owner is responsible for
providing data for eache misses, and is not selected
for replacement. According to the cache list, di-
rectory processes transfer messages between caches,
The directory processes have two permanent states
classified according to the state of data validity, and
gix temporary states, To avoid access centralization,
directory processes are located in each node unless
otherwise designated. The managed set of data is
decided according to search keys.

2.3 Information Located in a Cache

The currently available KL1 implementations employ
lazy data transfer policies. The actual data is not moved
only by moving pointers. Thus, we cannot be sure where
the data exists. In fact, a cache may not keep real data,
only a pointer. Nevertheless, managing the pointer loca-
tions can be effective because a user process that ohtains
a pointer from a pool usually reads this data that causes
data migration.

3 Implementation

3.1 User Interfaces
Principal messages to pools for users are as follows.

carbon_copy(Key, O) : copies an element.

put(Key, X, Status) : adds an element.
get.if_any _and put(Key, X, Y) : extracts an element,
if any, and then stores a new element with the same key.
get_and _put_if any(Key, X, Y, Y1) : extracts an el
ement, if any, and then stores a new element with the
same key. If there is no corresponding element, the new
datla is not stored in the pocl either.

get_if any(Key, X) : extracts an element, if any, with
the given key.

get_all{Key, Q) : extracts all the elements with the key.
remove(Key, Status) : deletes an element.

3.2 Cache States

Cached data can take one of the following states.

Invalid(I) : the cache does not contain this data.
Exclusive(E) : no other cache contains this data.
Shared-Owned(S0) : other caches possibly contain
this data, but this cache is responsible for supplying the
data and continues to keep it.

Shared-Unowned(SU) : at least one other cache con-
tains this data and this cache does not take any respon-
aibility for keeping it.

Waiting-Exclusion(WE) : the cache contains this
data and is waiting for invalidation of the same data
on all other caches, after which it enters the E state.
‘Waiting-Exclusion-If-any(WEI) : the cache contains
this data and is waiting for invalidation of the same data
on all other caches, after which it enters the E state.
If the data is invalidated, because of crossed messsages,
and no directory sends back the data, later it enters the
I state.

Waiting-Shared-Data(WSD) : the cache does not
contain this data and is waiting for the data to be trans-
ferred. If other caches contain-this data, it will be shared
after the data arrives.

‘Waiting-Purge{WP) : the cache contains this data
and is waiting for invalidation of the same data on all
other caches, after which it enters the I state,
Waiting-Exclusion-without-Data(WED)

: the cache does not contain this data and is waiting
for invalidation of the same data on all other caches, af-
ter which it enters the E state.
Waiting-Exclusion-If-any-without-Data(WEID) :
the cache does not contain this data and iz waiting for
invalidation of the same data on all other caches, after
which it enters the E state. If no directory sends back
the data, later it enters the I state.)
Waiting-Purge-without-Data(WPD) : the cache
does not contain this data and is waiting for invalida-
tion of the sarme data on all other caches, after which it
enters the | state.

3.3 Directory States

The directory manages two permanent and six tempo-
rary data states.

Invalid(I} : no cache contains this data.

Valid(V) : some caches contain this data.
Whaiting-Data(WD) : waiting for the data to be sent
from a cache,

Waiting-Exclusive-Data{WED) : waiting for the
data for exclusive access. Later it enters the V state.
Waiting-Exclusive-Data-If-any(WEDI) : waiting
for the data for exclusive access. If no cache sends back
the data, because of crossed messages, later it enters the

1 state.

Waiting-Exclusion(WE) : waiting for exclusive access
to the data. Later it enters the V state,
Waiting-Removed-Data(WRD)} : waiting for the
data and requires exclusive access to it. Later it enters
the I state.

Waiting-Purge(WP) : waiting for exclusive access to
the data. Later it enters the I state.

3.4 Network Transactions

Network transactions can be divided into five proups:
requests from a cache to a directory, reguests from a
directory to a cache, replies from a cache to a directory,
replies from a directory te a cache, and report from a
cache to a directory. Requests from a cache to a directory
can be further classified depending on needs of exclusive
access. Network traneactions are as follows.

