Parallel Basic Software

Takashi Chikayama

First Research Department

ICOT Research Center

Parallel Basic Software in the FGCS Project

¢ Based on five models of parallel inference machine

e« Parallel and distributed implementations of

a concurrent logic prngran‘iming language KL1

* Software development environment for KL1
provided by a parallel operating system PIMOS

— Proven thru experimental // application systems

.23 .



Problems of the Parallel Inference System

o Built on special purpose hardware not widely available

e KL1 as the only language.
— Hard to utilize existing software

e Alien interface — high initial threshold to get over
o Lack of efficient higher level language implementations

= Obstacles to broader utilization

Parallel Basic Software in the Follow-on Project

* Built on systems available in the market

e Linkage with programs in other languages

¢ User interface consistent with Unix

¢ Higher level features by tuned-up theorem provers

= Wider availability and lower initial introduction cost

-4 .



Eualuﬂnn of PIM

e One bit reference count in pointers (MRB)
— Small management cost with slight HW support
— Destructive updates of arrays — random access

— Incremental GC costs high in free list maintenance

¢ Shared memory parallel implementation
— Locking is not so costly; simple compare & swap do
— Automatic load balancing works fairly

— GC of shared memory is costly due to bus bottleneck

Evaluation of PIM (continued)

e Distributed memory parallel impln_ementation
— Two-level addressing allows local garbage collection
— Weighted reference counting global GC works fine
— Lazy data transfer works but its overhead is large

¢ A reasonably efficient implementation as a whole,
with some room for further optimization

.75 .



KLIC: A Portable KL1 Implementation

e C as an intermediate language — Portability!

e Modular design — Portability!

e Collection of smaller programs and libraries

<= Single integrated environment for everything

¢ Smooth interface to programs in other languages

yni-x—Style_ Compilation

KL1
Source

Program
xxx.kll

Relocatable
Object
Code

Library
Archive

libklic.a

Executable
Object
— Code

a.out

Libraries

libec.a
libXll.a




Basic Design of KLIC

¢ Only two tag bits in pointers; no MRB
¢ “Generic objects” for built-in type variety

e Single core implementation for all variations

(debugging/production, sequential/parallel)
The same code linked with different runtime libraries

Generic Objects

A unified framework for system extension

¢ Object-oriented interface with the core implementation
— Manipulation through "generic methods” only

— Physical representation encapsulated

¢ Object-oriented foreign language interface
— Foreign language data in KLIC heap

— Object migration by defining message encoding

=27 -



Three Ki_nds of Generic Objects

Data objects for immutable data
— Explicit manipulation thru method invocation
— For more builtin types, &c

Consumer objects for data-driven processes
— Associated with an uninstantiated variable

— Activated on variable instantiation

Generator objects for demand-driven processes
— Associated with an uninstantiated variable
— Activated on demand of variable value

Sequential Performance

e Twice as fast as SICStus Prolog native code
both for small benchmark_s and the KLIC compiler

¢ Smaller code size than SICStus native code

¢ KLIC on PIM shows similar performance as
its original KL1 implementation

= Single processor performance of // implementations

-28 -



KLIC: Shared Memory // Implementations

e Local heaps 4 a shared heap
— Pointers from local heap to shared heap
— No pointers from shared heap to local heap
— Local data copied to shared heap when necessary

e Shared variables as generic objects
(Locking and data copy needed)

e Independent & asynchronous GC on local heap
Bus bottleneck removed

anal Heﬂas and a Shared Heap

Local Memory Local Memory Local Memory

/f_]/ _

/ generic

object

Shared Memory |

.29 -



KLIC: Distributed Memory // Implementation

Inherits the schemes of the implementation on PIMs
e Two level addressing (local and global addresses)
e Local GC enabled by export table maintenance
¢ Global GC thru weighted reference counting

No need to support an operating system

= Simplified than the PIM implementation

Interprocessor Reference Management

Local Memory Local Memory Local Memory
N f’
generic

object

=3 -



Portability |

¢ Sequential core implementation
workstations, servers and PCs (DOS, OS2, Linux)

e Shared memory // implementations on Sun and DEC

¢ Distributed memory // implementations
— On message passing libraries: PVM, MPI
— On system-specific features: active messages &cC

— Using shared memory as message passing media

Pool of PIMOS

¢ Table maintenance utility for KL1 programs
e Used extensively in application systems on PIM

¢ NoO parallelism inside
— Comimunication latency for distributed clients
— Load concentration to the server node
— Memory usage imbalance

Worse on KLIC on conventional hardware

=37 -



Distributed Pool

e Caching copies of recently accessed data
— Higher access locality

— Better load distribution

e Distributing data on their keys

— Better utilization of distributed memory

e Coherence control by asynchronous message exchange

-— New protocol to maintain cache coherence

Kappa: A Parallel DBMS

¢ Data management on a nested relational model .
— More efficient handling of complex structured data

¢ Integration of distributed DBMSs running in parallel
— Speed-up by parallel processing
— Single integrated view from applications

e Lower level processing in C
— Performance approaching conventional DBMS

- 32 -



An Example Configuration of Kappa

Agplication Server DBMS 1
rogram -
Sepp Global Ma jﬂm
El§ Gene Sequence
Process /

Application
rogram
=
Process

I
I
1ce J—m.u

Protein Sequence

MGTP: A Bottom-Up Theorem Prover

¢ A prover for fuli first-nrder; logic

¢ Proof by generating models for the given axiom set
¢ Almost linear speed-up by parallel model generation
e Solved an open problem in quasi-group theory

e Was inefficient for a certain problem classes

- 330



MGTP: R&D in FGCS Follow-on Project

¢ Non-Horn magic set, to specify top-down proof control
¢ Constraint MGTP, for efficient constraint propagation
e Translation of modal logic to a form MGTP can handle
e Distributed MGTP, for slower communication.media

= A general tool for building knowledge based systems

Conclusion

¢ KLIC formed a basis for wider utilization of FGCS

technologies

¢ Application software systems on PIM are now

available on widely available computer systems

¢ More room remains for optimization and refinements

- 34 -



