Frofessor, Imperial Collage, LLK.




Kowalski: T would like to begin this panel by pre-
senting a brief summary of the Fifth Generation
Computer Systems Project, both in terms of its ob-
jectives and in terms of the technologies it idenc-
fied in crder to achieve those objectives. In broad
terms we can-identify three such areas of technol-
ogy.

The first and, to the world outside the FGCS
communily, most prominent area is the one con-
cerned with applications, sometimes referred to as
“artificial intelligence”, but more modestly in this
case better described as “knowledge information
processing™.

The second area concerns the development of
paralle] computer architectures. This is one of the
main areas which the FGCS project has explored.

The third area, bridging the gap between ap-
plications and computer architectures, is con-
cerned with software; and in the FGCS project this
has concentrated on the development of concur-
rent and constraint logic programming languages,
Itis perhaps the identification of the importance of
this third area of work which is the most original
aspect of the FGCS project.

So these areas — advanced applications, par-
allel computer architectures, and supporling soft-
ware - were identified as the appropriate tarpets
for the FGCS project; and perhaps they will still be
appropriate for the development of computing in
the next century. We should consider now what
are some of the problems that arose during the
course of rying to achieve the goals of FGCS, and
whether those problems will continee to affect the

achievement of those goals in the future.,

In the area of knowledge information
preessing we have the problem of identifying the
scope of this class of applications. Does it aim to
provide a general model for all computing in the
future, so that all computing will be forced into a
knowledge-based framework? Or does it address
onty a niche market, which is still relatively small
today. (It has been estimated that the Al market
corrently amounts to only about 1% of the market
for the whole computing industry.) If this is only a
niche market, is it a market which will become
more important in the future, as it merges more
and more with database technology for example?
[t seemns to me that these are important questions 1o
address, if we are 1o understand the scope and sig-
nificance of FGCS technologies for the future,

And how shall we judge the FGCS approach
to parallel computer architecture? 'Was it a mis-
take, and will it equally be a mistake in the future,
to develop seemingly specialised computer archi-
tectures for apparently niche applicaions? Or was
it an ingenious discovery that such architectures
might in fact provide a basis for building more
powerful, general-purpose computers in the fu-
ture?

And what about the choice of legic program-
ming o bridge the gap between applications and
parallel computer architectures? There seems (o
have been a number of new, mini-gaps which have
appeared between different forms and different
styles of logic programming, between so called
*don't know™ and “don’t care™ forms of logic pro-

What are the FGCS technologies?

+ Parallel computer architectures

FGCS: A Springboard for Information Processing in the 21st Century

* Knowledge information processing applications
» Concurrent and constraint logic programming languages

Logic Programming {LP} bridges the gap between
applications and computer architectures

Fig. 1

_70-



gramming, and batween algorithmic and specifi-
cation styles of use. :

The gap between the “don’t know™ form of
logic programming, needed for user-level applica-
tions, and the “don't care” form, useful for con-
wolling execution on parallel computer architec-
tures, has been experienced not only at ICOT but
at many other research centres throughout the
world, ICOT has investigated a numiber of ways to
narrow this gap, the most notable is based upon the
- model generation theorem prover, Will this gap be
closed by such work? Or will it open up even
wider in the foture?

By comparison with the first gap, the second
gap, between the algorithmic style needed for effi-
cient programming and the specification style use-
ful for program specification, has received rala-
fively little attention. 1 shall have more to say
about thiz second gap in my later contribution to
this panel,

Finally, we should consider the aliernative
technologies that have become increasingly im-
portant during the past decade, such as object-ori-
entation and connectionism for example. We
should try 10 determine whether these technelo-
gies are compatible with, and complementary to,
the FGCS technologies, or whether, as some crit-
ics argue, they are in conflict, In the second case,
might such aliernative technologies be a belter
guide than the FGCS technologies to the future of
compuling in the next century?

I would now like 1o introduce the panelisis.
The first is Hervé Gallaire, who is well-known as
the first divector of the Buropean Computer Re-
search Centre based in Munich, a research centre
supported by tha three European computer manu-
facturers, Bull, ICL and Siemens. Gallaire is now
in charge of formulating policy and implementa-
tion of sofiware in a large French software house,
GSI, which employs over 3,500 people. He s also
president of the international Association for
Logic Programming,

The next panelist, Peter Wegner, from Brown
University in the United 5States, belengs to a some-
what different school of thought. He has had a
great deal of experience in mainstream approaches
to software, having made important contributions
to ALGOL, ADA, and more recently to object-ori-

ented programming. He is the author or editor of
approximately a dozen books on these topics; and
has edited, in particular, a collection of papers dis-
cussing both logic programming and object-orien-

. tation.

The next panelist, Ross Overbeek, is associ-
ated with Argonne National Laboratories in the
United States. He has had a distinguished career
working in many different areas of the FGCS tech-
nologies. He has made outstanding contributions
to the field of autematic theorem proving: and the
group at Argonne in which he has worked has until
now been the leading group in the world in this
area. He has also worked extensively on the devel-
opment of parallel computer architectures, Very
recently, however, he has dramatically changed
the direction of his research and begun to focus on
applications in general and on genetic seguancing
applications in particular,

The next panelist, Koichi Furukawa, was one
of the researchers at the Electrotechnical Labors-
tory (ETL) who was responsible for planning and
launching the FGCS project. He has worked at
ICOT from the beginning of the project, first as
head of the second research laboratory responsible
for software and the FGCS kernal language and
now as a deputy director of the LCOT research cen-
e, In addition to his role in the scientific manage-
‘ment of ICOT, he has conributed o numerous re-
search publications coencerning all aspects of the
FGCS software. His research judgement has had a
major influence on the direction of research in the
FGCS project.

The following panelist, Shunichi Uchida, like
his colleague Furukawa-san, also worked at ETL,
where he helped to plan the FGUS project before
Jjoining ICOT at the beginning of the project. He
began his work at ICOT, first as deputy head of the
first research laboratory responsible for computer
architecture and now as research manager of the
ICOT research centre, He was responsible for
developing the PST machine and the PIM architec-
tures. It is widely rumoured that he will be the di-
rector of a likely post-1COT project.

I have also included myself as the final panel-
ist. It is time now 10 receive the presentation from
our first panelist, Hervé Gallaire,

“F1-



Gallaire: Good afternoon. 1 would like to thank
the program committee for inviting me this after-
noon. [t's a great pleasure and a great honor to be
here to discuss the future of logic programming,
In fact, I remember, in '79, being invited in a much
smaller audience by ETL since ICOT at the time
did not exist, but in fact there were already Fuchi-
san and Furukawa-san who pulled the strings, and
we were discussing and comparing merits of logic
programming and LISP, at the time. They made a
decision later -- I think they made the right deci-
sion, It's certainly much more difficult to stand for
me here oday than it was back in *79 in this very
small andience; but nevertheless, I think I'll wy to
address some of the issues that Bob has been men-
tioning. .

We are here to discuss logic programming as a
springboard for information procassing into the
next century. Now, you see on this stide (Fig. 2)
really the answer I'd like to give to this question,
Let me comment very rapidly this statement,

A Springboard for Information Processing
in the 21st Century

* s L.P a springboard...
+ it is not really
= have we all worked for nothing
« what is LP, where does it fit

* |s there another springboard or a
springboard
* not really, there are many

Fig. 2

‘When [ say that LP will not be a springboasd
for information processing, what do I mean? 1
think the question, no matter how hard Bob is try-
ing to make it precise, is really very general, and
that there cannot be a simple answer to such a
question. In short I think what we should be trying
to do is find where logic programming can be
helping us for processing information and knowl-
edge rather than seeing it as a general springboard
for information processing in the next century.

So, when I ask, “Do we all work for noth-

ing?”, clearly the answer is *No", and what you
have seen this week, and what is going on else-
where is clear proof that the answer is “No™. But,
if the anszwer is no, where do we fit, where should
we be, and where will we be in the futore? This is
what 1 will essentially talk about, but I'd like to
make clear that, in my mind, there is no other
springboard either.

So, what do we realty mean when we discuss
the role of logic programming as a springboard? 1
will just use one slide (Fig. 3) here, to explain why
I'm really lost when I look at information process-
ing as a whole. Tdon’t think we can really address
that. And, if [ take the time to discuss this, it's
because it's really by going into more detail that
we can give conclusive answers rather than too
general answers.

What Do We Really Mean

+ The concept of information processing
is a catch-all
+ computing as a whole
* specific areas
+ Who is behind the question
* d researcher
+ a manufacturer
« an application developer
-+ a system developer
+ an architecture engineer
* As a real thing or as a Modal
+ of research in computing -
+ of research for some of the actors
+ of computations
+ of information systems

Fig. 3

You see all these different viewpoints of a sys-
tem: the manufacturer's, the researcher’s, the
user’s one, ete. There is no way to ignore that they
express different requirements and that logic is not
going to fit them all, Further, even if we settle for
the use of logic, it can be used 1o model the world
and reason about it, or it can be the world itself.
This adds complexity to the question. More, today
we build systems in layers; it could be worth

-72-



studying at which layers is LP apparent, for each
of the views we discuss. In analysing such a com-
plex sitvation, I'm saying that neither logic pro-
gramming nor any programming paradigm can be
the underlying foundation, except in the sense that
Alan Robinson used on his talk on Monday to dis-
ciss an abstract computing device: the Turing ma-
chine. In this sense, yes, logie is the underlying
paradigm, but a3 soon as you leave this - I would
say —- secure world, then, you are forced to see
other things (Fig, 4),

But the point is that, when you really want to
understand the picture 1T was showing before, for
example to see where logic fits, you are forced to
choose one direction and to push the paradigm vou
have chosen to the limits, Actually, by taking the
decision to see logic programming as a unifying
paradigm in some sense, people have pushed the
walls around, and pushing the walls around,

learned not just about that paradigm, but also
about the other ones. It's when you try to cross the
border and to push the walls further, that you really
understand and contribute to progress signifi-
cantly; just to give a concrete example, I think that
the way the concurrency problem has been at-
tacked in logic programming, t2lls us a lot about
concurrency in general, and that we make progress
in understanding concwrrency no matter which
paradigm, in the end, people will use to implement
it.