1. Requests from a Cache to a Directory

(1) Not Requiring Exclusive Access
get_shared_data
(2) Requiring Exclusive Access
(a) Requiring Data
get_exclusive_data : to go to the E state
get_exclusive_data_if any : to go to the E
ar [state
get_removed_data : to go to the [state
(b) Not Requiring Data
i, Already Keeping it
exclude : to go to the E state
exclude if any : to go to the E or [state
purge.others : to go to the [state
il. Not Needing it
purge_and_exclude : to go to the E state
purge_all : to go to the [state

2. Requests from a Directory to a Cache
send_data
send_data_and invalidate
invalidate

3. Replies from a Cache to a Directory
data

purged

4. Replies from a Directory to a Cache
data_found
no_data_found
exclusion_made

§. Heport from a Cache to a Directory
purged

93

3.5 State Transition

Table 1 shows cache state transition by user messages,
and table 2 shows cache state transition by requests and
replies from directories.

3.6 Coherence Protocol

This section explains the coherence protocol.

3.6.1 Usual Behavior

1. Copy Requests

When a cache receives a copy request (carbon_copy
message} for data in an Exclusive state, a Shared-
Owned state, or a Shared-Unowned state, the data
is simply copied without a network transaction and
the cache stays in the same state.

In an Invalid state®, as shown in figure 2, the cache
sends a get_shared_data message to a directory and
changes its state to Waiting-Shared-Data. We eall
the cache that sends & request message to a direc-
tory the requesting coche . The directory checks
the cache list and issues a send_date message to the
owning cache. The owning cache returns the peinter
to the data with a dafa message, and changes
its state to Shared-Unowned. The directory sends
the pointer from the owning cache to the request-
ing cache with a data_found message, and registers
the requesting cache in the cache list as the owning
cache, The requesting cache returns the pointer to
the user, and changes its state to Shared-Owned. If
no other cache has the data then a no_data_found
message is sent from the directory, which changes
the cache state to Invalid.

Figure 2: State Transition Diagram for Receiving a car-
boricopy Message

*In fact, in the Invalid state, there is no data in the cache. This
state is termed Invalid from a logical viewpaoint.

Table 1: Cache State Transition by User Messages

Slessages | earhoa_capy put ot il anyasd_put getand putilasy gl ifasy pemnave
Simbew .
ir grishured dets/WSD | purgsandeuclede/ WED | geresclusivedass/WED | getoewshsivedatadfsny/ WEID ! petremovad. dacs WPD | purgesll AWTD
B B JE -/E -/E o1 1
150 e pumgnand sxclude WE emalude W wwclude dfany WEL jurge_oshar WE purgnall WP
4.50 -IEL Piikgen luda /WE luda/WE wxclude il any WEI purgenibers WE purgesll WP
5WE = gmeun = geeus B CLL] —gseun = guaus ==gquese
BWEL JENP—. ~Zquenn S e -5 queun ~Bqmes
T.WsD ~Fqueie =i = quine = ~Sequrae - e
Lwp =g . =mquene - mgquinn =mquene =uEnE -3 LR
®RWED = guese o =F-quews =Equeue =Z-queae = queac . > quous
0. WELID = g . | —>qoess 5 —Bquess « ~5 quee =B quese =X quaun
1L.WFD = L =g =T = e —quens ’ Hquaus

notations: 1.request message to a directory/next state
2~>queue: this message is queusing

2. Copy-and-Update Requests

When a cache receives a copy-and-update request
{get_if any and put message) for data in an Exclu-
sive state, it returns the old data to the user, stores
the new data and stays in the same state without
gending a message to a directory.

As figure 3 shows, in an Invalid state, the cache
sends a gef_erclusive_dafa message to a directory,
and changes its state to Waiting-Exclusion-without-
Data. The directory checks the ecache list, sends
a send_data_and_invalidale message to the own-
ing cache and sends intalidale messages to the
other caches in the list. The owning cache returns
the pointer to the data with a defa message, and
changes its state to Invalid. The other caches send
purged messages and change their state to Invalid.
The directory, after receiving all the replies, sends a
data_found message to the requesting cache, and up-
dates the cache list to contain the reguesting cache
only. The requesting cache returns the pointer to
the user, stores the new data and changes its state
to Exclusive. As figure 4 shows, if no other cache
has the data, then a no_data_found message is sent
from the directory, and the cache stores the new
data and changes its state to Exclusive.

