The Evaluation of PIM

ICOT First Research Department

Kouichi KUMON Hiroyoshi HATAZAWA

Overview

- Evaluation of Single Processor Performance
 - Comparison among PIMs and KLIC Using small benchmarks including append and life
- Evaluation of Automatic Load Distribution
- Making Execution Models
- Evaluation of Inter-cluster Communication Cost

Difference between PIM and KLIC

- PIM:
 - Dedicated Hardware (tag handling insn)
 - MRB GC used
 - Large Memory: PIM/m(16MW) PIM/p(32MW)
- KLIC:
 - Developing Environment (UNIX)
 - Compiled into C-language

KL1 Processing Systems

- PIM/m: Distributed Parallel Processors
- PIM/{p,c,i,k}: Cluster-configured Parallel Processors
- KLIC: Running on Sparc10 Workstation
- KLIC/p: Sequential-core of KLIC for PIM/p
 - Almost the Same Object-Code Quality as Other WS.

Append RPS on Various Systems

-	clock	nrev1500	nrev5000	Ratio
System	(ns)	(KRPS)	(KRPS)	
PIM/m	65	600	411	.69
PIM/p	80	305	281	.92
PIM/c	66	55	56	1.02
PIM/i	240	65	65	1.00
PIM/k	100	76	76	1.00
KLIC ⁽¹⁾	28	1,151	1,173	1.01
KLIC/p	80	225	238	1.06
$KLIC/p^{(2)}$	80	405	386	.95

⁽¹⁾ On SS10, time is measured by CPU time.

Append Code Analysis

- Main loop: 21 insns in KLIC, 28 insns in PIM/p
- MRB related insns: > 20%
- Locking/Unlocking: 2 insns
- Non-negligible SHOEN management overhead

⁽²⁾ The initial heap size is 10 mega words.

MRB Penalties

- Dereference and Type-checking
- Free List Management Cost
- GC Cost Proportional to Reduction
- Extra Move Instructions

Characteristics of Append

- Core of Stream Operation
- # of Active-cell ≪ # of Consumed-cell
- Almost Execute operations only
- No Suspension

Classification of Executed Instructions

Category	PIM/p		KLIC/p
Type-check	6	<	7
MRB	6	\gg	_
Write	2	<	3
SHOEN	3	>	-
Exclusive	2	>	_
Deref	2	>	1
Allocation	2	<	3
Read	1	<	2
Slit-check	1 .	$^{\prime}<$	3
Move	1	=	1
Other	2	>	1
Total	28	>	21

Characteristics of Benchmarks

Life Program Analysis

- PIM Performance >> KLIC Performance
- Reasons for the Superior PIM Performance:
 - Goal Record Reclamation
 - Low Suspension/Resumption Overheads
 - Infrequent Stop-and-Collect GC

Parallel Execution Performance in a Cluster

- Automatic Load Distribution Available
- Performance Dependence on Distribution Method
- Making Execution Models for Simple Program TP1
- Measurement of Speed-up Ratio
- Estimation of Goal Distribution Overhead

Load Distribution Method

- Original VPIM Method:
 - One Goal Queue
 - No Preparation during Reduction
 - Goals Distributed by Busy Processor
- Modified VPIM Method:
 - Two Goal Queues: Local and Global
 - Preparation during Reduction
 - Distribution by Idle Processor

Characteristics of Distribution Methods (1)

- Original VPIM Method in PIM/c and PIM/k
 - Simple Goal Management Scheme
 - Low Overhead in Sequential Execution
 - Distribution Overheads on both Idle and Busy Processors
 - Good for Low Distribution Frequency

Characteristics of Distribution Methods (2)

- Modified VPIM Method in PIM/p
 - Complicated Goal Management
 - Effective for High Distribution Frequency

Cluster Performance Measurement

Load Distribution Cost in a Cluster

	Distribution Cost(μs)	Equivalent Reductions
PIM/p	17~22	3∼4
PIM/c	239~275	14∼16
PIM/k	94~116	9~11

Distributed System Performance

- Throw Goal
- Meta-Level Management
- Data Transfer
 - Lazy Transfer Scheme

Performance Measurement

- Communication Cost Measurement
- Cost Dependency on Transferred Data Structure
 - Data Width
 - Data Depth

Inter-cluster Comm. Cost vs. Data Depth

Inner-cluster Comm. Cost vs. Data Depth

Conclusion

- KLIC has almost the same performance as PIM.
- Suspension processing in PIM is much faster.
- Random load distribution results in shorter execution threads.
- PIM/p handles frequent distribution better.
- KLIC has larger communication overheads.