MNow, let us look at the question from the
model and research perspective (Fig. 5); my an-
swer, as | already said in the previous stide, is that,
yes, clearly logic programming remains the major
candidate 10 provide a coherent view of the world,
[ don’t think there is any serious competition from
that viewpoint. Saying that, does not imply that
everything is easy and simple to solve, but never-

Glohbal Cumﬁuting Perspective

* hierarchy of views of the world
+ multiple views at each level

» diffarant tools needed

» diffarant abstractions needed

+ neither LP nor any programming paradigm as the underlying foundation
« but, keep trying pushing to the limits (eg, develop Hardware was a good idea)

Fig. 4

Model and Research Perspective

constraint programming

« the major candidate providing a coherent view

+ seamless integration of the world parts

= major contributions: rule-based deductive DBMS, problem solving and Al,
specific logics for fime and belief, handling negation, concurrent programming,

* in some cases, achieve dominant position

« but it will not be the unique encompassing model, adopted by everyone
+ because there is too much human intelligence

+ and there are too many abstraction viewpoints

Fig. 5

13-



theless, 1 think progress has been made in a num-
ber of areas; and ['ve listed here just some ex-
amples, by no means trying to be exhaustive; T
stress the contribution of logic to the world of de-
ductive databases which perhaps are not as well
known as some of the other contributions in the
field of concurrency or of langnages; the fumre of
databases for me is no doubt connected to the fu-
ture of logic, among other things, 45 we've leamed
over these years.

Similarly, the fumre of problem solving is
linked to that of logie programming; the constraint
languages are certainly a good example of the type
of solutions that we have been able 1o find, and
that will certainly flourish over the vears; this will
be the way to go for problem solving not just in our
field, not just for symbolic computing but as well
for combining numerical and symbolic computsa-
tions, something required in many hard problems
that will become feasible through this unique ap-
proach, Here are other examples I already men-
tioned: concurrent, parallel programming, and so
o1

In some cases, logic has really reached a
dominant position. It's not the case sverywhere,
needless to say; certainly we can improve the posi-
tion of logic in a number of these domains, but it
will never be dominating in every field. There's

just too much human intelligence, 1 believe, for
aceepting that one particular way of looking at
things dominates everywhere. Universal compu-
tation formalisms are a good illustration of this
principle. And there is also a point I want to bring;
when we try to solve a problem, we are very good
at devising different abstraction levels for that
problem space; people like to work at the appro-
priate abstraction level. Sometimes it is useful to
map the solution expressed at one level to a differ-
ent one, sometimes it is dangerous to do so; and it
can be dangerous for logic programming, by the
way, to Iry to map everything down to it; reason-
ing at the appropriate level is what we need,

Let me turn now to the commercial perspec-
tve? (Fig. 6) The answer to our question regard-
ing the future of logic programming is simpler
from that perspective than from the others. No;
we've not reached a status that we were hoping to
reach; whether we will do so in the future, depends
very much on how we are going to tackle this
problem in the near future, not just in the next cen-
tury. 1think we have to worry about that before we
reach the next century, I'm afraid it will be too late
if we wait until that time,

There is always resistance to new ideas; this
could explain why we've not succeeded very well
in the commereial world. I think it’s not just that;

Commercial Perspective

* niches (eg embedded in tools)
= registance to new ideas

+ fads everywhere

= status reached not at level of hopes

= research often unconclusive: no risk

= objects: a fad ... but more than that

not, by themselves, the answer
» henefits of logic not explained as well as those of objects
« relating to Cobel, to SQL through real world
» explain benefit of business rules and integrity checking
- integrate with existing engines '
+ create markets (eg constraints) :
- embed extensions or develop extensions (eg constraints

Fig. 6




it's probably that we have not made all the efforts
we could have made to explain and to really dem-
onsirate the benefits of logic programming. The
world, especially the commercial world is domi-
nated by fads. Object programming, for example,
is certainly a fad in the commecial world; they un-
derstand however that there is more to it than just a
fad; it brings something which they can under-
stand; in contrast we have not explained really ex-
actly what we could bring with logic program-
ming; for example, we have not related deductive
databases to the SQL world or COBOL well
encugh. I think we have to do more, and I'd like
just to give an example of things we could do.
Take & payroll application. 1 think it would be a
great success if you wrote it as a logic program-
ming package; it would be written as a concurtent
logic application running parallel strcams corre-
sponding to different employees; it would also use
constraint programming on the computing side, if
you wanted to be able to stale declaratively regula-
tions - this needs dataflow computing and would
be provided through constraint programming; it
would also benefit from constraint programming if
you'd connect it to a human resource package sup-
porting scheduling or job allocation, and so on. I
think that's kind of results that the commercial
world could understand, We have to do that, but it
will take time before we can be convincing on this
type of examples. -

I"d like also to observe that we are working by
building everything from scratch even in the sofi-

ware area; for example, we are building constraint
programming out of logic based computation en-
gines. A question could be, should we do it instead
by connecting to existing engines, such as pure C
and forgetting about, or trying to forget about the
whole world of logic programming, T don’t think
we can do that completely and still reap all the
benefits of logic programming, but we should not
ignore mix and match solutions.

50, in conclusion, 1'd like to say that we need
to identify potential success stories and work very
hard for them (Fig. 7). I've indicated here only
thiee areas where everything is somehow starting,
where we can impact the world becauze the world
is not really stable. ["ve listed constraint program-
ming languages -— I've already given examples.
I've listed case tools and repositories; this is a
very immature world; the knowledge representa-
tion requirement is essential, as well as deduction
technigues and thus there is a lot of potential for
the type of modeling that logic programming can
achieve. The third example listed here is that of
“workflow languages™.

Some of the people call them coordination
laguages. Let me sxplain what I have in mind.
The computing world is going to be distributed,
It"s going to be distributed more than being deci-
sion-based or being compule-intensive-based.
Computing as communication is starting to hap-
pen, and it will be more and more so; lots of tech-
nologies are taking off the ground around the cli-
ent server architecture or the cooperative architec-

« case tools and repositories
« workflow language

» {ake bigger risks

Hard Work Needed In and Qut of the Labs

« identify potential success stories and go for them
» logic based consiraint programming languages

= applications are made of communicating cbjects, distributed or not
+ technology exist to bind them: AppleEvents, OLE, CORBA, ToolTalk, etc
= LP {and CLP in particular} can be the great conductor which is needed
« work on industrial strength implementations, get to the real application problems

Fig. 7

.75.



ture, but these technologies, today, do not really
address the problem of synchronization of com-
munications and processes. They are low level,
underlying technologies, that can be found in &
number of products listed here. - What we need is
something more powerful, such-as the master of
ceremony. We nead the conductor to organize this
distribmed world. T think this is really one area
where with all the results we have on CLP, which
in this case, is either constraint logic programming
or concurrent logic programming in some form or
another, that we have more than what is needed to
do a good job. And I'd like to conclude on that.
Thank you,

Kowalski: 1 propose that we continue now with
our next panelist, Peter Wegner, and that we delay
the discussion until after all the panslists have
macde their presentations,

Wegner: Good afternoon. [ feel greatly honored
10 be a member of this panel, and especially 10 be
invited as the only outsider, since my main field is
not logic programming. As an outsider, my role is
to be provocative. I will take a controversial posi-
tion concerning the role of logic programming in
problem solving, arguing that the object-oriented
modeling paradigm will dominate the logic-based
reasoning paradigm for application pmgrammmg
in the 21st century.

Before I get into the details, I would like to say
a few things about the impact of ICOT. 1COT has
made many scientific contributions to logic pro-
gramming, concurrent logic programming, con-
straint logic programming, parallel machine archi-

tecture, parallel machine system software, and ap-

plications like genetic applications. It hasz also
contributed to building the Japanese research in-
frastructure, to making logic programming re-
search fashionable throughout the world and to
creating a new model for cooperative research that
has influenced the Esprit research project, and pro-
vided a stimulus for the European Economic Com-
munity. It has provided a vibrant research envi-
ronment for & new generation of young researchers
and some infrastructure that can be ransferred to
the real-world computing project. [COT has been
very successful in terms of its impact with great

scientific, social, and political effects.

- Are modeling and reasoning paradigms
complementary, or iz there an inevitable wadeoff
between them? My main points are that modeling
and reasoning paradigms are incompatible in the
sense that we have 1o trade off one againsi the
other, and that the modeling paradigm will domi-
nate the reasoning paradigm in the 21st century.
Logic programming is a paradigmatic example of
the reasoning paradigm, while object-oriented
programming is a paradigmatic example of the
modeling paradigm. The relation between reagon-
ing and modeling parallels that between 1COT s
fifth-generation computing project and the real
world computing project proposed as its succes-
sor. Fifth-generation computing is problem soly-
ing by reasoning, whereas real-world computing is
problem solving by modeling.