Asg figure 5 shows, in a Shared-Owned state or a
Shared-Unowned state, the cache sends an esclude
message to a directory, and changes its state to
Waiting-Exclude. The directory sends iénvalidate

Figure 3: State Transition Dagram for Receiving a get.
if.nﬂy.und.pu_t message(1)

messages to caches that have a copy of the data.
After receiving the replies from all the caches, it
sends an erclusion_made message to the requesting
cache. The requesting cache returns the pointer to
the user, stores the new data and changes its state
to Exclusive.

. Extract Requests

When a cache receives an extract request { get_if any
message) for data in an Exclusive state, it sends a
purged message to a directory, returns the extracted
data and changes its state to Invalid.

As figure § shows, in an Invalid state, the cache
sends a getoremoved_ dafn message to a directory,

Tahle 2: Cache State Transition by Beguests and Replies from Directories

Messages | datadound | exclusion made | no_data found | send.data | send data_and invalidate | invalidate-
States .
11 Brrar BETOT BITOT Ignore 1EnOTE ignore
ZE error BFTOT erTor data/SU | data/l purged/1
350 error EITUr &ITOr data/S0 | data/T [
4.50 BITOT erTor erTor arror ErTor purged/ 1
[5.WE -[E JE -E data/WE | data/WE purged/ WE |
6. WEL -E /B - date/ WE | data/WE wﬁéﬁ*ﬁ"
7. WED - /50 arror -1 ignore ignore 1gnore
EWP i i T data/WP | data/WP data]WE
9. WED -/E -j_g -/E ignore ignore Igmore
0.WEI | -/E -f -fT . ignore ignere igmore
11.WFD | -/1 -1 -1 ignore ignore ignore

notation: reply message to a directory/next state

Figure 4: State Transition Diagram for Rec&lmng a gei_
if-any.and.put Message(2)

85

Requesting Cache I E ctary I ;Unawnlngﬂa:hul

wat_if_an;r_and_pui)

Figure §: State Transition Diagram for Receiving a get_
if_any_and_put Message(3)

and changes its state to Waiting-Purge-without-
Data. The directory checks the cache list, sends
a send.data_and_invalidale message to the owning
cache and sends invalidate messages to the other
caches. The owning cache returns the pointer to
the data with a dafe message, and changes its state
to Invalid. The other caches return purged mes-
sages, and change their states to Invalid. After re-
ceiving all the replies from the caches, the directory
sends a data found message to the requesting cache.
The requesting cache returns the pointer to the user,
and changes its state to Invalid. As figure 7 shows,
~ if no other cache has the data, then the directory
sends a no_data_found message to the requesting
cache which in turn returns nil data to the user and
changes its state to Invalid.

As figure 8 shows, in a Shared-Owned state or a
Shared-Unowned state, the cache sends a purge.
others message toa directory, and changes its state
to Waiting-Purge. The directory sends invalidaete
messages to all of the caches that have a copy of
the data except the requesting cache. After receiv-
ing the replies from all the caches, it sends an ez-
clusion.made message to the requesting cache, The

requesting cache returns the pointer to the user, and
changes its state to Invalid,

3.6.2 Crossed Message Behavior

{1) Usunally a cache in an Invalid state doesn't re-
ceive requests from a directory, because a directory

 only sends request messages to caches that are regis-

tered in the cache list. However, when messages get
crossed, = cache in an Invalid state receives a request
message from a directory. This happens because a
purged message, that is, a report message from a
cache, iz issued independent of directory behavior.
In this case, the cache which issued the report mes-
sage éhangeﬁ its state to Invalid without confirming
that the cache list in the directory has:been up-
dated. When a cache in an Invalid state receives
a request message from a directory, it doesn't need
to send a reply message to the directory because
it already sent a purged message to the directory.
The directory recognizes the report message from
the cache as the reply message to the request mes-

96

ot il oy

) REER frvadidnte

Figure 6: State Transition Diagram for Receiving a get.
ifany Message(1)

e

(i}

Figure T: State Transition Diagram for Receiving a get.
ifany Message(2)

sage to the cache. Figure 9 shows an example of this
cage. Cache B in the Invalid state receives a send_
data_and_invalidate message from the directory.