The debate between modeling and reasoning
is a continuation of the 2000-year philosophical
debata between rationalism and empiricism in the
domain of computing. Descarles’ statement
“eogito ergo sum —- [ think, therefore, I am™ is the
essence of the rationalist credo that thinking is the
basis for knowledge. His development of Carle-
sian geometry, which reduces geometry to alge-
bra, encouraged the belief in the possibility of re-
ducing physics to mathematics and of computation
to logic. Hume's argnment that deductive logic is
an insufficient basis for inductive and causal laws
and therafore for empirical sciences like physics is
the basis for empiricism. Hume caused philoso-
phers like Kant to reexamine the radonalist belief
in pure reason, but did not deter Hegel from adopt-
ing an extreme form of rationalism based on a
flawed form of reasoning {dialectical reasoning)
that strongly influenced mathematical philoso-
phers like Russell,

The early 20th century was a period of math-
ematical rationalism, with Russell's attempt to re-
duce mathematics to legic in Principia
Mathematica and Hilbent's program to solve all
mathematical problems by mechanized math-
ematical rules. However, in the late 1920s and
19305, several results showed such rationalism
was not feasibie, including Godel incompleteness,
Turing non-computability, and Heisenberg's un-
certainty principle in the domain of quantum me-

-7~



chanics. This caused a return to empiricism, with
operationalism in physics, behaviorism in psy-
chology, and a trend away from formalism in
mathematics that continues to this day.

Object programming is an empiricist en-
deavor, while logic programming is both moti-
vated by and limited by rationalism. Though logic
programming does not deny the need for observed
data as input to computation, it does imply that all
computation once the data has been gathered be
performed according to the laws of deductive
logic. We argue that logic programming is a re-
stricted form of computation that limits our ability
to directly model applications and that the empiri-
cist influences represented by object-oriented pro-
gramming free us from these rationalist restric-
tons.

Lat's consider three paradigms for computing:
the state-transition paradigm; the object-oriented
modeling paradigm, and the Prolog-based reason-
ing paradigm. The state-transition paradigm is the
procedure-oriented paradigm; programs here are
sequences of action, and the computing step is a
state transition. With the modeling paradigm, the
paradigmatic example is the object-oriented para-
digm; a program is a collection of interacting ob-
jects, and the compulting step is message commu-
nication. The paradigmatic reasoning paradigm is
the logic paradigm; a program is a set of rules of
inference and the database of facts, and the com-
puting step is logical inference. .

We understand the logic paradigm fairly well

. atthis meeting, but I would like to say a little about
the modeling paradigm. The object-oriented para-
digm mimics scientific modeling, since it models
entities by their observable behavior. Objects
model things by their observable attributes,
namely by the set of procedures that determine
their interactions and by the set of messages that
are meaningful for each object. In doing so, they
specify “what" by all potential “hows", providing
a declarative specification by all potential behav-
iors, The chject-oriented paradigm therefore cap-
wires the interdisciplinary essence of modeling in
the domain of computing.

Let's modify Bob Kowalski's divide-and-
conquer aphorism “algorithm = logic + control”
to:

program = declarativeness + control
="what" + “how"

This change is insignificant if we equate
declarativeness with logic as in logic program-
ming. However, it becomes significant if we
broaden the definition of declarativeness to in-
clude other ways of specifving what iz computed
independently of how it is computed. Object-ori-
ented programming specifies objects (things) in-

~ dependently ol specific computations (actions)

and therefore has a claim to be called declarative,
[t specifies objects in terms of all their possible ef-
feets without commitment to a specific effect. The
declarativeness of objects is very different from
the mathematical declarativeness of logic pro-
gramming, but is in some respects more useful be-
cause of its close similarity with the way “things”
like tables are specified in scientific modeling.

The control mechanisms for objects is also
very different from that of logic programming.
Control at the object interface can be specified by
a select statement of the form:

select {opl, opZ, ..., opN}

where opl, op2, ..., opN are the operations or
methods of the object. This select statement is
implicit in objects but becomes explicit in concur-
rent objects or concurrent processes such as those
of Ada or CSP, where it is a version of Dijkstra’s
guarded commands:

select (Gllopl, GZlop2, ..., GNlopN)

The select statement is essentially a read-eval-
print leep which waits for a message and then ex-
ecutes it.  Objects are locally non-deterministic,
They do not know what they will do next. They sit
there waiting for an input; and when an input ar-
rives, they commit te that input; so this is a com-
mitted choice form of non-determinism, The no-
tion that control at the object interface is realized
by a committed-choice select statement is usually
thought of as a property of concurrent objects, but
it applies also to sequential objects,

Mext, 1 will consider the role of open systems
in modeling. The term “open systems” suggests



incremental, scalable, modifiable, adaptable,
evolving systems. Openness is a property of mod-
eling that is not as captured by logic. There are
two kinds of incremental change: reactiveness by
dynamic response to stimuli, and encapsulation
that facilitates static extensibility of modular sys-
tems by programmers. Reactiveness captures lem-
poral evolution of organisms as in biological evo-
lution, while encapsulation captures external
modification as in software engineering:

open sysiem = encapsulated + reactive
= gpatial extensibility + temporal
evolution

A system will be called strongly open if it is
both statically or dynamically modifiable. Objects
are guintessentially strongly open; they are reac-
tive in that they can react to their environment and
they are modular and easily extensible, Logic pro-
grams are not strongly open; they are not reactive
in a technical sense discussed below. Although
they can be statically extended by adding clauses
or adding facts to the database, they do not model
the application domain as directly as object-ori-
ented systems so that a small change of the appli-
cation domain does not necessarily translate 1o a
small change of the program.

Let me talk next about why logic programs
cannot be reactive, Reactive systems compute by
irrevocable side effects on their environments,
since their reaction to stimuli cannot be taken
back. Pure logic programs cannot react till a theo-
rem is proved: they cannot make an irrevocable
commitment until they are sure the resolt is true
and cannot therefore be reactive. The property of
being able to take things back as though they had
never happened, called retractiveness, is incom-
patible with reactiveness,

Concurrent  logic programs sacrifice
retractiveness, essential to logical completeness,
in favor of committed choice non-determinism, In
giving up logical completeness to realize reactive-
ness they adopt a control structure very similar to
that of object-oriented programming. To see this,
consider the set of all clauses of a concurrent logic
program with- the same predicate P in the clause

head:
P(El}):- G1 1 B1 - head P (Ei}, guard Gi, body Bi
P (E2):- G2 | B2 - reducible if unifies (E, Ei)

and Gi

P (En):- Gn | Bn - irrevocable committed choice

This corresponds to the set of all clauses that
could potentially be invoked when a goal P {E) is
10 be proved. In a pure logic program, all clauses
would be tried until either the goal is proved or all
alternatives are exhausted. We call such exhaus-
live search through all alternatives don't-know
nondeterminism because the system need not
know which alternative leads to a correct solution,
since all will eventually be tried. Don't-know
nondeterminism is often implemented by back-
tracking and conflicts with reactiveness, Concur-
rent logic programming systems cannot handle
don't-know nondeterminism and adopt commit-
ted-choice (don't-care) nondeterminism that per-
mits reactivengss because there is no longer any
requirament to revoke the effects of a commit-
ment. The resulling control structure for choosing
among alternatives when satisfying a given goal P
(E} is exactly like that for choosing among math-
ods of an object. The set of classes for a given
predicate P are analogous to the set of methods of
an object.

Let me conclude by considering the design
space of teasoning versus modeling in terms of
two dimensions: a declarative or *what”" dimen-
sion comesponding to reasoning versus modeling
and an imperative or “control” dimension corre-
sponding to retractive versus reactive. The pure
logic paradigm is a retractive reasoning paradigm,
while the cbject-oriented paradigm is a reactive
modeling paradigm:

Pure logic programming (L.P) — reasoning +
retractive

object-oriented programming (00P) — mod-
eling + reactive

Since “what” and “how™ specifications deter-
mine a two-by-two grid, two other possibilities
must be considered (see Fig. §):



concurrent logic programming (CLP) — rea-
soning + reactive
distributed logic companents (DLC) — mod-
eling + reractive

How
What
Reasoning
Modeling

Retractive |Reaclive

Shared Constrainls
Digtribuied Componenis

Pure L
DLC

Clomplete

CFL
B
Flexible

Fig. 8 Design Space for What and
How Specifications

The combination “reasoning + reactive” cor-
responds 1o concurrent logie programming. The
combination “modeling + retractive” does not cur-
rently correspond to any well-established lan-
grage, but is being investigated in terms of disirib-
nied logic components that encapsulate local
don’t-know nondeterminism but have committed-
choice interfaces,

The combinations of retractive reasoning and
reactive modeling appear more stable than the
other two combinations. Reactive reasoning and
retractive modeling systems are hybrid design al-
ternatives. Concorrent logic programmers claim
that reactive reasoning captures the best of both
worlds, while researchers in other language para-
digms feel that this approach falls between two
steols, being neither logical nor reactive, Distrib-
nted logic components are even less well explored
than reactive reasoning systems, Here again it
could be claimed that combining distributed local-
ity and completeness is an advantage, but it is
more likely that local completeness will be found
10 be #n inadeguate hybrid bacaunse it is neither re-
active nor a reasoning system.

To conclude, I am suggesting that modeling
paradigms are fundamentally different from rea-
soning paradigms in that they are based on a dif-
ferent notion of declarativeness and are reactive.
There is a rade-off between object-oriented reac-
tiveness and logical completeness such that we
must choose one or the other. For programiming in
the large, reactiveness is more important than logi-
cal completeness, and because of this the object-

oriented rather than the logic paradigm will be-
come the dominant paradigm for programming in
the large in the 21st century,

Kowalski: Thank you very much, The next
speaker is Ross Overbeek.