(2) Usually a directory in an I state doesn't receive
a request message for invalidation to all other caches
keeping the data, like ezclude , ezcludeif any , and
purge_others messages. However, when messages
get crossed, a directory in an I state receives such
messages. Figure 10 illustrates this case. An exclude

Requesting Cache Directory I 'Llnnwning(.‘-mhe'
T

urge_others

Figure 8: State Transition Diagram for Receiving a gel_
if.any Message(3)

Figure 9: State Transition Diagram for Crossed Mes-
sages(1)

message which is sent by Cache A receiving a gef_if_
any_ond_pui message in an 51 state, and a purge_
others message which is sent by Cache B receiving
a getifany message in an 80 state, are sent to a
directory synchronously. If the purge_others mes-
sage is accepted first, the directory sends an invaeli-
date message to the cache A in a Waiting-Exclusion
state, and after receiving & ptirged message from the
cache A, it changes its state to [, In such a case, the
next erclude message iz accepted by the directory
which is in the [state. The directory concludes that
the cache A has no data, and it performs as if it had
received a gefexclusive_dafe message. As a result,
it sends a no_dala_found message to the cache A,

Figure 10: State Transition Diagram for Crossed Mes-
sages{2) ‘

[3) Usually a cache in 2 Waiting-Shared-Data state,
a Waiting-FExclusion-without-Data state, 2 Waiting-
Exclusion-If-any-without-Data state, or a Waiting-
Purge-without-Data state doesn't receive any re-
quest message from a directory. This is because
their states have changed from Invalid and the
directory recognizes that a cache in an Invalid
state has no data. However, this can happen.

When a cache receives a gef if any message or
other messages from a user, it sends a purged
message and changes its state to Invalid. After
that, it may receive a message from a user that
changes its state to a Waiting-Shared-Diata state,
a Waiting-Exclusion-without-Data state, a Waiting-
Exclusion-If-any-without-Data state, or & Waiting-
Purge-without-Data state and the directory accepts
a request message from another cache, for exam-
ple, a get_shared data message | a pef_erxclusive_dota
message, or an efclude message, in advance of the
previous purged message. In this state, the cache
receives a request message from the directory, such
as-a send.date message, a send dale_and dnvalid
message or an invalidete message. In this state

the cache must not respond to it. The directory
recognizes the purged message as a reply message
to the request message it sent to the cache. Fig-
ure 11 shows an example of this case. Cache A in
the Whaiting-Exclusion-without-Data state receives
an invelidate messapge from the directory.

Figure 11: State Transition Diagram for Crossed Mes-
sages(3)

3.7 Replacement

When a eache is full and new data eannot be stored,
some data muost be replaced. The data which is replaced
is kept in another cache as copied, not owned data, that
is in a Shared-Unowned state. We don't use the LRU
algorithm for managing data in a Shared-Unowned state
because of the high management costs. We manage data
in a Shared-Unowned state with the FIFO algorithm.
Replacing data may or may not reported to a directory,
If it i= reported to a directory, one interprocessor com-
munication has to be made. If il is not reporied, if the
data is medified by data from another cache, an fnval-
idate message from the directory to the cache and a

a7

reply message from the cache to the directory have to be
sent becauss the cache list hasn't been updated. When
the cacke requires the data again, the directory has to
make sure not to register the cache twice in the cache list.
Which is better depends on replacement frequency, data
sharing ratio, and update frequency in the application
program. We chose the former for simplicity,

3.8 Management of Ownership

Whaether it iz better or not to transfer ewnership on data
copying depends on the application. As the owned data
is not selected for replacement, it is desirable to dis-
tribute ownership among caches to distribute memory
usage. For example, in a single-writer multiple-reader
type program, it is better to change ownership when the
data is copied from the writer side to the reader side be-
cause a lot of nodes on which the reader processes are
allocated can have owned data.. On the other hand, in
a multiple-writer single-reader type program, it is better
not to change ownership because a lot of nodes on which
the writer processes are allocated can have owned data.
Further analysis of the problem is necessary. The proto-
col described in this paper transfer ownership along with
data,

4 Evaluation

The purpose of this evaluation is to investigate the effec-
tiveness of the distributed pool in comparison with the
conventional centralized pool. Our evaluation is on the
following points.