Overbeek: Well, [ believe my perspective is,
perhaps, a litle different from the other speakers,
We were asked to speak about the role that we saw
for logic programming and for parallel processing
in the 21st century.

I beliave to speak about that we are going to
have to face and address essential questions. In
our minds we ara geing to have to ask:

“When will the very best applications, the
best implementations of specific applica-
tions, be based on logic programming sys-
tems? And when will it oecur in more than a
few limited instances?"

I think that to understand the role of this tech-
nology we have to look at such questions, which
are fundamental and basic - and they are divorced
from the basic research topics that we all have
come to appreciate and love to discuss.

From my Iimited perspective [ see technology
moving through several stages of development:

1. Early explorations and formulation of basic
15808 :

2. Growing awareness of the potential uses of
the new technology

3. Hxperiments on “simple kernel” prototypi-
¢al problems

4, Gradual adoption of the technology in a fow
applications

5. Widespread acceptance of the technology

I'was involved in working early on in parallel
applications, and 1 waiched parallel architectures
(and applications on them) move through these
different stages. I vividly remember being told by
people that there was no point in worrying about
these machines -- that they were going to be insig-
nificant and outclassed by sequential machines.

I believe that parallel processing has moved
into the fifth stage, and it will be widely adopted.
Perhaps paradoxicaily, I've also reached the point

-79-



where I think it is, perhaps, less significant than 1
used to believe — just as it finally became ac-
cepted. But logic programming is what [ am more
concerned about, because logic programming is
the topic that I find more important. And I don’t
think it's clear yet what role it will play in the next
century. 1 don't think its role has been determined,
and I don’t think it will be determined by its tech-
nical aspects.

I think maybe we could begin by looking at
the applications that are now emerging, if we
wished 1o gain some understanding of where this
technology will go. Inmy mind, | break them inta
three basic categories.

a) There is a set of applications which ['ve

said are based on expressive power -
that's, of course, not well stated. But what I
meant byt was there is a set of applications
that will use a language like Prolog because
of the ease of doing prototyping, the ease of
working with databases, the ease of creat-
ing interfaces.

bl There is a second category of applications
based on distributive computing. The best
example here is the work done on simulat-
ing telephone swilches.

c) And, finally, an area I've been more active
in is the cecrdination of parallel applica-
tions. In this context we've watched the
basic ideas of committed choice logic pro-
gramming gained real in wide-spread ap-
plication. Indeed, until recently, [ believe
the Intel’s Delta was one of the more pow-
erful machines available, and I think it was
the case that the first application brought up
on it was based on PCHN, a language which
has the same intellectual roots as KL.1.

So, vou have these different areas. What
strikes one immediately is the point that Bob
brought out, that there isn’t a unifying principle
here beyond the general framework of logic, that
these really are wildly different classes of applica-
tions, :

3o, one might ask, “Will unification occur 77
--- will there be a unification between the dialects
like Prolog and the dialects based on committed
choice? One reaction a person could have is *no -

- essentially we have a very fast moving technol-
ogy, one that will drive applications like Prolog
and UNTX, C workstations, that the mass software
market will dominate that area, that the committed
choice applications will probably be limited to ex-
tremely large machines, probably deing largely
numerical computations”, It's my own, somewhat
unorthodox, opinion that we should build opon
these two environments and not attempt a unifica-
tion,

And then, there is the more dispassionate
view, perhaps; some leaders may feel that one can-
not go wrong by first trying to understand an area
tharoughly, to work out an appropriate solution
before auempting to apply it. This has never been
my tendency, unfortunately; but I can understand
the position, and I can understand why there are
groups that take this view,

I'wonld like to advocate that yvou, at least fora
moment, take the perspective of someong of de-
veloping a large application in this technology -
that you force vourself to consider the world from
the point of view of a person developing an appli-
cation; not of advancing the technology but at-
tempting to develop immediately and rapidly the
best implementation of a given application, what-
ever it is. T think you immediately, in the case of
logic programming, see a trade-off between two
basic factors:

1. One is the size of the market that is using
the technology of logic programming.
You're faced with reducing the market for
your preduct, if you tie it to technology that
is not widely available,

2. On the other hand, there is the cost of devel-
opment. This is the strength of logic pro-
gramming in many ways; that based on de-
clarative logic and ease of expression, one
can reduce the cost of developing func-
tional applications.

But to understand this tade-off, we have 1o
iook at issues that ocour o anyone building prod-
ucts. I have to wonder what would happen if I
listed the computing languages that have been pro-
posed, developed, and used over my period in pro-
gramming? I have to wonder how many computer

-80-



scientists could pick out C as a significant lan-
gunage if they were not aware of the history; if they
based their decision upon just the characteristics of
the language.

I believe that C attains its significance due to
many factors; many of them totally unrelated to its
intrinsic characteristics as a programming lan-
guage. Similarly one could consider UNIX -- why
did UNIX become important? What were the fac-
tors that produced its current popularity? And
even stranger, why iz MS-DOS playing such a
major role in the world today? 1 think we have to
come to grips with these questions if we want to
understand the role of logic programming in the
next centory, The factors that determine the
spread and adoption of technology are quite differ-
ent than these that computer scientists normally
think about,

Now, I would like to move into a discussion of
the applications that T work on, because 1 am actu-
ally fairly optimistic about the use of logic pro-
gramming. Indeed, I work on biological applica-
tions now most of the time; one of the essential
application areas is integrating databases relating
o genetic sequence data. And although people
will tell you that these databases are destined to be
huge, complex, and that they will strain the tech-
nology of the coming decades, 1 don't believe
that’s trze at all. I beliave that what is really im-
portant about them is that they have a complex
structure, that they're hard to integrate, and that
it's precisely the strength of logic programming
and logic that are required to turm this massive data
into a functional resource. So [ actually believe
that the best integrations will grow out of logic
programming efforts, some that are done in Japan,
some in Enrope, and some in America, Further, |
believe that it is already recognized within the bi-
ology community as probably being one of the
most likely approaches to a successful integration,
I'm very optimistic about an area like biological
databases; and I believe that we should search for
other areas like that. -

Another area reflecting another aspect of the
logic programming paradigm is work 1've done in
phylogeny with Hideo Maisudo of Kobe Univer-
sity and a group at the University of Illinois. Phy-
logeny invelves reconstructing the tree of evolu-

tion - attempting to recreate, in some sense, the
ancestral sequence; to trace back and gain a per-
spective on the universal ancestor. In this applica-
tion performance is critical. If one runs it on a
workstation, if one uses the standard computations
based on maximum likelihood, the computations
would run for years on workstations. So, parallel
computation i utterly critical.

We developed a program based on maximum
likelihood, ran it on the Intel Delta, and we con-
structed a phylogenetic for microorganisms that
included 300 organisms; this is the first time that
people had used this technique to build trees for
more than 15 or 20 organisms, so this is one of the
limited applications for which a parallel process-
ing is utterly required. And, in what is a common
phenomenon, we ran into severe load balancing
issues. The original applications was recast in a
dialect in PCN (invoking C subroutines); and this
reflects, in my view, 4 common and important use
of committed choice logic programming. Essen-
tally, thiz is what people are referring to as a coor-
dination language. For the dialect to be significant
in this context, we must be able to link it sucoess-
fully with existing application codes; the existing
investments in both C and FORTRAN and in the
numerical community are just too large to ignore,

Finally I would like to talk briefly about an-
other area of applications I'm working in: geo-
graphic information systems. I now do work con-
sulting for some industrial cormpanies on where to
site stores. It's a database activity, it is one where
you create a database of information about geo-
graphic areas and then you use this database to
support statistical modeling, What I found sur-
prising is that the most cost effective way to pro-
ceed was using Prolog. We routinely construct
databases now that contain over half a million
clauses, and they work extremely well on rela-
tively inexpensive hardware. Certainly the cost of
the hardware in the system is far less than the per-
sonnel, the cost of the project is clearly dominated
by the cost of personnel, and the potential advan-
tages of flexibility are overwhelming, That is, if
the application works correctly there is at least
hundreds of millions of doilars that could be
savad. If we could site stores more quickly and
more accurately, the cost of the personnel or the

-81-



cost of the computing werkstations is almost to-
tally insignificant. What is important is giving the
right answers as quickly as possible, Now, there
are obvious drawbacks in using Prolog to do this
sort of activity. But what's interesting is that it is
the most cost affective way at this point in time to
doit
So, that will be all for my initial statement.

Kowalski: Thank you very much, We continue
now with the next panelist, Koichi Furukawa.

Furukawa: [ would like to discuss from the
standpoint of a scientific sales manager of FGCS
Product Incorporated.,

To sell our products, we need applications;
and the applications must be such that no other ap-
proaches to them can compete ours,

The most essential requirement on the quality
of such applications is that they must extensively
rely on heavy symbolic computations because that
is the most strong feature of our machine, The
next question is, then, “is heavy symbolic compu-
tation crucial in real life applications?’ My an-
swer to this question is “yes”. We can currently
find only few such applications which require
heavy symbolic computations, However, there are
many hidden application areas whose bottle neck
is the huge amount of symbolic computation and
therefore no one has tried to solve them so far,
Such problems include knowledge acquisition
from database, data analysis, many combinatorial
problems such as human genom analysis, so called
inversion problems such as disgnesis, disign, ab-
duction and constraint satisfaction. In the term of
logic, inversion problems are interpreted as non-
deductive problems. In such problems, you have
to guess the structure of some machinery from in-
put / output behaviour, unlike to guess-input / out-
put behaviour from its structure; thus we call such
problems as inversion problems.

There are two important aspects in logic pro-
gramming: as a tool for representing knowledge
and as an inference engine. From the knowledge
representation’s aspect, it has the capability of ex-
pressing open world by negation as failare. It has
been commonly believed that logic programming
is just for deductive power, but this is not true. A

theory of stable models provides a model theory
on general logic programs including negation as
failure. Also, these formulations provide natural
formalization of abduction, indnction, and anal-
ogy. '
From an inference engine’s aspect, it i3 well
known that automatic searching and combination
of top-down and bottom-up search strategies pro-
vide powerful inference capability.

For the problems of handling negation as fail-
ure and abduction, Inone proposed a method to
compute them by deductive procedure. That is,
negation as failure and abduction problems are
translated to proof problems of first order logic,
and therefore non-deductive inference problems
can be transiated into deductive problems. As a
result, this method provides a straightforward way
to solve a class of inversion problems related to
abduction,

The most important featore of concurrent
logic programming for our project is, of course, its
expressiveness of concurrency, The feature is cru-
cial for general purpose concurrent programming;
many useful and complex applications were writ-
ten in KL1, including the operating system of
PIM. To overcome the apparent weakpoint of our
concurrent logic programming language, we tried
to recover completeness, or equivalently OR par-
allelism, by inventing several search programming
methods for computing all solutions. As a result,
we succeeded o effectively recover the complete-
ness property in our concurrent logic language.
Therefore, in our case, we have now both reactive-
ness and completencss.

In order 1o solve logical inversion problems,
or equivalently abduction problems, by PIM, we
nead appropriate programming methods. Since
abductive inference can be translated into deduc-
tive inference, we can achieve the target simply by
realizing an effficient paralle! theorem prover in
KL1. Fortunately, we have already developed a
very efficient parallel theorem prover called
Muodel Generation Theorem Prover (MGTP)
which proves theorems by bottom-up procedure.

From these advantages [ pointed out, it is very
natural to conclude that concurrent logic program-
ming is expressive enough for both concurrency
and searching, Also, it has affinity to parallel

-22-



computation, therefore, it provides very appropri-
ate bases for artificial intelligence systems and for
more general information systems in 21st century.
Concurrent logic programming and parallel pro-
cessing based rechnologies have great potentizl for
solving many future Al problems,

Kowalski: Thank you. That was an amazing per-
formance, compressing o0 many exciting ideas
into such a compact presentation. Let us continue
now with the next panelist, Shunichi Uchida.

Uchida: Good afternoon, ladies and gentlemen.
As one of the key members carrying out this
project, I would like to thank you for the great in-
terest many of vou have shown in this project, and
T am also very proud of the very high rating given
to this project by many of you, Thank you very
much.

I would like to present a slightly different
viewpoint from the other panelists. As my back-
ground is in hardware architecture, I am now very
happy to see that the machines we have built have
opencd up new application fields, not enly in engi-
neering but also in very sciemific applications like

theorem proving. Here, [ would like 1o mention
the two topics shown in this slide (Fig. 9) and
stress that logic is a very appropriate and useful
backbone for future computer science.

First of all, T wonld like 1o mention about
knowledge informaticn processing in the coming
century and ingist that we should proceed with re-
search on two topics. One of these i3, of course,
parallel symbolic processing. In our case, we will
use KL1 and its higher-level extension, AYA,
which is regarded as a combination of logic pro-
gramming, KL.1 and object-oriented program-
ming,

Quite recently we have attained very high uti-
lization ratios for many processors in several ap-
plication programs such as a theorem prover and a
protein sequence analysis system. We were sur-
prised at this result. Honestly speaking, before
this occured, I did not believe that we could attain
almost linear speedup by using many processors.

So, now I have much stronger confidence that,
if the hardware people can provide the software
people with larger scale multi processors, say,
with more than ten thousand PEs, then linear
speedup may again be obtained. So, then, I am

| Knowledge Information Processing (KIPS) for 21 century |

- - .
R -y e

Further sfforts

-

tnrmnia programmng
My surprise --> KIP applications include sufficient parallelism.
1,000 PEs --= 10,000 PEs --> may be more

- parallel algorithms, load distribution techniques, and many more
- porting KL1, PIMOS to many other MIMD machines
- interfacing with existing software in a language level or OS level

-

more “general logic” programming
“general logic” programming language
--> "assembler" for knowledge representations
in cultural scientific or cognitive scientific APs
We may need something more? situation theory? modal logic? )

Fig. 9

-83-



very sure that great research and development ef-
forts shall be applied to the research and develop-
ment of parallel algorithms, load distribution tech-
nigues, and many more parallel processing tech-
nologies. Those efforts will surely create a very
big market, and, in the near future, the speed of
this creation will be influenced by such efforts as
intreducing KL1 and PIMOS into the many com-
mercially available MIMD machines which will
appear in the next faw years.

5o, then, another important effort shall be tw
provide tools or software to interface our systemns
with existing software at the language and operal-
ing system levels. So, those efforts will accelerate
the creation of new markets and also extend vari-
ous research and development fields for parallel
processing applications, It is likely that those
technologies will be realized in the next five to ten
years.

- Then, we wanl to foresee what will happen af-
ter that. Recently, I have tended to see technolo-
gies from a much more macroscopic view. I be-
lieve, this is because 1 was assigned as a manager,
but sometimes other people say that it is simply
because of my age. But, anyway, recently 1 have
really wanted to see what shall happen afler these
new kinds of technologies are realized and [ try to
imagine what future knowledge processing will be
like.

The lower half of this slide shows an image of
the future. This image makes me more confident
that logic programming is a very nice backbone,
especially for hardware architectures. Of course, |
agree with other opinions, such as Peter Wegner’s,
that object-oriented models are indispensable for
modeling real applications. However, from a bot-
tom-up view, namely from the hardware view-
point, 1 feel it difficult to find our which are the
core operations or computations of the model tobe
implemented at the hardware level.

First-order logic or some restricted logic
model is clearer and more understandable to us,
Thus, I still prefer on the same backbone, namely,
logic. T guess that the dreams of computer archi-
tects for the next decade revolve around more gen-
eral inference engines for ganeral logic program-
ming. Currently, we have only very specific or re-
strictad logic programming.

If we conld have a general logic programming
language 28 our daily tool, we can concentrate
maore directly on our applications. We must, first,
pay attention to machines and operation systems to
thoroughly understand them. After that, we can
change our attention Lo the applications s0 we can
program them efficiently.

8o, if we could have general logic program-
ming langnages, we could probably eliminate the
first step and just look at each application to in-
clude knowledge programming in it. So, in situa-
tions such as this, where knowledge programming
is the main job, we feel that a first-order logic lan-
guage will not be a high-level language anymore,
So, probably some may say that this language is an
assembler for knowledge programming.

Recently, we and myself, in particular, have
had this kind of dream. 1 want to shorten my pre-
sentation. So, allow me to skip most of my slides.

In the future, Timagine, we will naturally have
very powerful parallel symbol processing systems,
and on top of this, we will have high-level infer-
ence engines as shown in this slide (Fig. 10). To-
day, some of these engines are being developed as
theorem provers or language interpreters for ob-
ject-oriented database languages. But, as long as
we keep logic as the unified backbone, we can,
probably, advance knowledge information pro-
cessing not only in the field of natural science but
also in the fields of cultural science and cognitive

In observing our application people writing a
variety of knowledge in a variety of forms, for in-
stance, in a legal reasoning system, I fieel that we
could compare the differences and qualities of the
represented knowledge taken from these different
scientific fields. Currently, we just have the single
word “knowledge” to symbolize the quality or
characteristics of knowledge; we cannot distin-
guish the knowledge in these fields.

S0, we need an objective view to be able 0
compare the knowledge in the fields by using this
unified langnage.

Here, [ expect that we may enter a new era of
knowledge processing. | know that there are many
different opinions, still, T believe that logic can be
used as the central backbone especially in research
on knowledge information processing. Thank you



Hatwral Sclenhess Cultural Sclsnces Cegnitive Ssleances
x::;:llc:':h :ﬁal’ Financial NL understanding,
Chemical Governmental gm;teem recognition
Systems Systems yalems

*e, L 2 ammeeeett p
Logic-based KRL | >0

High-level Infer: Theorem Provers
Deductive and Object-Oriented DBM
Parallel Nested Relational DBEM

ﬁnwer of parallel prncéaalng is converied
to increase intelligence of application system.

Fig. 10

very much.

Kowalski: Thank you. I shall now change my
position temporarily from that of chairman to that
of panelist. 1shall also try o follow the lead of my
colleagues, especially those from ICOT, in being
concise and to the point. '

In my presentation I will concentrate on some
of the problems that have arisen with the choice of
Iogic programming in the FGCS technologies: and
I will mention & number of reasons why [ believe
we should be optimistic about the prospects of
these technologies in the future.

First, I will look at the sorting problem to il-
lustrate the gap that has arisen between the use of
logic programming for programming and its use
for program specification. Then, I'will look at the
topic of non-monotonic reasening, both to draw
attendon to the importance of the advances that
have been made and to point out the contribution
of logic programming.

Finally, 1 will draw some comparisons be-
tween logic programming and certain styles of
natural language. I will look, in particular, at the
language of public notices, such as the London
underground emergency notice, which can be re-
garded as programs written in natural language to
be executed by people. - Such public notices re-
semble programs, because they are meant to be

“understood uniformly by different people in the
game way. For this reason they need to be written
in a style of natural language which is extraordi-
narily clear and precise, 1 will argue that there is a
very strong similarity between such a style of
natural langeage and the style of some computer
languages. I believe that the strongest similarities
are to be found with logic programming; but there
are also some resemblances to be found with im-
perative languages and with object-orientation.