Heduction of interprocessor communication by
caching.

& Distribution of computing load.

4.1 Reduction of Interprocessor Com-
munication by Caching

To see whether caching efficlently reduces interproces-
sor communication, we measured the execution time {re-
sponse time) of carbon_copy messages from a user using a
centralized pool and a distributed pool. For the central-
ized pool, times of local access in which the pool process
and the user process are located on same node, and that
of remote access in which they are located on different
nodes were measured. The hit ratio is used as the pa-
rameter for the distributed pool. Since the complexity
of managed data changes the traffic between nodes, we
measured with integer data and list data containing ten
integer elements. We measured them on PIM/m and the
distributed version of KLIC. The distributed KLIC sys-
tem was run on a Sparc Center 2000 using PVM. The
Sparc Center 2000 is a shared memory multiprocessor

B8

Table 3: Comparison of the Number of Messages Trans-

ferred

The number of messages transferred
Transfer mode | Remote access to | The distributed
- the centralized pool | pool with no cache
L |his
lazy 7060
EagEr 4060

16784 |
10753

machine, and the PVM is a messape-passing library. In
the distributed KLIC system, there are two modes for
transferring structured data, lazy transfer mode and ea-
ger transfer mode . Lazy transfer mode sends only one
level of the structured data. Eager transfer mode sends
the whole data structure based on pointers to the strue-
ture. We measured with both modes.

Figure 12 shows the execution time for copying integer
data on PIM /m, figure 13 shows the result for list data on
PIM/m, and Figure 14 shows the result for integer data
on the distributed KLIC system. The x axis indicates the
hit ratio of the distributed pool and the y axis indicates
the execution time for copying data per one access.

Figure 12 shows that, with perfect cache hits, the ac-
cess for the distributed pool is slower than that for lo-

cal access to the centralized pool, but that it is much .

faster than that for remote access. The access for the
distributed pool with no cache hits is slower than that for
both accesses of the centralized pool. As a result, when
the hit ratio is about 85%, the performance of the dis-
tributed pool and remote access to the centralized pool
are equal.

Figure 13 shows that the performance of the dis-
tributed pool is equal to that of remote access to the
eentralized pocl at a 40% hit ratic because the commu-
nication costs increase for complex data.

Figure 14 shows that the execution time on the dis-
tributed KLIC system is about twe orders of magnitude
slower than on PIM/m. Since the distributed KLIC sys-
tem has slower commmunication, the hit ratio, where the
performance of the distributed pool is equal to that of re-
mote access to the centralized pool, is lower than that on
PIM/m. In the lazy transfer mode, the hit ratio is about
35%. In the eager transfer mode, the hit ratio is about
50%. The eager transfer mode shows a better perfor-
mance than the lagy transfer mode, because the number
of messages transferred is less than with the lazy transfer
mode. Table 3 shows the number of messages transferred
in copying 1000 integers of data, for remote access to the
centralized pool, and for the distributed pool with no
cache hits.

These measurements show that the distributed pool
is effective for managing complex data when access lo-
cality is high. The measurements also indicate that the
distributed pool is more effective for a system with slower

18 :
distributed poel ——
14} - e
[T —
- 12}
E il
E
o oep
g 0e
0.4 \
M L
e .
Q Ll B0 o] 160
Gache Hi Rasi (%)

Figure 12: Execution Time for Copying Integer Data on
PIM/m ’

Exaculion Tima (mes)
&

o 2 a0 B0 au 100
Cache Hit Rasio (%)

Figure 13: Execution Time for Copying List Data on

PIM/m

communication, as in the distributed KLIC system.

4.2 Distribution of Computing Load

Figure 15 shows how computing load is distributed us-
ing the distributed pocl. The x axis gives the number
of nodes in which the user processes are located and the
¥ axis gives the execution time for copying 1000 inte-
gers of data, The distributed pool is given a hit ratio of
85%. The programs was run on PIM/m. The execution
time for the centralized pocl is almost proportional to
the number of the node, and with 15 nodes, it is about
10 times longer than with 1 node. The execution time
for the distributed pool doesn't increase ag rapidly as for
the centralized pool, and the delay only doubles with 15
nodes. The reason for the increase is the increased load
for supplying data to cache misses, .