Based upon these examples, [ will conclude
that indeed there may be some inherent limitations
of logic programming for computing, but these are

-85.



the same as the limitations of the clear and precise
use of natural language for regulating human af-
fairs. Moreover, because it is extremely difficuit
to use natural language clearly, precisely and ef-
fectively, it may be similarly difficult to write
good logic programs.

Let me wm now to my first example (Fig. 11).

Specification

Declaralive Y is a sorted version of X
if Y is a permutation of X
and Y is ordered

Procedural to sort X into Y,

generate a permutation Y of X
of X test that Y iz ordered

Fig. 11

Most of vou will have seen this specification
of the sorting problem many times before, written
explicitly in its declarative form. Interpreted as a
logic program, this specification becomes a proce-
dure, in fact several, different procedures depend-
ing upen the mode of use, Given an input data
object X, the procedure is a “don't know”, non-
deterministic procedure which generates permuta-
tions of X and tests them for orderedness. The
procedure is extremely inefficient, having n facto-
rial complexity, where n is the length of the input
X. Many enthusiasts who are initially attracted to
logic programming languages such as Prolog, be-
cause of the possibility of running specifications,
rapidly become disillusioned because of such inef-
ficiency.

But the inefficiency can be avoided by using
an efficient algorithm, such as quicksort instead,
which can also be written in logic programming
form (Fig, 12).

Motice that the algorithm can be written in
both declarative and procedural styles. There is no
inherent reason why the traditional declarative
form, in which logic programs are normally writ-
ten, should be more acceptable than the procedural
form. There is no reason why logic programming
languages should not allow both declarative and
procedural syntax.,

Program

Frocedural - to sort X into Y
split X into X1 and X2,
sort X1 into Y1,
sort X2 into Y2,
marge ¥1 and ¥2 into Y
Declarative Y is a sored version of X
it X can be split info X1 and X2
and Y1 is a sorted version of X1
and Y2 g a sorted version of X2
and Y is a merge of Y1 and ¥2

Fig. 12

Thus we see that the decizsion to use logic pro-
gramming for representing programs or specifica-
tiong is distinet from the decision to represemt
knowledge declaratively or procedurally. 1 be-
lieve that logic programming enthusiasts, both
novices and experts, are not always clear about
these distinetions; and this may be one reason why
logic programming has not been more successful
in the past. Many enthusiasts have been unable to
distinguish between programs and specifications
and te learn how to use logic programming in a
high-level, but still efficient, manner,

Thus we have a software engineering prob-
lem. But it is one which can be overcome and
which in the future can be the source of a great
richness of programming styles within a single
logic programming paradigm.

Let me turn now to my second topic, non-
monotonic default reasoning. I believe that in the
last decade in the fields of artificial intelligence
and logic programming we have made a great ad-
vance in making logic more usable, by making it
better able 1o represent default reasoning, Uniil
now, if you wanted to apply formal logic to real
world problems in areas such as economics and
politics, you would run into problems, because tra-
ditional logic is only able to represent rigorous,
exact statements which hold universally.

MNon-monotonic logics allow us to reason with
inexact statements such as

“all birds fly"”
which hold by default, but are over-ridden by ex-

B



ceptions such as

“ostriches do not fiy”,
This kind of reasoning can be represented effec-
tively in logic programming form using negation
as failure:

X can fly if X is a bird
and not X is unable to fly
X is unable to fly if X is an ostrich

Logic programming gives us & convenient for-
malism, a sound semantics and effective proof
procedures for default reasoning, This is a great
advance in our ability to apply logic in practice,
both by means of computer and directly by human
beings without the zid of computers. 1believe that
the significance of this advance is another reason
why logic programming will have an Important
role to play both inside and cuside computing in
the future.

But the topic of non-monotonic reasoning has
another lesson about the sociology of research,
that different research communides can work on
similar problems without being aware of the simi-
larities. The so-called *Yale shooting problem™ is
a well-known example of a problem which arose
in the field of artificial intelligence and proved to
be a counter-example to many of the major ap-
proaches to default reasoning. Despite a large
body of literature devoted to the problem, it was
years before it was realised that negation as failure
in logic programming provides a natural and effec-
tive solution to the problem. The essence of the
solution is 1o interpret the negative condition in the
siation caleulus frame axiom

property P holds in the state after action A
if property P holds in the state before action A
and not action A terminates P

as negation as failore.

The history of the Yale shooting problem
teaches us that sociclogical problems of competi-
tion and cooperation between different research
communities can have just as much significance as
technical merit. On the other hand, the interna-
tional collaboration fostered by the FGCS project
has also taught us that greater understanding can

exist belween people working within the same
technological community in different cultures than
between researchers coming from different tech-
nological communities within the same culiure.
My last example is the London undarground
smergency notice, which can be regarded as a pro-
gram to be executed by people. Because itis likely
that future computer langnages will be more like
natural langnage than they are today, this example
may give us an idea of some of the features of
those computer languages of the future (Fig. 13).

LONDON UNDERGROUND NOTICE
Emergencies
Press the alarm signal button to alert the driver.

Thie driver will stop immediately if any part of
the train is in a station.

i not, the train will continue to the next station,
where help can more easily be givan.

There s a £50 penalty for improper use.

Fig. 13

Notice that the first sentence has a procedural
form, but a declarative interpretation in logic pro-
gramming form;

You alert the driver if you press the
alarm signal button.

This example reinforces the suggestion I made
earlier that logic programs should allow both de-
clarative and procedural syntax, Other examples
would show that they could also beneficially allow
an object-oriented syntax, without sacrificing
logic programming semantics.

Still other computational paradigms sesm to
have analogues in other public notices; for ex-
ample the notics:

Please give up vour seat
if an elderly or handicapped person
needs it.

This has the form of a condition-action pro-

iy



duction rule, Tt can also be interpreted in logic
programming terms as an integrity constraint.
Similarly, the notice

Do not obstruct the doors.

has the form of an imperative statement. But it too
can be interpreted as an integrity constraint.

Thus the language of public notices, natural
language used as a programming language o be
executed by people, bears resemblance to many
different computing paradigms. But it integrates
them gracefully into a single uniform language. I
believe that logic programming can be extendad in
anatural way, to include procedural as well as de-
clarative syntax and integrity constraints as well as
procedures, to provide a formal basis for such a
form of computer executable natural language,

I'would like to finish my presentation now by
arguing that the resemblance between logic pro-
gramming appropriately extended and the lan-
guage of public notices suggests that logic pro-
gramming may have limitations as a compula-
tional paradigm, similar 1o the limitations of pre-
cise natural language for human communication.

In the same way that it is extremely difficult to
use natural language clearly and precisely, it may
be difficult to write effective logic programs. In
the same way that humans communicate with one
another both verbally and non-verbaily, by point-
ing and drawing pictures for example, computer
languages of the future may need to integrate ver-
bal, linguistic means of communication with non-
verbal computational mechanisms. Nonetheless,
like natural language in human communication, it
seems certain that logic programming will have an
important role to play in the future of computing,

That completes my presentation and the pre-
sentation of the panel as a whole. [ would now like
to invite members of the audience to join the dis-
cussion, either by making points which may have
been missed, or by responding to provocaticns
which may have been made by the panel.

[Guestions and Answers]

Randy Goebel (University of Alberta, U,5.A):
I'd like to respond to one of the provocations, in

particular, Professor Wegner's.

In his history he missed out somebody, and 1
want to ask him how he would classify that person.
In the *30s there was somebody who told us that
we could think of the world in terms of objects and
relations amongst them, and if we took that view
of a world, whether that world was concrete or ab-
stract, we could use that specification related to
togic, that is the syntax and proof theory of logic,
and that our understanding that is the relationships
between the models that we were looking at could
be discussed in terms of truth, and that we could
simulate reasoning with proof theary. That person
was Alfred Tarski; I claim he was the inventor of
object-orientation, and that there is a fundamental
confusion between what you call a model and
what the logic programmer sees as a relationship
Lo the world that he models with that abstraction in
mind,

Wegner: There is a difference between formal
models and descriptive modelz, and in object-ori-
ented programming we describe modeling infor-
mally and use the term model to mean a represen-
tation or a simulation rather than a mathematical
model. Descriptive modeling is defferent from
model theoretic modeling.

Tarski was concerned with models that could
be justified formally, and his results are not appli-
cable to formal models. We have to give up justi-
fying what we do formally in order to realize de-
scriptive flexibility in modeling the real world, In
my talk I specifically addressed the tradeoffs be-
tween formal and informal modeling, showing that
formal modeling requires a sacrifice in communi-
cation flexibility (reactiveness).

Kowalski: I wonder if any other panelist would
also like to respond to the question.

Gallaire: Tam not sure | understand the differ-
ence you were making between reasoning and
modeling because they are not independent. If you
take constraint programming for example, I be-
lieve that the way you use it today, it's not model-
ing, it’s not reasoning, it's both; the reasoning ca-
pabilities that you get through the constraint
mechanism, give you a new modeling power: you

-88-



don’t madel a problem in the same way depending
on the fact that yon will have or not have a con-
straint solver. So, the solver embeds a lot of mod-
eling power at the same time; thus 1 don’t think
you can say that modeling and reasoning are
purely orthogonal. I think the fink between the
two are muoch more intricate.

You can find lots of examples in operation re-
search; look at the way they have modeled classi-
cal problems, and how, if vou use constraints, the
way problems are modeled; it’s completely differ-
ent, maybe more efficient, some cases will be less,
but it’s completely different.

Wegner: I think we should probably go on to a
different point because we could go on discussing
this one for ever.

Kowalski: Please state your name and affilia-
tion, please, g

Bob Keller (Harvey Mupdd College, TL.8.A0: 1
want to ask a question of two of the speakers, but 1
wanl 1o proceed with the comment which is prob-
ably heretical in this audience, for many people
Anyway.

I think we're making a big mistake by con-
tinuing to confuse the two paradigms, logic pro-
gramming and concurrent committed choice pro-
gramming. And I think, if this were a formal form,
I would proposs a resolution that we immediately
adopt nomenclature as to separaie these two con-
cepts because 1 think it's very confusing to the
generaliy unitiated poblic, and I think it’s been the
cause of some of the confusion about the fifth gen-
eration project, 1 think the project itself has made
tremendous strives in both of these areas, but |
think it is still important to separate those two con-
cepts, now we're stating the fact the either can in-
terpret the other in some sense,

The guestion 1 had was for doctors, Gallaire
and Overbegk, each of whom, during their presen-
tations, said that they felt the paradigm --- and I
believe that Gallaire was referring to logic pro-
gramming, whereas, Overbeek was referring to
committed choice programming, but they felt that
these paradigms could serve the role as a master,
coordinator or conductor among lots of other pro-

grams or perhaps programs written in different
paradigms; and I was wondering what was the ba-
sis of those comments? Why did they feel that
these paradigms are more appropriate than other
potential candidates?

Overbeek: Well, my personal view is that paral-
lel processing breaks into a number of distinct do-
mains. One domain is where you have large, nu-
merical, or symbolic applications, but mosily nu-
merical; that’s where most of the work in parallel
processing is devoted at this point. If you look at
massively parallel applications in that context, I
believe committed choice is an excellent way to
manage a message passing approach to solving
those problems, and where the bulk of the time is
spent in a fairly limited set of routines writtan in a
Tairly low level language.,

MNow, there is a completely different world in
parallel processing which might be characterized
by workstations with a small number of processes,
and for those you're not willing to invest any effort
to exploit the parallelism. In that context OR par-
allel Prolog offers an ideal solution, in my opinion,

But those are complewely different markets,
and the one that's by far the most economically
significant, in my opinion, is massively parallel
processing devoted towards numerical applica-
tions, Tthink that what we're secing in PCN and so
forth are applications of the commiited choice
technology to that market, and it's an important
market.

Gallaire: The type of applications I have in mind
or the type of computing I referred to, is precisely
what is today using workflow languages. New
products, new packages which come on the mar-
ket, which allow you to describe your own appli-
cation in terms of existing applications which are
distributed somewhere in the network. If you look
al what they are able of achieving, it’s still far from
what you would want to do for complex applica-
tions building: there are no synchronization tech-
niques; I do believe that the need is for committed
choice features plus constraints; as a user, [ do not
exactly know in which order things will be done; [
want to solve systems, and the application is the
solution of the system; this is what [ was referring

-89-



to.

Furukawa: Inmy talk, 1 partially answered your
question, I think. I prefer commitied choice than
Prolog --- I mean, DON'T KNOW non-determin-
ism. There are two reasons: one is that, as 1 pre-
sented, the search paradigm or completeness can
be effectively recovered by programming method-
ology in committed choice language. That is one
reason. ‘The other reason is, the architecture of
languages, I mean, if you want to design the infor-
mation system including hardware and in a layered
way, concurrent committed choice language is lo-
cated in rather lower level, and there are -- maybe
what [ said before is equivalent. The higher level
description of such is compiled, translated into
lower level description, That kind of layered ar-
chitecture is, that is important, and something like
we devise some eneyme to solve problems. Then,
put that enzyme, then the program is digested to be
processed by paratlel hardware,

Richard Peer (Weizmann Institute, Israel): One
of the few things that people in the field of concur-
rent logic programming languages agree on is the
name of the field, which is concurrent logic pro-
gramming, So, first, I would like people to re-
spect, at least, this minimal consensus that it was
reached after ten years of research. .

Second thing, I think Peter Wegner gave a
very good exposition; even though he said he’s an
outsider, 1 think one of the few things that, sort of,
were finally understood by the community who
was not working directly in the field is this basic
prineiple that, if you need to express reactivensss,
you must have indeterminacy. In this sense, con-
current logic languages are not different from
A’UM, actors, Ada, any other language which
tries to express concurrency. No one calls Ada
committed choice ADA, or A’UM committed
choice A'UM, or small talk committed choice
small talk. All these langnages that express
concurrency need to have indeterminacy.

And the third point is that maybe there in on-
going research which is still in its beginning, but
generally to the lot of interest and enthusiasm is to
combine these two paradigms, and that’s the work
in the direction of Pandora, and similar languages

which show that maybe there is a possible techni-
cal solution both from a theoretical point of view
and from a practical point of view to integrate the
benefits of Prolog and the benefits of concurrent
logic programming languages. So, maybe they are
not that far apart after all.

Keith Clark (Imperial College, UK.): I'd like 10
make several points, if T could. First of all, I'd like
to address the remarks of Peter Wegner concemn-
ing --- I think he used the phrase, ‘completeness’,
and ‘a lack of completeness” of languages like the
committed choice languages in which one could
do modehing. 1 think that really is a red herring.
There is a subset of programming in the commit-
ted choice languages when you're just doing func-
tional programming. And it was that if you like
the guards of complementary.

Now, I think vou wounld agree that a functional
language is declarative. And an exccution stralegy
and evaluation strategy for functional language
would be complete. So, we get complete for that
case.

In fact, concurrent logic langnage is far maore
powerlul becaunse they've got the logical variable,
the concept of incomplate messages. That, in fact,
is what is uzed to model objects. There's even a
relaxation of this deterministic case when vou
have complementary guards, which Steve Gregory
called the “sufficient geards® property™, which you
also have a nice logical property, which means,
vou will always get at least one answer, because,
of course, one of the worries, if yvou lack complete-
ness in searches, perhaps one process, evaluation
of one conditionable commit 1o a clause find a so-
lution that no one else can find, right? But, thera is
a relaxation as ['ve sald of the deterministic pro-
gram in which you can still retain that property.

And interestingly, in that relaxed set, you can
emulate all the object-criented programming. So,
for that case, we've got this sort of completeness
as nice completeness.

Sa, they're the remarks on that point.

I'd like to take some more that were raised by
Herve and Ross. I actually do agree, now, that we
have to in some sense sell this new echnology in
the market place. And I think the fifth generation
effort in Japan most continue, 1 must explain the

-90-



very powerfnl methodologies they must have de-
veloped for their concurrent, their parallel sym-
bolic applications. These need tobe exposed. We
have to show to the world why it is now a superior
technology for developing fine grain heteroge-
neous applications on parallel machines.

I was very pleased to hear Uchida-san say that
there were these plans — well, T know they are at
these plans to port KL1 and PIMOS to some stock
hardware running UNIX and to have interfaces ei-
ther via UNIX or C to other applications. I think
this is extremely important. | actwally also think
that there is a major application area for concurrent
logic programming as a coordination langnage as
Ross said. More than that, as a language for dis~
tributed Al applications, I would like 10 see dis-
tributed implementations of these languages. A
whole new ball game is breaking out --- computer
supported cooperative work, I think we've got a
lot to do in that area as well. These haven’t cur-
rently been addressed in this program. Thank you.

Kowalski: This area concerning concurrrent
logic programuming is certainly one where impor-
tant advances have been made in the FGCS
project.  However, I wonder if we could address
some of the other wreas of FGCS technologies -
such as artificial imelligence or knowledge infor-
mation processing, which have regeived so much
media attention; or the parallel inference machine
which could have important implications.

Pierre Deransart (INRIA, Rocquencourt,
France): [ think that computer science has a very
short history, and logic programming, an even
more shorter history, It's quite strange to ask the
question about the fuiure of logic programming
with a 0 short history and so promising results in
some sense. But it's natural also after less than
twenty years of development to ask this question
to oracles, please tell us what is the future. Did we
work well or not, and so on. -So, I would like to
give the answer, a very short answer from the part
of research, [ think that we know the answer; we
know what we are doing, and we know what we
cannot do, also,

We know that basically we are working on re-
liability. We want to improve the reliability of

software technology. We want to solve new prob-
lems algo, for example, constraint logic program-
ming permits to solve new problems which would
be very difficult to handle with classical technol-
ogy in software technology. So, weknow what we
want, and we are trying to make some progress at
this track, but we know the limits also, But, we are
living in a difficult time in some sense, becanse on
one side, in software technologies, software indus-
iry is something special; becanse we ane trying to
build things which are impossible to build, 1f you
are irying to build a building, vou will use very
fine technology to be sure that the building will not
fall or the bridge will not fall down, But, in soft-
ware technology, we are asked to produce things
which we know are impossible, namely, safe soft-
ware or absolutely safe software, So, any step in
this direction is an inferesting progress,

And on the other side, the period is interesting
because industry, sometimes, and more and more
is asking research - okay, we have difficulties;
what should we do? Couold vou help us to decide
what we have to de, or to help us to find what we
have to do? So, as I've said, we know in some
sense, we know partially what we can do; we know
also what we cannot do. But, becanse we know the
limits, and they are strong limits, we need funding
to continue this research. lmagine that, if you ask
physician to find nuclear fosion by the end of the
year, 50, if you don’t find nuclear fusion by the end
of the year, so we get the funding. So, itis a non-
sense. This may happen. It's not impossible not to
happen; but it seems natural in computer science
just to ignore that we need funding to make more
improvement,

And I think that the question then is, did we do
a step forward, did we do some progress since ten
or fifteen years in terms of software reliability?
So, this question, we cannot answer it directly.
Just to look at what happens in the industry, there
have been different event, for example, ICLP in
Paris with industrial exhibition, and it was clear
there were many interesting application and many
satisfactory application from the point of view of
the industry also. And, there has been recently, in
London, exhibition and conference on Prolog ap-
plications, and the message -— 1 have to say that
most of the applications presented, industry appli-

-91-



cations, were based on classical Prolog, not on big
extension of logics. We know that these exten-
sions are absolutely fundamental for the future,
but we know also that the real applications now
develop on many of them on the bases of classical
pralog. Also classical prolog is on the track of
standardization, which is a good thing for the in-
dustry.