This measurement shows that the distributed pool can
distribute the load for accesses to a single pool to many

Bl
datiblutad pl.'.!nl with laqrmmarnw-ua —
140 remole acoass with lazy iransler mode -
distributed poal with eager transter moda -+~
i remabe access with eager transler mode —— |
E 2 Ioal access —
@ 109
E u oy,
§ m -hl--l-\‘-‘-“-
m_‘_h
40 ___Lq:_ G
—— &
20 local mmu.'l\ -
u 'l 1 i i
a 20 4 4] ab 100
Cacha Hit Ratlo ()

Figure 14: Execution Time for Copying Integer Data on
the Distributed KLIC System

T

Total Time (ma} 1000 kema
g

1000 ¢ N

r’"___,_.-r""

2 4 B L) 1 12 14
T Mumbser of Nodes

Figure 15: Execution Time for Cnnnent.rmug Ameu on
FIM/m

computing nodes,

5 Conclusions

We have introduced the distributed pool, which dis-
tributes data efficiently among many processing nodes
using software caching. Using the distributed pool, ap-
plication programmers can distribute the computing load
fexibly without worrying about data consistency. It also
uses memory more efficiently for applications processing
& large amounts of data.

We intend to further evaluate the distributed pool
as applied to practical applications processing large
amounts of data,

89

Acknowledgments

We would like to thank Mr. Kazuaki Rokusawa at ICOT
for his helpful comments. We would also like to thank
Dr. Shunichi Uchida, Director of the ICOT Research
Center, for his encouragement and support in this work.

References

[Archibald 1986] J. Archibald and J. L. Baer. Cache Coher-
ence Protocols: Evaluation Using a Muliiprocessor Simu-
lation Model. ACM Transactions on C-'omputu: Systems,
Val. 4, No. 4 (1986), pp. 273-208, .

{Chikayema 1988] T. Chikayama, H. Sato and T. Mivazaki.
Overview of the Paralle]l Inference Machine Operating Sys-
tem (PIMOS). In Proc. Int. Conf. on Fifth Generation
Computer Systems, ICOT, Tokyo, 1088, pp. 230-251.

[Chikayama 19%4] T. Chikayama, T. Fujise and D. Sekita.
A Portable and Efficient Implementation of KL1, In Proc.
Gth Int. Symp. PLILP'%4, Berlin, 1894, pp. 25-38.

[Goto 1988] A. Goto. Research and Development of the Par-
allel Inference Machine in PGCS Project. In M. Reeve and
S. E. Zenith (Eds.), Parallel Processing and Artificial In-
talligence, Wiley, Chichester, 19&9 PE- ﬁS—QE

[Hagersten 1991] E. Hagersten, A. Landin and S. Ha.ﬂdl
DDM - A Cache-only Memory Architecture, SICS Re-
szarch Report R91:19, 1991,

[Hasegawa 1992] R. Hasegawa and M. Fujita. Parallel Theo-
rem Provers and Their Applications. In Proc. Int, Conf. on
Fifth Generation Computer Systems, [COT, Tokyo, 1802,
pp. 132-154.

[Lenoski 1990] D. Lenoski, J. Laudon, K. Gharachorloo, A.
Gupta, and J. Hennessy, The Directory-Based Cache Co-
herence Protocel for the DASH Multiprocessor. In sl Proc.
17th Annual Int. Symp. on Computer Architecture, I[EEE,
Mew York, 1990, pp. 45-58,

[Rokusawa 1994]
K. Rokusawsa, A. Nakase, and T. Chikayama, Distributed
Memory Implementation of KLIC. In sl Proc. Workshop
on Parallel Logic Programming and its Programming En-
vironments, Technical Report CI3-TH-94-04, University of
Cregon, 1884, pp. 161-162,

{Ueda 1900] K. Ueda and T. Chikayama. Design of the Ker-
nel Language for the Parallel Inference Machine. The Com-
puter Journal, Vol. 33, No. 6 (1990}, pp. 404-500,