So, if we want to know what is the real impaet,
and there is one; look at the Prolog 1000, Chris
Moss at Imperial College is trying to recall all the
industrial applications, so, you can send him ex-
ample of applications and we will see the Prolog
1000 with many application, which is a very good
thing, I think very interesting thing for the future.
Thank you.

Kowalski: Thank you. Does anyone on the
panel want to respond?

Overbeek: You mentioned that reliability -
that you knew that what we are afier is reliability.
I find that a very limiting notion. That's not what |
believe the vision of the fifth generation project
was, although reliability is certainly a noble thing
to seek. 1see compuling as a tool for searching for
the selutions, the answers to scientific questions.
What was the nature of tha universal ancestor?
What were the original components of the au-
tomata that became life? Is global warming areal-
ity? These are what machines are for. And, well,
notions like reliability are subordinate concepls
that allow us to pursue substantial visions. Com-
puter scientists tend to focus on notions like reli-
ability; [ believe as scientists we must go beyond
that, to a far more general, far broader vision.

Murry Shanahan (Jmperial Cellege, U.K.): This
point relates to the issue of reliability, actually, 1
wanted to come back to Peter Wegner's point
about formal justification. I was wondering
whether he would feel safie on his flight back home
if he knew that the engineers who designed the air-
craft he was flying on hadn't appealed the formal
principles of physics. And it seems to me that
logic is to physics as --- well, logic relates 1o phys-
ics as in engineering. And the point of using logic
programming as a paradigm in computer science is

that logic is very very close 1o logic programming,
whereas, when you use something like objects,
then the distance is much greater. That's why 1
think that we have 1o appeal to paradigm like logic
programming in order to make that gap smaller.
And [ think it's slightly scandalous o reject the
notion of formal justification when we 're building
more and more complex syslems in computer sci-
ence.

Wegner: 1 am prepared to be scandalous, be-
cause, I think that & purely logical proof often turns
out to be wrong because it hasn’t taken real world
realities into account. I would not feel safe in an
aircraft just because of a formal proof that it would
not crash. Infonmal commen sense esting of con-
tingencies is usually more impertant than formal
proofs. Conforming to the laws of physics 15 nec-
essary-but not sufficiemt for safety, since there are
many practical not amenable to preoef that must be
considered. Many of the early logic proefs about
the correciness of programs turned out 1o be wrong
later so that. 1 woukd hate be a victim of a plane
crash of a plane controlled by & verified program
whose correctness proof turned out 1o be wrong.

Fumio Mizoguchi (Science University of Tokyo,
Japan): Japanese is sometimes quiet, like me, so |
make Some comment,

As a chair of the application track panel, |
must report something related to this panel. In that
pangl, there was a discussion about the socalled
paradigm starting from knowledge presentation,
constraint logic programming, inductive logic pro-
gramming, and parallel programming. In that
panel it was rather difficult to merge all of the
paradigm, but there was some consensus to use C
a5 a basis for programming —- there was a nice pic-
wre from Catherine Lassez showing constraint
logic programming CLP, then, at the end, the fu-
wre Cor C++. So, if we need a paradigm different
from the paradigm that the language naturally pro-
vides what shonld we do for this kind of the explo-
ration of paradigm? If the paradigm is one thing,
and then the computation is conventional language
such as C, then what should I do for the separation
of the paradigm and computation?

So, I have some questions about the roles of

02



the parallef language and logic programming lan-
guage. Is it alright to use them as thinking para-
digms, or as language devices to develop explora-
tions of the paradigm? And if the basis of every
computation is provided by C or C4++, then, what
is going to happen in the next century?

Kowalski: Would any of the panel like to reply?

Furukawa: [ think the imporiance of the lan-
ghage is for helping thinking your own idea as a
program, and such high level languages like
Prolog or KL1, GHC help vour thinking. And the
merit of C or C++ may be for its efficiency. But, 1
think that there are many good compiiation tech-
nigue and that kind of merit could be imported in
higher level language scheme. So, I think impor-
tance is productivity for software production and
egse for thinking, Therefore, the role of higher
level language is very important.

Uchida: I'd like 1o mention the differences be-
tween OR-paraliel Prolog and AND-parallel
Prolog, and alse the differences between logic pro-
gramming methodologies and conventional pro-
gramming methodologies in C or FORTRAN,

When you are using FORTRAN or C, you are

vory close 1o the hardware, To begin with, you
 have to think about the details of the hardware re-
sources you are given to use, But, using logic pro-
gramming, your position is slightly higher than in
FORTRAN or C. You can forget about the details
of hardware resources, such as the maximum size
of vour memory. So, you can directly face the ap-
plication problems.

However, you have to think of how to model
your application. This is another step in program-
ming——the modeling of the problem. You have to
design an algorithm, write a flowchart and pro-
gram, consider the details of hardware resources
and so on. You have to think of many things at the
same time.

In logic programming, this procedure be-
comes much simpler. This is one merit of high-
level languages, OR-parallel logic programming
is much higher than usual AND-parallel logic pro-
gramming in terms of resource management. So,
the last stide Bob showed us indicates one limita-

tion of logic programming. e is trying to use one
simple logic programming language to directly
handle natral languages or pictures. The range of
the applications is too wide for us to cover with a
single language. So, this seems like a corious ap-
proach to me. '

I stili believe that current logic programming
languages are still low level and are nsed mainly to
control hardware systems. No efficient OR-paral-
lel logic language is provided. We must think
about how a language hides details of the hard-
ware system., This point is very important when
comparing OR- parallel language and committed-
choice AND-parallel language. 1 consider this to
be the most important point.

Kowalski: Perhaps [ shou!ld respond just briefly.
My last slide was (he worst case scenario. We
have just a few moments left; and we have one
more contributor,

Catherine Lassez (1BM T.J. Wason, U.S.A0: 1
just want to make a little clarification on what
Mizoguchi-san has said. In my slide, C was actu-
ally meant constraint, not the programming lan-
guage C, and although in some cases we use C,
ves, but [ also advocate strongly the use of formal
model along the line of logic programming to ap-
ply in other domain,

Kowalski: Thank you. I'm conscious that there
is one area that the panel discussion has not yet
addressed, and that is the area of parallel inference
machines. Is there anyone who would like to com-
ment on their significance?

Wegner: I nominaie Bob to make a comment on
the significance: because 1 think that he feels it’s
significant,

Kowalski: Thank vou. I do indeed believe that
HCOT's work on the parallel inference machine
has much greater significance than has been
recognised so far,

The essence of my argument is that the paral-
lel inference machines are not special purpose ma-
chines designad to support an esoteric, unconven-
tional logic programming langouage for a narrow

-93-



range of Al applications. But rather they are gen-
eral-purpose parallel machines that support main-
stream models of computation. This is becanse
concurrent logic programming, the computational
model directly supported by PIM, is as much a
model of object-oriented programming and of
mainstream approaches lo concurrency, such as
CSP and CCS, as it is & form of logic program-
ming.

From this point of view, the FGCS work on
PIM has almost certainly been the largest, most in-
novative, and most successful development of par-
allel computer architecture and its associated soft-
ware so far. 1 have litle doubt, therelore, that it
will have an important influence on the develop-
ment of parallel computer architectures of the fu-
ture. :

Wegner: The operating system that was de-
scribed has many mainstream faatures like process
migration. FGCS has considered many technical
problems that are not specifically dependent on
logic programming that could easily be transferred
to other paradigms, and this is very significant.

Kowalski: It is now time to draw this panel to a
close. In doing so, I would like to summarise a
few conclusions, which I believe are representa-
tive of the discussion we have had.

Firstly, [ think we all agree that logic pro-

gramming must be reconciled with object-oriented
programming. Perhaps this is another way of say-
ing that the pap between “don’t care” and “don't
know" forms of logic programming must be
cloged. :

Secondly, we should be aware that in evaluat-
ing the foture prospects of FGCS technologies it is

- notonly technical merit that matters. Sociological

considerations are also important, As Ross
Overbeek mentioned in particular, it is not at all
certain that the programming language C has
achieved its dominant position in computing today
for technical reasons alone.

Thirdly, during this week we have seen many
impressive results presented and demonstrated by
ICOT, It is not possible 1o evaluate these results
completely in such a short ime. It may even be
that some of the proposals that bave been pre-
sented, for closing the gap betwesn “don't care™
and "“don’t know" forms of non-determinism for
example, might already have solved many of the
problems we have been discussing during this
panel. More time is necessary to complete the
evaluation process.

Finally, on behalf of all of the participants at
this Conference, I would like 1o thank [COT for
having given us a very exciting ten years, for hav-
ing organised this Conference and presented so
many impressive results, and for having intro-
duced us 1o the future of computing. Thank you.



